
Parsing with Earley Virtual Machines

Audrius Šaikūnas

Institute of Mathematics and Informatics

Akademijos 4, LT-08663 Vilnius, Lithuania

Email: tuxmarkv@gmail.com

Abstract—Earley parser is a well-known parsing method used
to analyse context-free grammars. While being less efficient in
practical contexts than other generalized context-free parsing
algorithms, such as GLR, it is also more general. As such it can be
used as a foundation to build more complex parsing algorithms.

We present a new, virtual machine based approach to parsing,
heavily based on the original Earley parser. We present several
variations of the Earley Virtual Machine, each with increasing
feature set. The final version of the Earley Virtual Machine is
capable of parsing context-free grammars with data-dependant
constraints and support grammars with regular right hand sides
and regular lookahead.

We show how to translate grammars into virtual machine
instruction sequences that are then used by the parsing algorithm.
Additionally, we present two methods for constructing shared
packed parse forests based on the parse input.

I. INTRODUCTION

Parsing is one of the oldest problems in computer science.

Pretty much every compiler ever written has a parser within it.

Even in applications, not directly related to computer science

or software development, parsers are a common occurrence.

Date formats, URL addresses, e-mail addresses, file paths are

just a few examples of everyday character strings that have

to be parsed before any meaningful computation can be done

with them. It is probably harder to come up with everyday

application example that doesn’t make use of parsing in some

way rather than list the ones that do.

Because of the widespread usage of parsers, it no surprise

that there are numerous parsing algorithms available. Many

consider the parsing problem to be solved, but the reality

couldn’t be farther from the truth. Most of the existing parsing

algorithms have severe limitations, that restrict the use cases

of these algorithms. One of the newest C++ programming lan-

guage compiler implementations, the CLang, doesn’t make use

of any formal parsing or syntax definition methods and instead

use a hand-crafted recursive descent parser. The HTML5 is

arguably one of the most important modern standards, as it

defines the shape of the internet. Yet the syntax of HTML5

documents is defined by using custom abstract state machines,

as none of the more traditional parsing methods are capable

of matching closing and opening XML/HTML tags.

It is clear that more flexible and general parsing methods are

needed that are capable of parsing more than only context-free

grammars.

As such, we present a new approach to parsing: the Earley

Virtual Machine, or EVM for short. It is a virtual machine

based parser, heavily based on the original Earley parser.

EVM is capable of parsing context-free languages with data-

dependant constraints. The core idea behind of EVM is to

have two different grammar representations: one is user-

friendly and used to define grammars, while the other is used

internally during parsing. Therefore, we end up with grammars

that specify the languages in a user-friendly way, which are

then compiled into grammar programs that are executed or

interpreted by the EVM to match various input sequences.

We present several iterations of EVM:

• EVM0 that is equivalent to the original Earley parser in

it’s capabilities.

• EVM1 is an extension of EVM0 that enables the use of

regular operators within grammar rule definitions, thus

easing the development of new grammars.

• EVM2 further extends EVM1 by allowing the use of

regular-lookahead operator.

• Finally, EVM3 is an extension of EVM2 that enables

general purpose computation during parsing, and as such

allows to conditionally control the parsing process based

on the results of previously parsed data. Therefore, EVM3

can be used to recognize data-dependant language con-

structs that cannot be parsed by more traditional parsing

methods.

In section III we present two separate methods for con-

structing the abstract syntax trees (or more precisely, shared

packed parse forests) based on the input data. Automatic

AST construction enables automatic construction of shared

packed parse forests, without any changes to the grammar.

On the other hand, manual AST construction requires explicit

instructions from the user to control the AST construction.

II. EARLEY VIRTUAL MACHINE

A. EVM structure

For every terminal input symbol inputi EVM creates a state

Si. A state Si is a tuple 〈inputi, F, FS〉.
Each state Si contains a set of fibers F . Fibers in EVM

loosely correspond to items in Earley parser. Each fiber is a

tuple 〈ip, origin〉. ip is the instruction pointer of the current

fiber and origin is the origin state number. The origin value

indicates the input offset where the currently parsed rule has

begun. In a away, the origin value may be considered as the

return ”address” for the rule.

Additionally, each state has a set of suspended fibers FS.

Fibers are suspended when they invoke different rules/non-

terminal symbols. A fiber remains suspended until the appro-

priate non-terminal symbol is matched, at which point the fiber

Communication papers of the Federated Conference on

Computer Science and Information Systems, pp. 165–173

DOI: 10.15439/2017F162

ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 165

is resumed by copying it to the set of running fibers F in the

current state.

An EVM0 grammar is a set of productions in form sym→
body, where sym is a non-terminal symbol and body is a

grammar expression.

An EVM0 grammar expression is defined recursively as:

• a is a terminal grammar expression, where a is a terminal

symbol.

• A is a non-terminal grammar expression, where A is a

non-terminal symbol.

• ǫ is an epsilon grammar expression.

• (e) is a brace grammar expression, where e is a grammar

expression.

• e1e2 is a sequence grammar expression, where e1 and e2
are grammar expressions.

Every EVM grammar program is a tuple

〈instrs, rule map〉. instrs is the sequence of instructions

that represents the compiled grammar. rule map is mapping

from non-terminal symbols to locations in the instruction

sequence, which represents entry points for the grammar

program. It is used to determine the start locations of

compiled rules for specific non-terminal symbols.

Every instruction in EVM completes with one of the fol-

lowing results:

• r_continue. This result is used to indicate that the

current fiber should continue executing instructions in

order. That means that after executing an instruction ip

of current fiber should be increased by 1.

• r_continue_to ipnew. This behaves exactly like

r_continue, however ip of current fiber is set to ipnew
after completing execution of an instruction.

• r_discard. This result is used to indicate that the

current fiber needs to be terminated.

• r_suspend. This result is used to indicate that the

current fiber needs to be suspended.

To correctly represent all Earley parser grammars, the

following instructions are required:

• i_call_dyn sym. This instruction is used to begin

parsing of non-terminal symbol sym. It dynamically

invokes all rules with product sym. This constitutes creat-

ing new fibers in state Scurr with ip pointing to beginning

of every rule with product sym and origin curr. The

instruction completes with result r_continue. Because

the fibers of every state are stored in a set, multiple or

recursive invocations of the same product have no effect.

• i_match_sym sym1 → ip1, ..., symn → ipn. This

instruction is used to detect a successful reduction of one

or more non-terminal symbols sym1, ..., symn. When

symi is reduced, a new fiber is created with ip pointing

to corresponding ipi. The instruction operands essentially

form a jumptable. Whenever instruction i_match_sym

is executed, the current fiber is suspended and moved to

the the set of suspended fibers in the current state (it

completes with result r_suspend).

TABLE I
EVM0 GRAMMAR COMPILATION RULES

Grammar element Instruction sequence

Grammar:
G = {P1, ..., Pn}

i_call_dyn main
i_match_sym main → laccept
laccept :
i_accept

i_stop

code(P1)
...
code(Pn)

Production rule:
P → e

code(e)
i_reduce P
i_stop

Terminal grammar expression:
a

i_match_char a → ipnext

Non-terminal grammar expression
(dynamic):
A

i_call_dyn A
i_match_sym A → ipnext

Epsilon grammar expression:
ǫ

Brace grammar expression:
(e)

code(e)

Sequence grammar expression:
e1e2

code(e1)
code(e2)

• i_match_char char1 → ip1, ..., charn → ipn. This

instruction is used to match terminal symbols. If the

current input symbol incurr matches one of the instruc-

tion operands chari then a new fiber 〈ipi, origin〉 in

state Scurr+1 is created. After executing this instruction,

the current fiber is discarded (it completes with result

r_discard)

• i_reduce sym. This instruction performs the reduction

of non-terminal symbol sym. It is used to indicate

that a grammar rule with product sym has matched

successfully. The instruction finds all suspended fibers in

state Sorigin that have been previously suspended with

instruction i_match_sym and resumes them in state

Scurr. Only those fibers are resumed, which have sym

among their operands. The fibers are resumed by creating

a copy of suspended fiber in the current state with updated

instruction pointer. The instruction completes with result

r_continue.

• i_stop. This instruction stops and discards the current

fiber. It is used to destroy the current fiber when a

parse rule is matched successfully, usually immediately

after executing a i_reduce instruction. The instruction

completes with r_discard.

• i_accept. This instruction is used to indicate the parse

input is valid and can be accepted.

EVM0 grammar compilation rules are shown in table I.

Productions of a grammar are compiled in sequence. code(E)
represents instruction sequence for grammar element E, where

E may be a grammar, a production rule or a grammar

expression. ipnext is instruction pointer of the next instruction.

An example EVM0 grammar and the corresponding gram-

mar program are shown in table II.

166 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

function EXECUTE INSTRUCTION(f)

〈ip, origin〉 ← f

instr ← instrsip
if instr = i_call_dyn then

return EXEC CALL DYN(f)

else if instr = i_match_sym then

return EXEC MATCH SYM(f)

else if ... then

...

else

invalid instruction

end if

end function

procedure MAIN

Fmain ← 〈1, 1〉
add fiber Fmain to S1

for all i← 1, input length do

if Fi = Ø then

parse error

end if

for all f ∈ Fi do

while EXECUTE INSTRUCTION(f) do

end while

end for

end for

end procedure

Fig. 1. EVM0 parser algorithm

TABLE II
EVM0 GRAMMAR COMPILATION EXAMPLE

Grammar Instruction sequence

I -> a

E -> I

E -> E + I

0: i_call_dyn E

1: i_match_sym E -> 2

2: i_accept

3: i_stop

4: i_match_char a -> 5

5: i_reduce I

6: i_stop

7: i_call_dyn I

8: i_match_sym I -> 9

9: i_reduce E

10: i_stop

11: i_call_dyn E

12: i_match_sym E -> 13

13: i_match_char + -> 14

14: i_call_dyn I

15: i_match_sym I -> 16

16: i_reduce E

17: i_stop

B. Extending EVM to support regular right-hand sides

To support regular right-hand sides in production rules, our

definition of a grammar needs to be extended.

An EVM1 grammar is a set of productions in form sym→
body, where sym is a non-terminal symbol and body is an

TABLE III
EVM1 GRAMMAR COMPILATION RULES

Grammar element Instruction sequence

One-or-more grammar expression:
e+

lstart:
code(e)
i_fork lstart

Kleene star grammar expression:
e∗

lstart:
i_fork lend

code(e)
i_br lstart
lend:

Optional grammar expression:
e?

i_fork lend

code(e)
lend:

Alternative grammar expression:
e1|e2

i_fork lother
code(e1)
i_br lend

lother :
code(e2)
lend:

EVM1 grammar expression.

An EVM1 grammar expression is defined as follows:

• If e is an EVM0 grammar expression, it is also an EVM1

grammar expression.

• e+ is a one-more-more grammar expression, where e is

a grammar expression.

• e* is a klenne star grammar expression, where e is a

grammar expression.

• e? is an optional grammar expression, where e is a

grammar expression.

• e1|e2 is an alternative grammar expression, where e1 and

e2 are grammar expressions.

To implement these new grammar constructs additional

virtual machine instructions are required:

• i_br ipnew. This instruction is used to perform an un-

conditional branch to the given instruction pointer ipnew.

This instruction completes with result r_continue_to

ipnew.

• i_fork ipnew. This instruction is used to fork the

current fiber. After forking, the instruction pointer of the

new fiber is set to ipnew. This instruction completes with

result r_continue.

EVM1 grammar compilation rules are shown in table III.

lstart, lend and lother are code labels. During grammar com-

pilation these labels are replaced with concrete instruction

pointer values.

An example grammar rule that uses regular operator + and

its corresponding instruction sequence are shown in table IV.

C. Regular lookahead in EVM

In addition to having regular right-hand sides, sometimes it

is helpful to perform regular lookahead during parsing. The

EVM1 may be further augmented to support this feature.

An EVM2 grammar expression is defined as:

• e, where e is EVM1 grammar expression.

• e1 > e2 is a positive lookahead grammar expression,

where e1 and e2 are grammar expressions.

AUDRIUS ŠAIKŪNAS: PARSING WITH EARLEY VIRTUAL MACHINES 167

TABLE IV
EVM1 GRAMMAR COMPILATION EXAMPLE

Grammar rule Instruction sequence

B -> (A a)+

...

20: i_call_dyn A

21: i_match_sym A -> 22

22: i_match_char a -> 23

23: i_fork 20

24: i_reduce B

25: i_stop

...

Grammar expression A > B means that A should only

match if it is immediately followed by B.

There are two ways of implementing regular lookahead in

the current model of EVM:

• When parsing A(B > C)D, EVM can first parse A, then

B, then both C and D in parallel. Should it appear during

parsing that C fails to match, then the corresponding

parse should be rejected.

• When parsing A(B > C)D, EVM can first parse A, then

B, after which parsing of D is delayed until C matches

successfully. Once C matches successfully, parsing of D

is resumed.

Both of these approaches have advantages and disadvan-

tages. The first approach is simpler and doesn’t require any

fundamental changes to the way EVM processes input: one

terminal symbol at a time without an ability to backtrack and

reparse certain parts of the input. However it also may require

storing additional information about fiber relationships and

complex logic for discarding fibers resulting of invalid parses.

More importantly, this approach starts parsing D preemptively

even when it is not known whether or not the lookahead will

succeed. As a result, such lookahead implementation may be

less efficient.

The second approach requires changes to EVM to allow sus-

pending fibers that depend on lookahead expressions and later

resume then in backtracked position. This approach should be

more efficient when the lookahead grammar expression fails

to match often. We select the latter approach for implementing

lookahead in EVM.

Right now, EVM1 is built under assumption that

i_match_sym is always executed before corresponding

i_reduce. However with grammars that contain lookahead

this may no longer be true in all cases. Consider grammar

expression (A > B)B. Initially, non-terminal symbol A is

matched, after which the instruction sequence for the looka-

head sub-expression B will be executed. It will cause matching

of non-terminal symbol B. If B parses successfully, then

the whole sub-expression (A > B) will be matched and

the original fiber for parsing (A > B)B will be resumed.

It will try to parse B again by invoking symbol B with

instruction i_call_dyn, which will cause no new fibers

to be created, as B was already parsed in the lookahead

sub-expression. That means that the original thread will be

permanently suspended with instruction i_match_sym and

the expression (A > B)B will always fail to parse.

To avoid the previously described issue and to support

parsing lookahead expressions, EVM can no longer rely on

the strict ordering of i_match_sym and i_reduce instruc-

tions. As a result, the following changes to EVM are required:

• EVM2 in every state has to keep track of reductions that

happened and their respective lengths.

• Instruction i_reduce has to store in origin state Sorigin

reduction symbol and it’s final state index curr.

• Instruction i_match_sym has to check all of it’s

operands for the reductions that may have already hap-

pened and to resume fibers in final states of the reduc-

tions. This may only occur if the matching symbol was

already parsed in a lookahead sub-expression.

• Every fiber has to have a priority value, as lookahead

sub-expressions have to be executed first.

An EVM2 state Si is a tuple 〈i, R, T, FS〉, where i is the

state index, R is the reduction map, T is execution trace

set, FS is the suspended fiber set. Because the running fiber

set is longer stored stored within the state, it is necessary to

ensure that there are no duplicate fibers. This is achieved by

using execution trace set T , which stores instruction pointer

and origin state index pairs. Whenever a new fiber is to be

created, the EVM first checks whether or not such fiber already

exists in target state. If it does, then no new fiber is created.

This eliminates infinite left-recursion and having to reparse the

same input with the same grammar rule multiple times.

An EVM2 fiber F is a tuple 〈sid, prio, ip, origin〉, where

sid is state index, prio is priority value, ip is instruction

pointer and origin is state index of origin (caller/return) state.

An EVM2 parser is a tuple 〈input, P,Q, S〉, where input

is the input terminal symbol sequence, P is the grammar

program, Q is the fiber queue and S is the state sequence.

During parsing, fibers are executed according to their priority.

Fibers with lower priority are removed from the fiber queue

first. If there multiple fibers with the same priority, then the

fiber with lowest state index is removed first. Otherwise, the

order of execution is unspecified.

To support regular lookahead, additional two instructions

are required:

• i_lookahead ipahead. This instruction is used to be-

gin parsing of a lookahead sub-expression at instruction

pointer ipahead. It creates a new fiber 〈curr, prio −
1, ipahead, curr〉, where curr is the index of the cur-

rent state, prio is the priority of the current fiber. The

instruction completes with result r_continue.

• i_lookahead_ret sym. This instruction is used to

finish parsing lookahead sub-expression. It is identical to

i_reduce with one key difference: fibers are resumed

not in current state, but in origin state. The instruction

completes with r_discard.

EVM2 grammar compilation rules are provided in table

V. usym is an unique non-terminal symbol created for each

lookahead expression.

168 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

TABLE V
EVM2 GRAMMAR COMPILATION RULES

Grammar element Instruction sequence

Lookahead grammar expression:
e1 > e2

code(e1)
i_lookahead lahead
i_match_sym usym → lend

lahead:
code(e2)
i_lookahead_ret usym
lend :

D. Eliminating dynamic rule resolution

In the current model of EVM, rule resolution is performed

dynamically during runtime by the i_call_dyn instruction.

It is possible to eliminate this indirection by replacing every

i_call_dyn prod instruction with a sequence of i_call

ip instructions, where every i_call instruction invokes a

different production rule for the same product prod. This also

means that the compiled grammar programs are no longer

required to keep track of the rule map variable, that was

previously used by the i_call_dyn instruction.

E. Parsing with data-dependant constraints

It is well known that many languages used in practise

cannot be represented purely by using context-free grammars.

For example, in order to parse XML sources, an additional

automata is needed to match opening and closing XML tags.

Other languages have fixed-width fields of width n, where n

is an integer value preceded before the field. Specifying such

languages with context-free grammars is impossible as well,

as the parser has to semantically recognize the meaning behind

the length field and to use that value to continue parsing.

In order for parser like EVM2 to parse XML, it needs

somehow to ”remember” the opening XML tags and later

match the closing tag only against the remembered string. This

can be achieved by further augmenting EVM2 into EVM3 by

applying the following changes:

• Fibers have to be extended to contain stacks. A fiber’s

stack may be used to perform general-purpose computa-

tion during parsing.

• Execution trace set has to be extended to include fiber’s

stack. This enables EVM3 to simultaneously execute

multiple fibers with the same instruction pointer and the

same origin, but with different data-constraints, which

will be stored in the stack.

• i_call instruction has to be extended with an operand

to contain the number of parameters to copy from the

stack of the current fiber to the stack of target fiber.

• The following new categories of instructions are needed:

stack instructions, conditional control transfer instruc-

tions, data processing instructions.

To support general-purpose computation, EVM3 grammars

need to be extended to include statements and expressions

(not to be confused with grammar expressions). In EVM3

grammar rule definitions look akin to function definitions or

subroutines that are found in general-purpose programming

languages: grammar rule definitions are composed out of 0 or

more procedural statements. These statements enable to adjust

the control flow of the grammar rule.

Expressions, just like in more traditional programming lan-

guages, enable manipulation of variable values. Both variable

values and intermediate expression values are stored in the

stack of the current fiber.

To separate ”traditional” value-based expressions from the

grammar expressions that are used to specify matching rules, a

special parse statement is introduced to the grammar language.

The parse statement may be mixed in with the the other

grammar statements to more accurately control and constrain

the parse process. This enables to direct the parsing process

based on the variable values that may have been derived from

the parse input.

To support these new features, new EVM instructions are

required. Non-exhaustive list of new instructions in EVM3:

• i_push_int v. Pushes an integer value v to the stack

of the current fiber.

• i_pop n. Removes the top n values from the stack.

• i_peek i. Pushes a copy of stack value with index i to

the top of the stack.

• i_poke i. Removes the top value of the stack and sets

the stack value with index i to that value.

• i_bz ipnew. Conditional control transfer to ipnew. Re-

moves the top stack value and performs jump to ipnew if

the value is 0.

• i_match_char_dyn. Used for data-dependent match-

ing of terminal symbols. Matches the top value of the

stack with inputcurr. If the symbols match, it creates a

new fiber 〈curr + 1, prio, ip + 1, origin〉. The instruc-

tion completes with result r_discard. An optimized

version of the instruction may move the fiber from the

Scurr state to Scurr+1 with updated ip value.

• i_foreign_call n idx. Calls a foreign function

with index idx and n arguments. The call is performed

by popping n arguments from the stack and passing

them to the foreign callee. The result of the callee is

pushed back to the stack. The instruction may be used

to implement various data processing operations without

adding additional data-processing instructions.

• i_add_int. Pops two top elements from the stack and

pushes their sum to the top of the stack.

• ...

Most of the newly added instructions complete with result

r_continue, unless stated otherwise. New data processing

(integer, string, list handling) instructions may be added as

needed. The same operations may be implemented by using

i_foreign_call instruction to call external functions in

the environment that implements EVM.

EVM3 grammar to grammar program compilation rules are

provided in table VI. The table lists only the core elements

of the grammar language to illustrate the overall grammar

compilation process. New statements and expressions may be

added as needed. Additionally, the syntax of the grammar

AUDRIUS ŠAIKŪNAS: PARSING WITH EARLEY VIRTUAL MACHINES 169

TABLE VI
EVM3 GRAMMAR COMPILATION RULES

Grammar element Instruction sequence

EVM3 grammar rule:
rule sym(arg1, ..., argn)

stmt1
...
stmtn

end

code(stmt1)
...
code(stmtn)
i_reduce sym
i_stop

If statement:
if cond

body
end

code(cond)
i_bz lend

code(body)
lend:

Parse statement:
parse grammar expr

code(grammar expr)

While statement:
while cond

body
end

lstart:
code(cond)
i_bz lend

code(body)
i_br lstart
lend:

Variable declaration statement:
var v = expr

code(expr)

Integer constant expression:
value

i_push_int value

Variable read expression:
v

i_peek stack slotv

Variable write expression:
v = e

code(e)
i_poke stack slotv

Dynamic terminal match
grammar expression:
@expr

code(expr)
i_match_char_dyn

Parameterized non-terminal
grammar expression:
A(arg1, arg2, ..., argn)

code(arg1)
code(arg2)
...
code(argn)
i_call n, ip1
...
i_call n, ipm
i_pop n
i_match_sym A → lend

lend :

language may be changed to more closely suit the environment

in which EVM is being implemented.

An example EVM3 grammar rule that imperatively matches

n of ’a’ characters and the compiled instruction sequence are

shown in table VII. This compiled instruction sequence may be

later invoked with instruction i_call 1, 10, because this

grammar rule has 1 parameter and the instruction sequence

implementing the grammar rule starts at offset 10.

F. Garbage collection of suspended fibers

The current version of EVM creates a state for every

input terminal symbol. In case of a successful parse, every

state needs to contain at least one fiber. If EVM is used

in a scannerless setting, this means that the total amount of

memory required for EVM will be significantly higher than

that of the input string. As such, to support parsing longer

strings, memory footprint of the EVM needs to be lowered.

There are several important observations to make:

• Most states and fibers after suspension will be never

needed during parse again. As such, some states that are

TABLE VII
EVM3 GRAMMAR COMPILATION EXAMPLE

Grammar rule Instruction sequence

rule field(n)

while n > 0

parse a

n = n - 1

end

end

10: i_peek 0

11: i_push_int 0

12: i_int_more

13: i_bz 20

14: i_match_char a -> 15

15: i_peek 0

16: i_push_int 1

17: i_int_sub

18: i_poke 0

19: i_br 10

20: i_reduce "field"

21: i_stop

unnecessary, together with the fibers they contain, may

be discarded before the parsing process completes.

• The only instructions that access variables from previous

states are i_reduce and i_lookahead_ret.

• State index sid of a fiber is always equal or higher to the

lowest value sid in the fiber queue. In other words, new

fibers are always created with monotonically increasing

state indices.

Based on these observations, the following optimizations

can be made:

• Execution trace sets may be discarded from states with

indices from interval [1, sidmin), where sidmin is the

lowest state index in fiber queue Q. These sets are

only needed in states, where new fibers may be created.

Because new fibers are created with monotonically in-

creasing state indices, the sets are no longer needed.

• Unreachable states with indices [2, sidmin) may be dis-

carded completely.

A state with index sid is reachable if there exists a fiber

(either running or suspended) with origin state index origin

equal to sid. As such, mark-and-sweep garbage collector may

be employed to identify reachable and unreachable states.

The described garbage collector will discard all states with

the fibers they contain that are not part of any parse rule/active

reduction that can be traced back to the starting non-terminal

symbol. As a result, it will have a significant impact on overall

memory usage, especially when EVM is used without a dedi-

cated scanner. To reduce the garbage collector’s performance

impact to the parsing process, the garbage collector may be

run every n parsed terminal symbols.

III. CONSTRUCTING THE ABSTRACT SYNTAX TREE

So far, the last EVM version is only capable of recognizing

the input. However recognizers have only limited practical

applicability. As such, for EVM to truly be useful in practice,

there needs to be a way to construct the abstract syntax tree

from the terminal input symbol sequence.

Normally, extension of a recognizer into a parser is a fairly

trivial task. However in case of EVM, constructing the AST

is not as simple, because EVM supports parsing ambiguous

inputs that may result in a parse forest, which represents

170 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

multiple valid parse trees for the same input. In case of highly

ambiguous parses, naive approach of storing a complete copy

of a parse tree for each valid parse path is not viable, as it

may lead to an exponential parse forest growth. As a result,

parsers that support parsing ambiguous inputs use special data

structures to represent the parse trees, called shared packed

parse forests, or SPPFs for short.

SPPFs look and behave similarly to regular parse trees.

However, to represent ambiguity within a parse tree, special

packed nodes are used. Children of a packed node represent

different parses for the same input fragment. Furthermore,

matching subtrees of packed nodes may be shared to re-

duce space requirements for storing the SPPF. In case of ǫ-

grammars, SPPFs may contain cycles.

There are two methods available for constructing SPPFs

within EVM3: automatic and manual AST construction.

A. Manual AST construction

As the name implies, ASTs in EVM3 may be constructed

manually by relying on EVM3’s imperative capabilities. The

virtual machine may be extended with additional instructions

that allow the creation and management of tagged AST nodes.

Specifically, the following new instructions are required:

• i_new_node num, sym. This instruction pops num

AST node indices from the stack and creates an AST node

with num popped children and label sym. Additionally,

this instruction stores the interval [origin, curr] within

the newly created node to represent the source interval

of the node. Upon node creation, i_new_node pushes

the reference of the resulting node to the stack. The newly

created node is considered to be detached.

• i_reduce_r sym. Used to reduce a non-terminal sym-

bol with a node-value. Works similarly to i_reduce,

however upon execution it additionally pops a reference

to an AST node from the stack and attaches it to the AST.

The node attachment process works by assigning the node

an unique index and storing that index and the node

reference pair within the AST node list. Additionally, the

node’s unique index is stored within the reduction map of

the origin state. If a reduction with the same non-terminal

symbol and length already exists in the origin state, this

indicates existence of ambiguity, as now there are two

candidate non-terminal reductions within the same source

interval. As such, a packed node is created in place of

the previously created node. The old node gets assigned a

new index and the two newly assigned indices are added

as the children of the newly created packed node. If the

previous node index already points to a packed node, then

the node that is being attached is added to the packed

node’s children list.

• i_match_sym_r sym1 → ip1, ..., symn → ipn.

Just like the original i_match_sym, this instruction

is used to match a non-terminal symbol. Upon suc-

cessful resumption of a fiber previously suspended by

i_match_sym_r, the instruction also pushes an index

of AST node that represents the recently matched non-

terminal symbol. The node referenced by the returned

node index may be mutated later on by i_reduce_r

instruction, as new ambiguous reductions are performed.

By applying this strategy of AST construction, AST nodes

are created with the i_new_node instruction. Leaf nodes

have no children and only contain the source range of input

they represent. Nodes are then ”returned” from grammar rules

by using i_reduce_r instruction, which associates every

AST node with a tuple 〈sym, start, end〉, where start and

end represent the source range of the node. In the event

that more than one reduction is being associated with the

same tuple, then a packed node is created with children that

represent the alternative parses of non-terminal symbol sym

in the source range [start, end]. The returned node index

is retrieved with the help of i_match_sym_r instruction,

which pushes the index of the node into the stack of the

callee. This enables the grammar program to use that index

in future i_new_node instruction calls to construct non-leaf

AST nodes. The node index that is returned from the start rule

represents the root node.

It is important to note the importance of using node in-

dices to represent the nodes rather than node references (or

pointers): at the time of any given reduction (the call to

i_match_sym_r) there is no way to know if there will

be a matching future reduction that will cause the original

reduction to become ambiguous. As such, node indices exist

as a form of indirection, which allows swapping of a regular

non-ambiguous node into an ambiguous packed node, when it

is determined that there is more than one way to parse a given

source range with the same non-terminal symbol.

To make use of these instructions, additional changes are

required to the grammar language:

• A new AST node construction expression is needed to

allow construction of AST nodes.

• A new return statement is needed that allows returning

a previously constructed AST node.

• A new assignment grammar expression is needed to allow

assignment of non-terminal return values (which store

AST node indices) to previously declared variables.

An example grammar rule that manually constructs AST

and the corresponding instruction sequence are provided in

table VIII.

Even though manual AST construction requires new in-

structions and additional changes to the way grammars are

specified and compiled, it also enables us to fine-tune and

precisely control the AST construction process. Nodes, which

are not meant to be included in the final AST may not

be included as arguments for the i_new_node instruction,

which effectively excludes such nodes from the final AST.

Some grammar rules, such as the ones for parsing whitespace

may not include any calls to i_new_node at all and may

use the old i_reduce instruction, which should decrease

the total amount of unnecessary AST nodes constructed and

increase the overall performance of EVM3 parser.

AUDRIUS ŠAIKŪNAS: PARSING WITH EARLEY VIRTUAL MACHINES 171

TABLE VIII
MANUAL AST CONSTRUCTION EXAMPLE

Grammar rule Instruction sequence

rule E

parse l:E + r:I

return node("plus",

l, r)

end

...

30: i_call_dyn E

31: i_match_sym_r E -> 32

32: i_match_char + -> 33

33: i_call_dyn I

34: i_match_sym_r I -> 35

35: i_peek 0

36: i_peek 1

37: i_new_node 2, "plus"

38: i_reduce_r e

39: i_stop

...

B. Automatic AST construction

In some cases it may be desirable to be able to construct

ASTs without any additional changes to the parser grammars.

In such event, automatic EVM AST construction may be used

instead.

To support automatic AST node construction, the following

changes to EVM3 are required:

• Every fiber has to be extended to contain a list (or a stack)

of child node indices that will be used during reduction

to construct the AST node.

• i_reduce sym instruction has to be extended: 1) it has

to construct an AST node with label sym and children

from the child stack of the current fiber; 2) it has to

include the node packing logic of the i_reduce_r

instruction.

• i_match_sym instruction has to be extended: upon re-

suming a previously suspended fiber by i_match_sym,

the instruction has to push the corresponding node index

of the matched non-terminal symbol to the children stack.

Essentially, automatic AST construction works by merg-

ing instructions i_reduce_r and i_new_node into

i_reduce; i_match_sym_r into i_match_sym and us-

ing a separate array/stack in each fiber instead of the general

purpose stack to store the children node indices for future

reductions.

While this approach is easier to implement, it is also

requires more memory during parsing, as there is no way to

exclude unnecessary nodes from the final abstract syntax tree.

Both of these AST construction approaches create SPPFs.

IV. RELATED WORKS

The original Earley parser was first described in [1]. Origi-

nally it was created for parsing natural languages and saw lim-

ited use for parsing computer languages. Back then, the Earley

parser was too inefficient to parse computer languages, as the

computer resources were limited and computer languages used

in practise were designed to be parsable by simpler and more

efficient parsing algorithms, such as LR.

In recent years, as the computer performance rose, newer

variations of the Earley parser appeared specifically designed

for parsing non-natural languages. An Efficient Earley Parser

[2] modifies the original Earley parser by moving away from

raw productions for internal grammar representation. Instead,

it uses Earley graphs to represent the grammars internally.

The move also enables the use of regular operators within

the grammars. By applying a variation subset construction

to the generated Earley graphs, the authors of [2] achieve

additional performance gains. Finally, a futher variation of

Efficient Earley parser called Yakker [3] enables the use of

data-dependant constraints within the grammars.

An Earley parser variation described in [4] moves in a

different direction: the authors of [4] propose a version of

Earley parser that is suitable for parsing reflective (more

often referred as adaptable) grammars, that can be modified

during parsing to augment the input language. A separate

paper [5], describes how to translate Earley grammars into

C programming language, thus eliminating many of dynamic

elements of the original parser and improving the overall

parsing performance.

It is also important to note that the original Earley parser is

not a true parser, as it does not provide the means to construct

the ASTs for the parse input. As such, paper by E. Scott

proposes a method that enables construction of SPPFs during

parsing in [6]. Because the way the garbage collection works

in EVM, this method is not directly applicable to EVM.

Earley parser is not the only parser suitable for analysing

context-free languages. The primary contender for that purpose

is the GLR family of parsers. One of the more modern GLR

variations is RNGLR parser [7]. However, much like like the

original GLR, RNGLR is a table based parser and as such,

while being very efficient, it is also fairly rigid and difficult

to extend. Despite that, there have been attempts to augment

various existing parsing methods, including Earley and GLR,

to enable parsing of context-dependant constraints in [8]. A

variation of RNGLR parser suitable for scanerless parsing is

described in [9].

A recent alternative to context-free grammars for specifying

languages is Parsing Expression Grammars, or PEGs for short

[10] [11]. PEGs are often implemented by a Packrat parser,

which is a memoizing recursive descent parser and as a

result, the overall structure of the parser ends up being very

simple. PEGs, just like EVM, support regular operators in rule

definitions. Unfortunately, PEGs also inherit all the restrictions

of recursive decent parsers, such as no support for parsing

ambiguous grammars and no left-recursion. A virtual-machine

based implementation for PEGs exists [12].

The use of virtual machines for parsing is not a new concept.

One of the first descriptions of such parser was described by

Donald E. Knuth in [13]. However, the inspiration for EVM

came from [14], where a virtual machine for parsing regular

expressions is proposed.

V. FUTURE WORK

There are several potential future research directions for

EVM:

172 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

• Better parser error handling. To ease the use of

EVM, there needs to be a way to automatically

generate de scriptive error messages in the event of

a parse error.

• The performance of EVM needs to be evaluated.

EVM is currently implemented as a prototype in

Ruby programming language, which is used to

parse a Ruby-like language, whose grammar con-

sists of 500 lines of code. However, the Ruby im-

plementation makes any performance comparisons

to real-world parsers and parser generators, such as

bison, invalid. Comparing performance to tradi-

tional parsers is further hampered by the fact that

significant performance gains may be achieved by

the use of regular operators to specify the repeated

patterns in the parse input. As such, separate test

grammars are required for EVM to maximize it’s

performance.

• Translation of EVM grammar programs to LLVM

IR would enable compiling EVM grammars into

native machine code, which should increase the

overall performance of the parser even further.

• Additional optimizations may be applied to com-

piled grammars programs to further increase the

parser performance. Specifically, a variation of

subset construction may be applied to reduce non-

determinism and the number of fibers required for

parsing.

• Negative lookahead, boolean operators and rule

precedence specifiers would additionally simplify

the development of new grammars.

VI. CONCLUSION

We have presented a new, virtual machine based ap-

proach to parsing context-free grammars, which was heavily

inspired by the classic Earley parser. We have shown sev-

eral versions of the Earley Virtual Machine with increasing

complexity and expanding feature sets. The final version of

EVM, the EVM3 is capable of recognizing context-free

grammars with data-dependant constraints. Furthermore,

EVM3 grammars support regular expression operators and

regular lookahead in right hand sides of production rules,

which should simplify development of new grammars. Fi-

nally, we have shown two modifications of EVM3, which

enable construction of shared packed parse forests during

parsing.

ACKNOWLEDGMENT

Thanks to Institute of Mathematics and Informatics for

financing this research.

REFERENCES

[1] J. Earley, “An efficient context-free parsing algorithm,” Commun.
ACM, vol. 13, no. 2, pp. 94–102, 1970.

[2] T. Jim and Y. Mandelbaum, “Efficient earley parsing with regular
right-hand sides,” Electronic Notes in Theoretical Computer Science,
vol. 253, no. 7, pp. 135 – 148, 2010.

[3] T. Jim, Y. Mandelbaum, and D. Walker, “Semantics and algorithms
for data-dependent grammars,” in Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’10. New York, United States: ACM, 2010, pp.
417–430.

[4] P. Stansifer and M. Wand, “Parsing reflective grammars,” in
Proceedings of the Eleventh Workshop on Language Descriptions,
Tools and Applications, ser. LDTA ’11. New York, United States:
ACM, 2011, pp. 10:1–10:7.

[5] J. Aycock and N. Horspool, Directly-Executable Earley Parsing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 229–243.

[6] E. Scott, “Sppf-style parsing from earley recognisers,” Electron. Notes
Theor. Comput. Sci., vol. 203, no. 2, pp. 53–67, Apr. 2008.

[7] E. Scott and A. Johnstone, “Right nulled glr parsers,” ACM Trans.
Program. Lang. Syst., vol. 28, no. 4, pp. 577–618, Jul. 2006.

[8] [8] T. Jim and Y. Mandelbaum, “A new method for dependent
parsing,” in Proceedings of the 20th European Conference on
Programming Languages and Systems: Part of the Joint European
Conferences on Theory and Practice of Software, ser.
ESOP’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
378–397.

[9] G. Economopoulos, P. Klint, and J. Vinju, “Faster scannerless glr
parsing,” in In Proceedings of the 18th International Conference on
Compiler Construction (CC. Springer-Verlag, 2009.

[10] B. Ford, “Packrat parsing: a practical linear-time algorithm with back-
tracking,” Master’s thesis, Massachusetts Institute of Technology,
2002.

[11] ——, “Parsing expression grammars: A recognition-based syntactic
foundation,” SIGPLAN Not., vol. 39, no. 1, pp. 111–122, 2004.

[12] S. Medeiros and R. Ierusalimschy, “A parsing machine for pegs,” in
Proceedings of the 2008 Symposium on Dynamic Languages, ser.
DLS’08. New York, NY, USA: ACM, 2008, pp. 2:1–2:12.

[13] D. E. Knuth, “Top-down syntax analysis,” Acta Inf., vol. 1, no. 2, pp.
79–110, Jun. 1971.

[14] R. Cox. (2009) Regular expression matching: the virtual machine
approach. [Online]. Available: https://swtch.com/ rsc/regexp/∼

regexp2.html

AUDRIUS ŠAIKŪNAS: PARSING WITH EARLEY VIRTUAL MACHINES 173

