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Abstract—This article proposes a Question Answering System
that can automatically answer to questions presented in a natural
language about the Python programming language. A system
of this kind aims at the interaction with a human. Since it is
natural for a human to communicate in a natural language,
such as Portuguese or English, there is a need for systems that
can respond to the user in the same language. When restricted
to a closed or specific knowledge domain, these systems can
offer satisfiable answers to the posed questions. So, it is expected
that the proposed QA System can present reasonable answers to
questions about Python. After surveying this emergent working
area, that is growing every day, we will present the design and
implementation of a Python QA system in order to prove that it
is possible to adopt a systematic approach to construct this kind
of systems.

I. INTRODUCTION

W ITH increasingly demanding users, look for answers on

the WWW using standard search engines is no longer

desirable having become a complicated and inefficient task.

The main goal of Question Answering (QA) Systems is

to provide a new way of searching information based on

natural language questions. At first, this can turn easier the

user interaction and open the possibility to be used by people

in general. At second, the QA System gives a concrete short

answer to the user rather than a list of possible related

documents where the desired answer is mixed with other kind

of informations as happens in a common search engine.

A QA System can be open or closed domain but in a

closed knowledge domain, it can be tuned to give more

accurate answers. The system should be prepared with a set of

databases resources and with a mechanism to analyse the input

question. Techniques of information extraction are then used to

construct the answer. Each question should be analysed based

on its syntatic structure and on a set of keywords and it should

be translated into a repository query. Complex data structures

should be prepared to receive the query and avoid redundant,

incomplete or wrong answers. At the end the given concrete

answer can be complemented with a set of related documents.

PythonQAS, the QA System presented in this paper, is

restricted to a closed knowledge domain: Python Programming

Language. It is expected to be useful to students or to profes-

sionals that want to know more about this language. Moreover

Python doesn’t belong to the Informatics Engineering Degree

Curricula and all the material and tools will be very useful

people who wants to learn this language.

A survey of methods and tools to build Question & An-

swering is presented in Section 2. Our proposal to construct a

closed domain QA System for Python programming language

is sketched in Section 3; a block diagram to depict the system’s

architecture is shown, and each component is described in

detail. Section 4 is dedicated to discuss the implementation

based on a first glance at the questions of the FAQ for Python.

In section 5 the new web interface for Pyhton QA system will

be presented. Section 6 closes the paper with some conclusions

and directions for future work.

II. RELATED WORK

QA Systems are mostly separated by closed and open

domain. Closed-domain systems answer questions within a

specific knowledge domain or to only a certain type of ques-

tions. They target precision, rather than coverage. Dealing with

a restricted scope of knowledge allows QA systems to resort to

smaller amounts of information, usually structured data such

as ontologies. With such limited, formalized and structured

data, systems try to take great advantages of natural language

processing techniques in order to be the most accurate possible

in their answers. Open-domain systems answer questions about

almost everything. These system rely on much larger amounts

of data than closed-domain QA systems, using mostly unstruc-

tured data and general ontologies. Their primarily goal is to

provide factoid answers to questions about world knowledge.

While closed-domain systems aim at accuracy, open-domain

systems intend to cover the greater scope of information that

is possible. The ambition is to offer more than a conventional

web search engine by answering the user’s questions, rather

than presenting a simple list of documents/web pages that

match the search’s query.

Concerning techniques and approaches involved, QA sys-

tems will be classified according to three different perspec-

tives: techniques for question analysis; techniques for retriev-

ing answers from knowledge repositories; and techniques for

composing the final answer.

For question analysis, some QA systems are based on meth-

ods of natural language processing, i.e. methods that try to

derive meaning from natural language input. Natural Language

Processing is itself a very prominent field of computer science

and artificial intelligence that involves techniques like parsing

and machine learning. The process consists in converting the

user’s question into a database query written in a formal
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language such as SQL and SPARQL. The output of the query

will usually be given as an answer. BASEBALL [4] and

LUNAR are closed domain QA systems and they fit perfectly

into this category. START1 is another example of a linguistic

approach but it is an open domain.

Another technique for question analysis is Pattern Matching

anf Tagging. The QA system analyses a question and labels

it in order to find a pattern. If the pattern corresponds to

the expected pattern for a certain answer, then this answer

should be the right one. For example, when posed with the

question, “Who is the President of Portugal?” the system

interprets the question as “<Person Name>is the <President

of Portugal>?” and expects the answer to be the name of a

person who is president of Portugal. QACID [3] an ontology-

based QA system, applies tagging algorithms in order to

extract a query pattern, i.e. a query in natural language labeled

with morphological information and ontological concepts. To

overcome tagging difficulties, due to the complexity of natural

languages and human error, QA systems might rely on, for

example, synonyms and algorithms for removing stem words,

stop words and vowels. The AQUA system [11], among its

various steps for processing a question, divides the sentence

into subject, verb, propositional phrases, adjectives and objec-

tives. Similar to QACID, it produces a semantic representation

of the query that is used by search algorithms when trying to

find an answer in the knowledge base. [10] proposes a method

that combines patterns with machine learning techniques in

an open domain QA system. They use the machine learning

technique of bootstrapping to build a tagged corpus from

some examples of hand crafted question-answer pairs. These

examples are passed to a search engine and from the results of

the search, the system extracts patterns. The precision of each

pattern is calculated for each type of question. The patterns

are then employed in finding answers for new questions.

Concerning Answer Retrieval, some systems rely on struc-

tured knowledge sources and ontologies about a specific

domain and they are mostly closed-domain QA systems.

The idea is to make queries over a database that contains

structured information about the system domain. Meaning

that the information was produced before the questions were

asked and that, if the knowledge source works as it should,

the effort lays mainly in understanding the question rather

than finding the best answer. This is only feasible when

the scope of the domain is well defined and restricted, and

the knowledge source is relatively small, very well defined

and structured. QACID [3] is a good example of this. In

this case the information, from which the system derives

answers to the user’s questions, is stored in textual documents

written in natural language. Ontologies are mostly used to

define a language in which documents and questions can be

represented and exploited [9]. The most interesting feature of

these systems, and what makes them perfect for working with

an open-domain, is the capacity of taking advantage of the ever

increasing amount of textual information, available throughout

1http://start.csail.mit.edu

the Internet. Web search engines like Google can be used to

find and retrieve these knowledge sources from the Internet.

Nonetheless, not all QA systems rely on this technique, since

most of the time, there is no guarantee of the correctness of

the retrieved information. The system described in [2] and

MULDER [7] are examples of this.

Concerning Answer formulation, a QA system can give as

result a set of fragments of texts or text highlighting or just

a succinct answer. Some QA systems are text based, meaning

that the answer to the question posed by the user, will be a

fragment of a text. By using this approach, a system becomes

intricately related to other information access techniques such

as “document retrieval”, in which entire documents are re-

trieved, and “passage retrieval” in which chunks of text are

returned [8] as answers. Even though, this does not offer

much more than a web search engine such as Google, Yahoo,

etc. it might be enough to answer a question, since it relies

on the intelligence of the user to extract the exact meaning

from the text. In [1], PiQASso(Pisa Question Answering

System) is an example of this and in [5] is explained how

QuALIM [6] answers can be supplemented with paragraphs

from the Wikipedia. Contrary to the last approach, some other

systems give a succinct answer that directly satisfies the user

information needs. Besides giving a direct answer in a natural

language, some of these systems will also provide additional

informations related to the topic. Evi2, formerly known as True

Knowledge is an open-domain QA platform that translates

the user’s questions into a language independent query that is

executed using the knowledge base and an inference system.

The result of the question is a direct answer to the user’s

question.

III. PYTHON QA SYSTEM: OUR PROPOSED SOLUTION

A closed-domain system is more adequate when wanting to

built something different from what is available today. Since

it deals with a smaller scope of information, it is possible to

analyze the problem in greater detail, to create a system that

could solve a real problem of a certain domain. Nonetheless,

most QA system do not necessarily intend to replace the

conventional search engines that we have become familiar

with, but to complement them or to present a viable alternative.

A. Chosen domain: Python

Python has been capturing attention in recent years. Its pop-

ularity among both beginners and experienced programmers is

rapidly increasing. Many people learn Python by themselves,

resorting on large amounts of scattered information available

throughout the Internet. The QA system being proposed could

help programmers by reducing the effort necessary to find

useful data among all this information.

Python is a powerful and very popular language. Nonethe-

less, other languages such as Java, C++ or Ruby have some or

all of the same functionalities and could as well serve as the

domain of the proposed system. The system should be capable

2https://www.evi.com
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Fig. 1. Proposed System’s Architecture

of being used in the domain of another programming language

without the need for structural changes.

On a first phase, the Python Frequently Asked Questions

(FAQ)3, will be used as a knowledge source. Since the goal

is to create a system capable of answering question in natural

language about Python, the fastest way to create a functional

prototype is to populate its knowledge base with answers and

questions that the Python Software Foundation classifies as

“frequently asked”. On a second phase, more data should

be added to the database in order to enhance the system

capabilities.

B. System’s Architecture

Figure 1 depicts the proposed system’s architecture. The

system starts by accepting a question from the user. Then it

parses the question in order to produce a query that will be

used to retrieve information from the database. This informa-

tion will then be analyzed and presented to the user.

Every QA system starts by receiving a user’s question.

Understanding the meaning of the question is vital for the

process of retrieving the correct information.

PythonQAS parses the question in order to identify certain

words. Any other words are discarded leaving only the desired

words and preserving the order that they had in the user’s

question. This ’meta-question’ is then used to construct a

query in order to retrieve data from a relational database. The

knowledge data should be stored in a way that offers stability,

safety and fast access to data. We decided to adopt a structured

knowledge base such as a relational database.

When providing an answer to a user’s question, we are

usually confronted with a dilemma. Should the answer contain

just enough information to answer the question succinctly or

should the system present additional information about the

context of the answer? We approach the problem by estab-

lishing a middle term between two methodologies. If a user’s

question makes sense within the domain of the system, then a

succinct answer should be presented to the user. At the same

time extracts of text or web links containing information about

3https://docs.python.org/faq/

the topics of the question are also shown as a complement.

When the system can not find a satisfiable answer, a message

notifying the user of this fact appears instead of the desired

result.

IV. SYSTEM IMPLEMENTATION

The proposed system was built as a web application. This

section describes the system functionalities, the used tools and

the implementation approach to build the application.

A. System’s Overview

To start implementing the QA system the Python FAQ

(PyFAQ) was used as a source of questions and answers on

this domain. That PyFAQ will be the seed to build the basic

knowledge repository (KR) but in the near future it can and

must be enriched with other sources. On one hand, it will

support the processing of simple and literal questions; on the

other hand, it will allow to provide direct answers.

First and foremost it is necessary to find a method to analyze

questions and subsequently apply this method to build the

knowledge base and find the respective answers.

We propose the creation of pairs of question-skeleton

mapped to (7→) the respective answer.

A question-skeleton is a template, or pattern, that describes

the intention of a question. For instance, the question “How

to print out the value of a variable in Python?” can be

abstracted by the following skeleton that defines the question

intention: “HOW(print, [variable])”. So, our KR will store the

information as quadruples (or four-tuples), Question Type →
Action → Keywords → Answer.

Looking at the PyFAQ we concluded that the majority of

the questions are posed using a small, limited kind of words,

mostly adverbs, that give meaning to the phrase. We can then

join questions into groups of Question Types.

In Table I there are some examples of how questions in the

PyFAQ could be classified by the proposed Question Types.

TABLE I
QUESTION TYPES

Question Type Question

Why
Why are Python strings immutable?
Why is there no goto?

How

How are lists implemented?
How do I convert a string to a number?
How do I modify a string in place?

Where Where is the math.py source file?

What
What is a method?
What is a class?

When When can I call a method?

Usually, a question fits only one Question Type. The an-

swers can be reused by different (but similar) questions.

Answers will be given a confidence rate. That way even if a

question does not satisfy the user’s needs, others with a lower

confidence rate might solve the problem.

To illustrate the idea, observe the following entry in the

PyFAQ:

Q3.23: Why is there no goto?
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(A3.23:) You can use exceptions to provide a “structured

goto” that even works across function calls. Many feel that

exceptions can conveniently emulate all reasonable uses of the

“go” or “goto” constructs of C, Fortran, and other languages.

This answer could also satisfy the question “How can I

use a goto statement?”. Even though the two questions are

different, they could be both mapped to the same answer. But,

for example the question “What is a goto statement?” can not

be clarified by the answer. The Question Type is important

to identify possible answers, but this does not imply that

a question of some type can not be also responded by the

answer to a question of a different type. It just means that the

confidence of the system in the assertiveness of the answer is

not as great as it would be in a different situation.

As said above, each entry in the KR(a pair <question-

skeleton 7→ answer> stored in our central relational database

contains the Question Type and also an Action (verb) and

a set of Keywords (mostly nouns) that abstract the question

intention. This triple (Type, Action, Keywords) composes the

so called question-skeleton.

Table II illustrates this principle with examples taken again

from PyFAQ.

TABLE II
KEYWORDS

Question Action Keywords

Why is there no goto? not(exist) goto

How are lists implemented? implement list

How do I convert a string to a number? convert string + number

How do I modify a string in place? modify string + place

What is a method? define method

What is a class? define class

When can I call a method? call method
Is it possible to allocate memory

for strings in creation time? allocate

memory + string

+ creation time

Notice that the Action and Keywords that represent a

question do not need to be precisely the same words that

are found in the question sentence. We resort to an English

dictionary or thesaurus to lemmatize verbs and find synonyms.

This approach introduces generality in the knowledge base

and it is a way to be flexible in the question interpretation.

For instance, the question “Why does not exist goto in Python

?” will be replied with the same answer (A3.23) because

the sentence will be recognized and represented by the same

skeleton of (Q3.23).

To sum up, the (Q&A3.23) shown above is represented in

our KR (contained in the central database) as a four-tuple4

illustrated by the entry in Table III.

If the user types the question “Why does not exist a jump

statement in Python?”, the system processes the sentence

with NLP tools complemented by a NL Thesaurus and a PL

Ontology (to convert nouns to the singular form, verbs to

infinitive form, and find synonyms, etc.), in order to identify

the Question Type, Action and the Keywords that characterize

4Actually three elements that describe the question-skeleton plus the
answer.

TABLE III
REPRESENTATION OF AN ENTRY IN THE DATABASE

Q Type Action Kw Answer

Why not(exist) goto

You can use exceptions to provide a “structured

goto” that even works across function calls.

Many feel that exceptions can conveniently

emulate all reasonable uses of the “go” or “goto”

constructs of C, Fortran, and other languages.

the question skeleton. By extracting that information, our

system will generate a query to send to the database aiming

at retrieve the associated answer.

To be more precise, after analyzing the input sentence our

system tries to find an entry with the same Question Type (Why

in this case), and with at least one Keyword and Action. If our

database contained only the entries with the set of keywords

shown in Table II, the system would not find any match. But

the system resorts to synonyms and similar concepts, thus it

would not only look for the keyword jump statement but also

for goto. A simple scoring function is then used to rank the

candidate answer(s) based on the frequency of the Question

Type, Action and Keywords. The answer with the highest

score is then presented to the user followed by the ones above

a certain score. If there is no satisfiable answer, the system

returns a simple message notifying the user of this fact and

advises him to rewrite the question.

B. Technology used

Since the domain of the system is a programming language

(Python), we decided to use the same language for the devel-

opment of the application. Python is a very popular language

among the natural language processing community, thus, there

are many free and good tools, packages and libraries for the

language, such as NLTK.

Django was chosen as a framework to construct the web

site. Using a framework such as Django allow us to construct

a web site without needing to build everything from scratch.

Django is free and open-source, it is written in Python and

promises to be fast, secure and scalable. It officially supports

various relational databases which facilitates the building of

data-driven websites and comes with an integrated web server

that helps to test the application faster and almost effortless. It

also offers an administration application and many capabilities

that intend to reduce effort and increase safety like forms, and

models to build and connect with the database.

PostgreSQL was chosen as the database engine for the

project. It is a free and open source object relational database

that runs on most modern operative systems and can be both

used for small single-machine applications and larger data

warehousing.

C. Implementation approach

This section presents all the main steps necessary to build

PythonQAS, along with explanations regarding the different

methods adopted, the reasons behind all major decisions and

the most critical obstacles that were faced.
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Fig. 2. Phrase Analysis

1) Phrase Analysis: A phrase or a question is always

composed of many components such as adverbs, nouns, verbs,

etc... To understand the meaning of a phrase it is necessary to

split it into these components. Even if not in a conscientious

way we, human beings, also do it. Take the example of when

we are trying to learn a new language and we do not know

all the vocabulary that a native uses in its daily life. Even if

we do not know the word we are sometimes able to infer it’s

meaning by its position on the phrase. To analyze a question,

the proposed QA system does a similar job by dividing a

phrase into multiple components and trying to identify three

different types: action, keywords and a question type.

Concerning the Action, usually, while using natural lan-

guages, human beings use a word that describes an action, an

occurrence or a state of being. This word is obviously called

a verb. But finding the right action or the main action of a

question is not always an easy task. A question could have

more than one verb, verbs have tenses (past, present, future),

verbs change according to the personal pronoun and a verb

might, for example, be no different from a noun, except for its

position on the phrase. Even a human being could be mistaken

about the right action of a question if not given more context

or information about the it.

Figure 2 depicts the major techniques used by the system

for analyzing a phrase.

In the application an Action is an object that starts by

receiving a question as a simple string. Before doing anything

to the question it is best to find any contractions that may exist

in the phrase and if possible convert them to their full form.

This may lead to ambiguous situations [12]. After some tests

with different contractions it was concluded that the advantage

of trying to disambiguate would not offer any significant

advantages if taken to account the work that would be needed.

Thus, the PythonQAS only converts contractions that are not

ambiguous.

Next step, the phrase is divided into multiple substrings

using the NLTK Tokenizer Package, in order to be used by the

Pos (Part-of-speech) Tagger from the NLTK Tagging Package.

Right after using the Pos Tagger, the words are converted to

their lower form to avoid problems when comparing words.

This could not be done before because it could decrease the

efficacy of the Post Tagger. For example, the word “I” in a

phrase has a complete different meaning from the letter “i”.

The process continues by identifying all the verbs in the

question. These will be saved to a dictionary where the key

is a word (verb) and the object is a number from 0 to 1.

This number represents the trust in the assertiveness of the

verb being the right action. It will be very useful to find an

answer in the database and distinguish the different results of

the database queries. This dictionary will be called l action

along this document. If one or more verbs were found, these

will be converted to their infinitive mode using the NLTK

WordNetLemmatizer.

If at the beginning, no verbs were found, then a different

path should be followed in order to find at least one verb. The

process works by looking at the words of the phrase and trying

to find any that could be a verb. But, since a word could be

used both as a verb or an adjective, this process is not very

reliable. So, the Trust of the verbs will be reduced.

Next, the Stopwords are removed. Stopwords are usually

the most common used words in a certain language and do

not contain any significant importance to the meaning of a

phrase. Thus, its removal is very common when processing

natural languages and usually do not compromise the success

of the analysis.

The next step is to find which words could be verbs

by using WordNet, a lexical database. It groups words into

synonyms called synsets and provides many data about these

words like number of relations, definitions and examples of

usage. It might be seen as a mixture of a thesaurus and

a dictionary. Next, PythonQAS resorts once again to the

dictionary containing the results of the Pos Tagging process

to verify if the remaining words are nouns or adjectives. If

so, and if the words are positively identified by WordNet as

verbs, the words are added to dictionary “l action”.

If more than one verb was found, regardless of the way

the verbs were obtained, the tool will try to exclude false

positive findings. First the PythonQAS removes all stopwords

and words that contain characters which are not letters.

Concerning the Keywords, most phrases in a natural lan-

guage contain a set of keywords that give the phrase meaning

and context. These words are not the most frequent words

used in a speech, but it would be impossible to express any-

thing more than basic replies without them. For example, the

question ”How can I populate a dictionary?” has one keyword

“dictionary”. The question ”How can I populate a dictionary

MARCOS RAMOS ET AL.: A QA SYSTEM FOR LEARNING PYTHON 161



with lists?” has a set of two keywords, “dictionary” and “lists”.

The first question relates to the context “dictionary” and the

second to a context contained in the first one. Thus, the more

keywords, the smaller the domain of the phrase will be.

In the Action process we knew that actions were verbs, but

keywords are not as restrictive as that. So, the strategy here

passes more by excluding unwanted information(keywords).

PythonQAS starts by removing all stopwords and words that

were identified by the Pos Tagging process as being verbs.

Next, the keywords are saved to a dictionary (“keywords”),

similar to the “l action”. The keywords are the keys of the

dictionary and their objects are numbers between 0 and 1,

representing the trust in the assertiveness of the classification.

It was observed in some questions that similar con-

cepts/keywords were separated by a slash(“\” or “/”). Neither

the NLTK Tokenizer or the Pos Tagger were able to separate

them and they were considered to be a single word. To solve

the problem, PythonQAS tries to identify any slashes or other

separators inside every keywords. After the system splits the

keywords using a list of separators, if the individual words

contain more than one alpha character, the old word is erased

from the dictionary and the new ones are added.

Concerning the Question Type, it was noticed that the

questions of the Python FAQ are almost always formulated

in similar ways. By grouping the questions by their similarity

it was possible to find a set of question types. Question types

are expressions such as “How”, “When”, “Where”, etc.. These

types are not directly related to the keywords or even the action

of the question, but its use could change the entire meaning

of a question. For example the questions “How should I use

a dictionary?” and “Where should I use a dictionary?” are

almost the same except for the use of “How” or “Where”.

The answers to both questions are also similar and we could

actually find the answer to one of them in an indirect way in

the answer of the other. Nonetheless, PythonQAS should be

the most accurate possible and for that it tries to distinguish

from the different question types.

A Question Type is, like the Keywords and Action, an

object. The initial part of the procedure is shared with the

Keywords and the Action classes.

After rhis, the system uses a list of lists of expressions to

try to find the question type of the phrase. The list does not

contain words but lists of words. Each list contains expressions

that are similar. That way when searching for an answer, not

only the question type of the users question can be used but

also the similar expressions in the list.

The most important information produced by the ob-

ject’s different parts is contained within a dictionary, called

“q type”, similar to the ones used for the Action and Key-

words, whose keys are strings (question types) and the objects

are numbers between 0 and 1.

To identify the expressions in the phrase the system starts by

trying to match the different question types with the beginning

of the question. The question type is usually at the beginning

of the phrase.

The next step is to find out if the question was formulated

using two phrases. The system splits the text into multiple

phrases and tries to identify question types at the beginning

of each phrase and then tries to identify it in the middle.

If no question types were found, the system adopts a new

way to find a satisfiable question type. When comparing the

expressions, or words that constitute the question type of the

phrase, with the results of the NLTK PosTagger a relation

was discovered between the tags and the question types. The

question type, or part of it, is usually tagged with one of the

following tags: “WRB”, “WP”, “MD”, “WDT” or “EX”. But

even though they are usually tagged with those tags, not all

words tagged in the same way constitute question types. For

example, Wh-adverbs (WRB) are adverbs that start by “wh”,

sometimes called interrogative words. “how” or “however” are

such examples. Nonetheless “how” is a very common question

type contrary to “however”.

2) Information Storage: The Python FAQ is used as the

initial knowledge base of the PythonQAS. The initial database

is very important because it allow us to test the system and

adjust it according to the results. All the different web pages

containing the questions/answers were downloaded comprising

not only the text, but also their structure and HTML annota-

tions. That way, things like colored text and web links can

keep being part of the answer.

The Django Framework offers many capabilities, such as

Models, that try to decrease the complexity and work asso-

ciated with the building of a web application. Models allow

us to simply create python classes that contain and represent

information. These classes are used by Django to create all

the database structure. This not only saves time by building

the database, but also, because all objects in the database

are treated as python classes in the application, it allows the

programmer to save, delete, update and retrieve data from the

database without the need to ever use SQL code. The Answer

Model contains five variables: question, question type, action,

a set of keywords and an answer.

3) Information Retrieval: After receiving a question from

the user, the system creates an object(AnswersRetrieval) that

aggregates everything necessary to process the question and

search for answers. When the object is created it starts by

defining variables used to store relevant information about the

execution of the different methods contained by the object.

These variables indicate different weights and measures to

calculate the probability of an answer being right, the NLTK

Stemmer that is going to be used, answers found in the

database, results of analyzing the question, etc.. It also creates

three objects, explained before: Question Type, Action and

Keywords.

The next step will be to call three auxiliary functions to

retrieve answers from the database. Each of these correspond

to the components extracted from the phrase. The different

methods used to retrieve the answers and the analysis of the

question are used to calculate a probability value.

If the system found any actions in the phrase, then for each

action it will try to find all Answer objects with that action.
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First, a variable is created holding the Trust in the action

that is being analyzed. This value is provided by the Action

object. Second, the Answer objects that contain this action are

obtained from the database using a direct match.

Then the word (action) is saved to a dictionary containing

pairs as objects. This dictionary, called ‘visited”, saves all the

words that were already used in the search process to avoid

duplicated results. The keys are the words being used in the

search. The first element of the pair is the a string ”word” and

the second is the actual word used to search the Answers.

Last, a dictionary “action answ” is built containing all the

answers. The key of the dictionary is a tuple where the first

element is the Answer object and the second is the action that

was used in the search process. The object appointed by the

key is a value between 0 and 1 containing the trust in the

assertiveness of the answer.

In the next step, instead of using the action to search for

Answer objects, the system uses a stem word of that action

using one of the Stemmers provided by the NLTK. After

obtaining the stem word, the system searches for Answers

with an action that starts with it. Even though a stem word

does not always correspond to the beginning of the word, in

most cases it does. The best option would be to apply the

Stemmer to the action contained by each individual Answer,

but by doing so the system would have to read and compare

each Answer using only Python (we do execute any SQL code

but of course Django still does). In a very small database

this would not be a problem but in a medium sized to large

database the time and resources necessary to do this would be

very unsatisfactory. Then, the action is saved to the “visited”

dictionary. Now, the key used in the dictionary is the stem

word and not the action as before. This way the system saves

what it really used in the search without discarding the action.

This is necessary because two different words might have the

same stem word and saving the action instead of the stem word

could cause duplicate values. Lastly, the results obtained by

search are saved to the “action answ” dictionary.

The next step is to use synonyms by resorting to the

WordNetLemmatizer. Note that only synonyms that are verbs

will be used. The process used to find Answer objects using

synonyms is not very different from what it was done before

with the original word. Synonyms are received and for each

of them a search for Answers will be performed followed by

the use of Stem words.

In the next step, the system tries to find Answer objects

using the keywords extracted from the phrase. The procedure

is similar to the one used for finding answers with an action.

First, the system declares a dictionary with the visited ele-

ments. For each keyword in the list of keywords contained by

the object Keyword, a direct match will be tried .

After the first search there is a slight difference. Since

the verbs/action were already in their infinitive form, nothing

was done regarding this. Thus it is necessary to lemmatize

the keywords using the WordNetLemmatizer. A dictionary

“keywords answ” will contain the Answers and the Trust in

these same Answers, similarly to the “action answ”. Next, the

stem word of the current keyword is used followed by the use

of synonyms and their stem words.

For any question types found by the questions analysis,

the system searches the database for matches. Because of the

nature of question types and the methods used to extract them,

the search for answers based on the question type is simpler

from the Action and Keywords methods. Nonetheless, the idea

is still very similar.

A list is created, temporarily storing the expressions that

were already visited by the search process. For each question

type in the Question Type object, the PythonQAS queries

the database in order to get any entries whose question type

corresponds to the current expression. Any Answers found will

be stored in a dictionary called “type answ”, where the keys

are tuples containing the Answer and the expression used to

retrieve that answer, and the objects are values between 0 and

1 expressing the trust in that answer being the right one to the

users question.

After creating the three dictionaries “action answ”, “key-

words answ” and “type answ” containing all the answer ex-

tracted with the actions, keywords and question types, the

goal is to merge these into a new dictionary “answ prob”.

The keys of the dictionary are Answers and the objects are

dictionaries containing the trust/probability of the assertiveness

of the Answer regarding the action, keywords and question

type of each Answer.

Regarding the Answers found with the question type, the

dictionary “type answ” will be treated in the same way as the

“action answ”. The same strategy cannot be applied regarding

the keywords because an Answer can have more than one

keyword. Instead of simply copying the trust, the system

increments the value of the keyword of the dictionary with

that trust value. This way a previous value is never lost but

summed. Now, the system will divide this number by the

number of keywords of the Answer Object resulting in a trust

value made of the values obtained by using all keywords found

in the question.

The main goal of an object of type Answer is to provide

answers, thus, after everything that was explained above, the

system has the dictionary “answ prob” containing all possible

answers. Still there is not yet a way from where to choose the

best possible answer. The system will iterate all the Answers

in the dictionary and it will calculate its probability based on

the trust value of the Keywords, Action and Question Type of

the respective Answer.

After, the system returns a list containing tuples (answer,

probability), sorted by the probability value.

A good example would be to ask PythonQAS, ”What are

the rules for local and global variables in Python?” and thus

obtain a list of possible answers sorted by the probability

value. This example can be consulted at http://pythonqas.

epl.di.uminho.pt/qaSystem/answer/?question text=What+are+

the+rules+for+local+and+global+variables+in+Python%3F.
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V. WEB APPLICATION

PythonQAS uses a web interface to communicate with both

users and system administrators. The website can be consulted

at http://pythonqas.epl.di.uminho.pt.

Regarding the normal user’s interface, the system provides

a way to ask questions, view results and some information

regarding the usage of PythonQAS, information about the

authors and the developing methods used in its construction.

When a user asks a question the system creates an Answer-

Retrieval object using the question. If the object produces

any answers and if these answers have a probability/trust

value greater than a certain value defined in the system’s

programming, the answers will be presented to the user, sorted

by their trust value. Only the most probable answer is shown

to the user, the other answers are hidden inside collapsed divs

showing only their order on the list and their trust value.

Nonetheless, the user only has to click on the div to see its

content.

Regarding the administrator’s interface, PythonQAS pro-

vides, through the Django Administration web application a

way to list all answers and keywords in the database, edit,

delete, update and insert new entries, and add new users

(administrators).

Even though Django offers a very good administration

interface, it lacks in some functionality particular to the

PythonQAS. Thus, the system was complemented in order

to be able to: receive a text file containing pairs Question

→ Answer, parse this file, show the results to the user along

with suggestions about the different components needed to

insert the information into the database and a way to insert

it after it is reviewed; easily insert an individual entry to the

database; receive a question and creates three objects of the

classes Action, Keywords and Question Type and return the

results to the interface to test the system capabilities.

VI. CONCLUSION

The design and implementation of a computer based system

capable of understanding an Human question, about a knowl-

edge domain, delivering an appropriate answer is a major

dream that is stimulating, since a long time ago, the artificial

intelligence, computer science and linguistic communities to

moving them up to a deeper research. In that context of Q&A

(question and answering) Systems, this paper contributed, on

one hand, with a survey on the work already done aimed at

the classification of existing approaches and tools, and, on

the other hand, as a proof of concept with the design and

implementation of PythonQAS, a web-based system to answer

questions set up by programmer about the language Python.

Even returning satisfactory answers, the system still lacks the

access to other information sources to be able to derive more

answers (the more the system grows in terms of information,

the better it will be able to provide the accurate answers).

Another project contribution, also discussed in the paper, was

the choice of Python information sources and the development

of a back-end system to collect information from them and

automatically populate PythonQAS knowledge repository. A
first (and simple) test and evaluation of PythonQAS was

performed to draw conclusions about the system outcomes

(the lessons learned were pointed out) in order to understand

the directions for future work (possible in a PHD context):

1) Increase the number of answers in the database, i.e. more

reliable data should be added to the KR;

2) Adjust the different measures used to calculate the

probability value of an answer;

3) Integrate the PythonQAS into a Question and Answer

Web Site like Stackoverflow;

4) Apply this approach and technology to another Knowl-

edge Domain, for instance Java, Perl or C# programming

languages, to test its validity;

5) Apply this approach in a different Natural Language

environment, for instance to Portuguese.
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