
Collision-Free Agent Migration in Spatial

Simulation

Christopher Bowzer Benjamin Phan Kasey Cohen Munehiro Fukuda

Computing and Software Systems

University of Washington Bothell

18115 NE Campus Way, Bothell, WA 98011

Email: {cjbowzer, firstbbp, kcparker, mfukuda}@uw.edu

Abstract— Parallelization of agent-based models (ABMs) is one
solution for scaling up their simulation size sufficiently covering
more realistic problems. In order to break through memory lim-
itation, some ABM simulators such as RepastHPC and FLAME
enabled parallel simulation over a cluster system, (i.e. distributed
memory). They visualize to agents remote processors’ boundary
data as ghost space or facilitate message broadcast among agents,
so that agents can still share a full or partial view of their
simulation space. Yet, ABMs encounter a parallelization problem
where multiple agents may migrate to and thus collide with
each other on the same logical coordinates, which should not
occur in some applications, (e.g., traffic simulation where two
vehicles cannot change to the same lane). Although such collision
problems have been addressed algorithmically at a user level
where an agent stops before or hops over another agent, moves
faster or slower, ticks over time, or cuts coordinates finer, they
yet require inter-agent synchronization such as serializing agent
migration over all collision-inducing sub-spaces or cells, using a
single thread. To facilitate collision-free agent migration more ef-
ficiently, we considered two migration algorithms named location-
ordered and direction-ordered migration, and implemented them
over three ABM simulators: Multi Agent Spatial Simulation
(MASS), RepastHPC, and FLAME. This paper discusses about
programmability and execution performance among these three
simulators in collision-free agent migration.

I. INTRODUCTION

S
CALABILITY of simulation size is quite important for

agent-based models (ABMs) including transport simula-

tion [1], neural network simulation [2], ecological simula-

tion [3], and immune system simulation [4], all requiring

millions of agents to predict practical phenomena. Obviously,

one solution is parallelization of underlying simulators or

applications themselves. However, the biggest challenge is

that most ABM applications have been based on a shared-

memory paradigm where agents interact with each other on a

global simulation space. Although multithreading or even GPU

computing has been applied to ABMs such as MATSim [1]

and TB simulation [5] to reserve their share-memory-based

implementations, some simulators such as RepastHPC [6],

FLAME [7], and FluTE [3] enabled parallel simulation over a

cluster system, (i.e., distributed memory) in support with MPI.

Their implementation facilitates message broadcast among

agents or visualizes to agents remote processors’ boundary

data as ghost space, so that agents can still share a full or

partial view of their simulation space.

Yet, departed from a shared-memory paradigm, parallelized

ABMs encounter another problem where multiple agents may

migrate to and thus collide with each other on the same logical

coordinates, which should not occur in some applications,

(e.g. transport simulation where two vehicles cannot change to

the same lane). In pedestrian simulation [8], each pedestrian

agent avoids a collision by calculating its repulsive force

with others, which results in O(N2) complexity. In traffic

simulation [9], collision-inducing subspaces are serialized by a

single thread, which requires careful space partitioning. Other

simulators [10], [11] leave this collision problem on user-

level solutions where an agent stops before or hops over

another agent, moves faster or slower, ticks over time, or cuts

coordinates. These algorithms and implementations burden

model designers with more programming complexity.

We particularly focus on agent migration1 over cellular-

based or logical network space in transport simulation [12],

[9] and artificial life [13], [14]. For this type of simulation, we

consider three different algorithms that enforce collision-free

agent migration, each named trial-and-error, location-ordered,

and direction-ordered migration. Trial and error considers all

such agent actions including a stop, a hop, or a faster/slower

move upon encountering a collision. On the other hand, the

location and direction-ordered algorithms move only agents at

a time, which are located on the same group of coordinates,

(e.g. those with their coordinates[i,j] where i and j are divisible

by three) or migrate to the same direction, (e.g. moving

to the north). We implemented the location and direction-

oriented algorithms over our own ABM simulator named the

MASS (Multi-Agent Spacial Simulation) library [15] as well

as RepastHPC and FLAME as our benchmark platforms, and

compared their programmability and execution performance.

The contribution of this paper is two-fold: (1) comparing

three approaches to collision-free agent migration in parallel

simulation and (2) demonstrating the programmability and

performance superiority of the MASS library over RepastHPC

and FLAME in collision-free migration. The rest of the paper

is organized as follows: Section II surveys the conventional

user-level and system-level collision-free migrations, and com-

pares them with our location/direction-ordered algorithms in

1As mobile agents frequently use “migration”, we use this terminology
rather than “move”.

Communication papers of the Federated Conference on

Computer Science and Information Systems, pp. 65–73

DOI: 10.15439/2017F172

ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 65

Fig. 1. Agent migration over a meshed space

parallel simulation; Section III analyzes implementations of

collision-free agent migration, each on MASS, RepastHPC,

and FLAME; Section IV compares execution performance of

these three simulation systems; and Section V summarizes the

MASS-based collision-free agent migration.

II. AGENT MIGRATION ALGORITHMS

Some ABM applications such as TRANSIMS [12], AIM-

SUN2 [9], Wa-Tor [14], and Sugarscape [13] simulate agent

migration over a cellular-based or logical network space where

at most one agent should reside at a given cell, node, or link,

which however needs special cares in parallel simulation. This

section gets started with a sequential execution of such agent

migration over a space, thereafter raises an agent-collision

problem in parallel execution, and examines three solutions

to address this problem.

A. Agent Migration in Spatial Simulation

For simplicity, let us consider agent migration over a two-

dimensional (or 2D) cellular space as shown in Figure 1-(a).

Sequential execution scans the space from upper left to lower

right as moving an agent at each cell at a time. This gives a

higher priority to an agent residing on an upper-left cell so that

another at a lower-right cell can safely find its next destination

cell without considering any potential collisions.

However, parallel execution removes such agent priorities

that all agents in a space are allowed to migrate to their

next destinations in any orders (see Figure 1-(b)), which

causes an agent collision on a cell. Therefore, we need to

consider parallel implementations to facilitate collision-free

agent migration.

B. Related Work

Several collision avoidance algorithms have been proposed

in both conceptual models and underlying parallel imple-

mentations. In conceptual models, Kirchner et al. [10] gave

four resolutions for conflicts of pedestrians that move over a

cellular automata model: (1) having an agent hop over or stop

before another agent, (2) allowing an agent to move as far

as possible, (3) dividing simulation time into sub-time steps,

and (4) keeping a pedestrian from crossing the trajectory of

another pedestrian that has already moved. Bandini et al. [11]

gave another set of four methods to avoid agent collisions in

pedestrian simulation: (1) changing their walking speeds, (2)

modifying the space discretization towards a finer grain, (3)

modifying the current time scale, and (4) combining meth-

ods 2 and 3. However, these conceptual solutions still need

careful implementation techniques in parallel simulation. If a

simulation space is partitioned and mapped over a distributed-

memory system, the simulator must facilitate so-called ghost

space that visualizes a remote computing node’s boundary data

to the local node, so that each agent can observe others even

on remote nodes. Furthermore, an agent must move into its

destination cell exclusively no matter how finely simulation

time and space are sliced. Otherwise “trial and error” will

be repeated where multiple agents may end up moving to the

same cell, in which case all except one that can stay there must

follow one of the above resolutions to change their destination.

In parallel implementations, AIMSUN2 [9], a cellular-based

transport simulator serializes agent migration over collision-

induing adjacent cells with a single thread, which handles

these cells as a critical section and guarantees exclusive

agent migration. However, users are burdened with grouping

such collision-inducing cells into a non-interruptible block. In

pedestrian simulation, Wagoum et al. [8] avoided a conflict

of pedestrian agents by calculating each agent’s repulsive

force with others. Their simulator was parallelized with MPI

where each rank maintains a neighborhood list of agents

and computes their repulsive forces in parallel. However, the

simulation results in O(N2) complexity yet within each MPI

rank.

Our goal is to mitigate these user burdens incurred by

conceptual models and to reduce complexity of parallel im-

plementations and their computation.

C. Parallel Algorithms

We consider the following three collision-free migration

algorithms: (1) trial-and-error migration, (2) location-ordered

migration, and (3) direction-ordered migration.

1) Trial-and-Error Collision-Free Migration: As illustrated

in Figure 2, this algorithm allows agents to collide with each

other on the same destination cell. However, upon a collision,

only one agent (with the highest identifier in most cases) can

keep residing there while all the others must back off to their

source cells and thereafter choose another available cell to

move. This trial-and-error migration needs to be repeated until

all agents find their next destination or conclude no more

cells to go. It belongs to a so-called distributed-termination

detection problem. If simulation wants to avoid solving this

problem, it will end up examining every single direction of

four or eight destinations in the von Neumann neighborhood,

(i.e., north, east, south, and west) or the Moore neighborhood,

(i.e., the former four directions plus north east, south east,

south west, and north west). Unless parallel implementations

guarantee serialization of agent migration as seen in AIM-

SUN2 [9], collision avoidance in conceptual models may result

in trial and error.

2) Location-Ordered Collision-Free Migration: Let us con-

sider a 2D space tiled with 3-by-3 cells, each numbered 0

through to 8. As shown in Figure 3, if we pick up only

66 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 2. Trial-and-error collision-free migration

Fig. 3. Location-ordered collision-free migration

agents residing on cells with the same number, (e.g., those

with #4), their migration based on the Moore neighborhood

will cause no collision. Upon moving these agents, each cell

must make its agent occupancy readable to its neighbors (as

ghost space over distributed memory), so that the other agents

will no longer choose the occupied cells. An iteration of

agent migration and cell communication needs to be repeated

nine times. The von Neumann neighborhood can reduce this

repetition to five times. We call this algorithm location-ordered

collision-free migration in the following discussions.

3) Direction-Ordered Collision-Free Migration: The third

collision-free migration is direction-ordered. As shown in

Figure 4, we will choose only agents that migrate toward

the same direction. This ordered migration must be repeated

eight times in the Moore and four times in the von Neumann

neighborhood, (e.g., north first, east second, south third, and

finally west in Figure 4). Note that, similar to the location-

ordered migration, all cells must inform their neighbors of

their agent occupancy each turn of agent migration.

Fig. 4. Direction-ordered collision-free migration

D. Pros and Cons

Among the three collision-free algorithms, trial-and-error

migration is potential to move agents in the least iterations,

(e.g., ≤ 4 in the von Neumann neighborhood). It prioritizes

agents with a higher ID, which allows an agent with the highest

ID to stay at a new destination and thus can reproduce a deter-

ministic migration over multiple simulation runs. On the other

hand, trial-and-error migration needs to have agents back off

to their source cell upon a collision as well as to implement a

distributed voting algorithm among all processes to see if they

have to conduct the next trial. The vote needs three phases of

collective communication: (1) a vote initiated from the master

to all the slave processes, (2) ballots collected to the master,

and (3) the result broadcast from the master. Although these

three phases can be described in one MPI Allreduce() func-

tion, the complexity of the underlying implementation doesn’t

change. Therefore, trial-and-error migration costs p× (5c+a)
where p = #trials, 5c = agent sending, agent retracting, and

three phases of communication needed for a distributed vote,

and a = agent synchronization overheads. We may avoid these

distributed votes and therefore repeat four trials as default, in

which case the cost will be 4(2c+ a).

Figure 5 shows how quickly the number of collisions grows

and how many trial iterations are required as increasing the

number of agents randomly distributed and migrating over a

1000× 1000 simulation space. Even 10,000 agents, (i.e., only

1% population density) results in 103 collisions in average.

This in turn means that trial-and-error migration in most cases

can’t complete in the first trial phase. With 50,000 agents, (i.e.,

5% population density), the algorithm needs three trial phases.

Finally it repeats four phases beyond 200,000 agents, (i.e.,

20% population density). Considering practical applications

that populate agents non-uniformly and move them toward the

same direction, (e.g., toward an exit door in an evacuation),

we may estimate 3(5c+ a) as the cost of trials and errors or

end up 4(2c+ a) with four default trials.

The location-ordered migration is the easiest to implement

at an application level by scheduling multiple events, (e.g., 9

in the Moore neighborhood), each moving agents that reside

on cells with the same number: 0 through to 8. However,

unless an application regroups all agents into these nine events

before migration, it must inevitably scan all agents at each

event for the purpose of identifying which agent resides on

which cell. Therefore, the location-ordered algorithm is the

most expensive from the viewpoints of the number of iterations

in migration and agent-scanning cost per iteration: 9(2c + s)
where 2c =ghost-space updating and agent sending overheads

and s = memory access overheads for scanning agents.

The direction-ordered migration can complete less iterations

of migration, (e.g., four in the von Neumann) than the location-

ordered algorithm although it has the same agent regrouping

or scanning problem as the location-ordered migration. There-

fore, the algorithm costs 4(2c + s) where 2c and s are the

same parameters as location-order migration. If this algorithm

should be implemented at a system level, the system needs to

MUNEHIRO FUKUDA ET AL.: COLLISION-FREE AGENT MIGRATION IN SPATIAL SIMULATION 67

Fig. 5. #Collisions in each trial phase when increasing agent population over
a 1000× 1000 space

directly examine each agent’s data members to check its next

destination.

In summary, the trial-and-error migration apparently bur-

dens model designers with implementing inter-agent synchro-

nization as well as a distributed voting algorithm, and it has

little performance superiority as discussed above. Therefore,

we will focus on location- and direction-ordered migration

algorithms in our programmability analysis of three agent-

based systems: our MASS library, RepastHPC, and FLAME.

III. IMPLEMENTATIONS OF PARALLEL MIGRATION

This section compares MASS, RepastHPC, and FLAME

systems in coding agents’ random walk over a 2D space,

(named RandomWalk). Our analysis covers location-ordered

collision-free migration at an application level as well as

direction-ordered migration at a system level.

A. MASS

We have developed the MASS (Multi-Agent Spatial Simula-

tion) library in Java and C++. Places and Agents are keys to the

MASS library. Places is a multi-dimensional array of elements

that are dynamically allocated over a cluster of multi-core

computing nodes. Each element is called a place, is pointed to

by a set of network-independent array indices, and is capable

of exchanging information with any other places. Agents are a

set of execution instances that can reside on a place, migrate

to any other places with array indices (thus as duplicating

themselves), and indirectly interact with other agents through

variables local to the current place.

Parallelization with the MASS library uses a set of multi-

threaded communicating processes that are forked over a

cluster of multi-core computing nodes with JSCH in Java or

libssh2 in C++ and are connected to each other through TCP

sockets. Multi-threads take charge of method call and infor-

mation exchange among places and agents in parallel. A user

designs a behavior of a place and an agent by extending the

Place and Agent base classes respectively. They are populated

through the Places and Agents classes. Actual computation is

performed between MASS.init() and MASS.finish(), using the

following major C++ methods, each performed in parallel [15].

Places Class

• public Places(int handle, String className, int bound-

ary, void *argument, int argSize int dim, int size[])

instantiates a shared array with size and a ghost space

with boundary from className as passing an argument

to the className constructor.
• public void* callAll(int functionId, void *arguments, int

argSize) calls the method specified with functionId of

all elements as passing arguments[i] to element[i], and

receives a return value into (void *)[i].
• public void exchangeAll(int handle, int functionId,

vector<int*> *destinations) calls from each element to

a given method of all destination elements, each indexed

with a vector element, and exchanges data among the

elements.
• public void exchangeBoundary() exchanges boundary

data with neighboring cluster nodes as a ghost space.

Place Class

• private vector<int> size, index maintain the size of the

shared array that each element belongs to and the index

of each array element.
• public void* callMethod(int functionId, void *argu-

ments) is invoked from Places.callAll() or exchange-All()

so as to call a function specified with functionId.

Agents Class

• public Agents(int handle, String className, void *ar-

guments, int argSize, Places *places, int population)

instantiates agents from className, passes arguments to

their constructor, and populates them over a given Places,

based on Agent.map().
• public void* callAll(int functionId, void *arguments, int

argSize, int retSize) is the same as Places.callAll().
• public void manageAll() updates each agent’s status,

based on its latest calls of migrate(), spawn(), and kill().

These methods are invoked within callAll().

Agent Class

• migrate(int[] index...) allows a calling Agent to migrate

or propagate itself to one or more Places specified with

index upon Agents.manageAll().
• spawn(int nChildren, Object arguments) spawns chil-

dren as passing arguments to them.
• kill() terminates a calling Agent.
• public void* callMethod(int functionId, Object argu-

ment) is the same as Place.callMethod().

Figure 6 shows abstract C++ code for parallelizing Ran-

domWalk with MASS. We use location-ordered agent mi-

gration, focusing on the von Neumann neighborhood, (i.e.,

including four N, E, S, and W neighbors) while numbering

places from 0 to 8 and scheduling nine turns of migration as in

the Moore neighborhood for simplicity. The main() function

(lines 26-38) serves as a simulation scenario. It creates an

sz×sz virtual land over which the n number of nomad agents

68 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

1 // Place logic

2 void *Land::checkOccupancy(void* arg) { //each place

3 outMessage=new int((int)agents.size());//counts #agents

4 return NULL;

5 }

6 // Agent logic

7 void *Nomad::randomWalk(int *turn) {

8 int myTurn = index[0] % 3 + 3 * (index[1] % 3);//get 0-8

9 if (myTurn != *turn) return NULL;

10 vector<int> destination; //choose next destination

11 random = rand() % 4;

12 for (int i = 0; i < 4; i++) {//check N,E,S,W vacancies

13 int dirX = (random%2==0) ? 0 : ((random==1) ? 1:-1);

14 int dirY = (random%2==1) ? 0 : ((random==0) ? 1:-1);

15 destination.push_back(index[0] + dirX);

16 destination.push_back(index[1] + dirY);

17 if ((int *)(place->getOutMessage(destination)) > 0)

18 random = (random + 1) % 4;//occupied, check next

19 else {

20 migrate(destination); //vacant, migrate there

21 break;

22 } }

23 return NULL;

24 }

25 // simulation scenario

26 int main(int argc, char** argv){

27 MASS::init(argv, nProc, NThr);//populate agents on land

28 Places *land=new Places(1,"Land", 1, NULL,0, 2,sz,sz);

29 Agents *nomad=new Agents(2, "Nomad", NULL,0, land, n);

30 for (int time=0; time<maxTime; time++){//cycle simulation

31 for (int turn=0; turn<9; turn++) {//9 migrations/time

32 land->callAll(Land::checkOccupancy_);

33 land->exchangeBoundary(); //Places exchange #agents.

34 nomad->callAll(Nomad::randomWalk, &turn,

35 sizeof(int));

36 nomad->manageAll(); //actual migration

37 } }

38 MASS::finish()

39 }

Fig. 6. Application-level agent migration in MASS

are populated (lines 28-29). Thereafter, a cycle simulation gets

started with time = 0 through to maxTime−1 (line 30). For

each cycle, we schedule nine turns of agent migration (line

31). For each turn, we need to update each place’s ghost space

(stored in outMessage) (lines 32-33), for whose purpose each

land updates its agent population in its outMessage (lines 2-5).

Then, each agent invokes its randomWalk() function (lines 34-

35 and thereafter 7) that checks if it is this agent’s turn (lines 8-

9), randomly chooses one of its four neighboring places (lines

10-16), checks its occupancy (line 17), and decides to migrate

there or to choose another place (line 18 or 20). The actual

agent migration is committed at once by manageAll() (line

36).

Needless to say, model designers do not want to be aware

of agent collisions that are not the essence of their simulation

and thus should be supported by a system. Therefore, we

have implemented direction-ordered collision-free migration

in MASS. The implementation used the 2D von Neumann

neighborhood only. As shown in Figure 7, RandomWalk can

remove all the code related to collision avoidance and therefore

focus on agents’ randomWalk() function.

B. RepastHPC

RepastHPC is an MPI-supported parallel simulation plat-

form for agent-based modeling, which was developed by the

Argonne National Laboratory. In RepastHPC, Context is an

1 // Agent logic

2 void *Nomad::randomWalk(int *turn) {

3 vector<int> destination; //choose next destination

4 random = rand() % 4;

5 int dirX = (random%2==0) ? 0 : ((random==1) ? 1:-1);

6 int dirY = (random%2==1) ? 0 : ((random==0) ? 1:-1);

7 destination.push_back(index[0] + dirX);

8 destination.push_back(index[1] + dirY);

9 migrate(destination); //collision-free migration

10 return NULL;

11 }

12 // simulation scenario

13 int main(int argc, char** argv){

14 MASS::init(argv, nProc, NThr);//populate agents on land

15 Places *land=new Places(1,"Land", 1, NULL,0, 2,sz,sz);

16 Agents *nomad=new Agents(2, "Nomad", NULL,0, land, n);

17 for (int time=0; time<maxTime; time++){//cycle simulation

18 nomad->callAll(Nomad::randomWalk,&turn,sizeof(int));

19 nomad->manageAll(); //actual migration

20 }

21 MASS::finish()

22 }

Fig. 7. System-supported agent migration in MASS

execution environment that populates agents over a given Pro-

jection instance such as a shared network, gird, and space. We

can regard RepastHPC’s contexts, agents, and projections as

MASS processes, agents, and places respectively. RepastHPC

has the following similarities to MASS:

1) Ghost space views adjacent MPI ranks’ simulation

boundary so that agents in each rank can see their neigh-

borhoods’ information including sub-space occupancy

by other agents.
2) Agent migration are all committed at once by pro-

jection.balance() (similar to MASS agents.manageAll())

and are carried out physically by moving agents to a

remote rank.

On the other hand, RepastHPC is different from MASS in

the following aspects:

1) Simulation events are scheduled in a context separately

from main(), whereas MASS schedules events as for-

loop iterations in main().
2) agent collisions are not supported at the system level

unlike MASS.
3) spatial operations are passively invoked from a context

or each agent, whereas MASS allows each place to

manipulate agents through its agents vector.

In a similar way to MASS, we parallelized RandomWalk

with RepastHPC. Figure 8 shows the abstract code in C++. The

main() function initializes RepastHPC (line 35), instantiates a

context (line 36), populates agents (line 38), schedules nine

turns or events of agent migration (line 39), and starts a

cycle simulation (line 40). In RepastHPC, Context schedules

actual events and controls agents. Its schedule() function

(lines 2-6) needs to declared these nine migration events

separately, each calling the move() function (lines 7-16). This

actually means that, upon each invocation, move() must scan

all agents from the top in the context (lines 8-9) for exam-

ining each agent’s current location (lines 10-11). It invokes

Nomad::randomWalk() if a given agent resides on a cell with

the current turn. The randomWalk() logic is the same as that

MUNEHIRO FUKUDA ET AL.: COLLISION-FREE AGENT MIGRATION IN SPATIAL SIMULATION 69

of MASS: repeating a selection of the next destination up to

four times until finding a vacant neighbor.

As compared to MASS, RepastHPC facilitates to its users

more generic and various types of simulation space and gives

them more freedom of agent management, which however

tends to burden model designers with a much steeper learning

curve and to increase their code size.

1 // Context logic

2 void MyContext::schedule(repast::ScheduleRunner& r){

3 r.scheduleEvent(1.1,Schedule::FunctorPtr(this, move));

4 ...;//schedule 9 migration events, each for cell #0-8

5 r.scheduleEvent(1.9,Schedule::FunctorPtr(this, move));

6 }

7 void MyContext::move(){//scan all agents and move only those

8 it = agents.begin(); //residing on cells with the same #

9 while (it != agents.end()) {

10 discreteSpace->getLocation((*it)->getId(), loc);

11 if (partitionCounter % 9 == loc) //pick up this agent

12 (*it)->randomWalk(discreteSpace);//let it plan on move

13 i++;

14 }

15 discreteSpace->balance();//actual migration at once

16 }

17 // Agent logic

18 void Nomad::randomWalk(repast::SharedDiscreteSpace* sp){

19 for (int i=0; i<4; i++) dst.push_back(i);

20 while (!moveset.empty()) {//check N,E,S,W neighbors.

21 int r=rand() % dst.size();//randomly choose one

22 newLoc.push_back(loc[0]+cardinals[dst[r]][0]);

23 newLoc.push_back(loc[1]+cardinals[dst[r]][1]);

24 repast::Point<int> center(newLoc);//get space info

25 repast::Moore2DGridQuery<Nomad> moore2DQuery(sp);

26 moore2DQuery.query(center, neighbor);

27 if (neighbor.empty()) //is a selected space occupied?

28 sp->moveTo(id, newLoc); //if not, move there

29 else //otherwise,

30 dst.erase(dst.begin()+r);//try another

31 } }

32 // Simulation Scenario

33 int main(int argc, char** argv) {

34 boost::mpi::communicator world;

35 repast::RepastProcess:init(argv[1]);// initialize Repast

36 MyContext* context=new repast::Properties(&world);

37 repast::ScheduleRunner& runner=repast::RepastProcess;

38 context->init(); //populate agents.

39 context->schedule(runner); //schedule 9 migration events.

40 runner.run(); //run a simulation.

41 delete model; //finish all.

42 repast::RepastPRocess::instance()->done;

43 }

Fig. 8. Agent migration in RepastHPC

C. FLAME

FLAME is another MPI-based ABM system, originally

developed by University of Sheffield, UK. Since FLAME users

write their simulation in C, for object-based programming

purposes, they need to declare all agents, their data and method

members, and environment variables in XML, in a similar

way to C++ header files. Although FLAME uses environment

variable such as env north x, env south y, env min x, and

env max y to shape a simulation space, it does not instantiate

any actual space on memory beyond making these variables

accessible to all agents. Instead, agents are capable of broad-

casting their messages among one another through message

boards, each launched at a different MPI rank. Contrary to

MASS and RepastHPC, both moving agents over a distributed

simulation space, FLAME is considered as a collection of

communicating, state-transitting agents statically mapped over

MPI ranks. FLAME’s other notable differences include:

1) Simulation events are scheduled in the model XML

separately from auto-generated main() and C-described

agents.
2) agent collisions are impossible to support at the system

that cannot keep track of agent locations except looking

into their initial coordinates to uniformly map agents

over the system.
3) spatial information is captured by and maintained inside

each agent that informs the others of its migration

through a broadcast message.

Figure 9 describes RandomWalk in FLAME. The source

code consists of two files: (1) an XML file for declaring

events and agent functions and (2) a C program for describing

each agent’s random-walk logics. More specifically, XML

schedules 10 events for each simulation cycle (lines 2-6) where

the first event at time 0 calls each nomad agent’s new turn

function (lines 11-15) and the rest nine events, each at time 1-9

invoke random walk() (lines 16-20). The new turn() function

computes each agent’s current cell number: 0-8 (lines 24-26).

Only agents whose MY TURN equals the current time 1 to

9 can invoke random walk() that allows the calling agent to

examine four potential neighbors to migrate to (lines 29-46).

Although FLAME’s random walk() is almost similar to the

logics of MASS and Repast, the notable difference is that a

FLAME agent needs to read all the others’ current locations

to examine a potential collision (lines 33-37).

As compared to MASS and RepastHPC, FLAME is purely

agent-based. There is no actual implementation of simulation

spaces. Functions including main() necessary to start and

stop a simulation, to allocate and deallocate memory space,

and to facilitate inter-agent communication are all automated,

which allows model designers to focus on their own agent

descriptions.

D. Programmability Comparisons

Given the RandomWalk code above in MASS, RepastHPC,

and FLAME, we compare their programmability in collision-

free migration from the following four aspects.

1) Agent Handling and Description: For scheduling nine

migration events, (each corresponding to moving agents on

cells with the same number 0-8), MASS and FLAME can

describe them in a for-loop or a simple XML statement,

whereas RepastHPC needs to declare nine events separately.

For each migration event, all these three systems must scan

an entire list of agents whether or not they need to migrate

at the current event. However, decision on moving a given

agent can be made by each agent itself in MASS and FLAME

while RepastHPC needs to describe such an agent selection

separately in its Context logic, (i.e., in MyContext::move()),

which implies that MASS and FLAME agents tend to be more

self-descriptive. This is RepastHPC’s inherent problem in

using a separate Context class as an agent controller. Contrary

to that, MASS decouples agents from places and FLAME is

purely agent-based with no space concept.

70 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

1 <name>random walk</name>

2 <!− 1 location calculation & 9 move events per cycle − >

3 <environment> <timeUnits> <timeUnit>

4 <name>turn</name><unit>iteration</unit>

5 <period>10</period>

6 <timeUnit> </timeUnits> </environment>

7 <!− Agent declaration − >

8 <agents><xagent>

9 <name>nomad</name>

10 <functions>

11 <function>

12 <name>new_turn</name> <!− scheduled at time 0 − >

13 <condition><time><phase>0

14 </phase></time></condition>

15 </function>

16 <function>

17 <name>random_walk</name> <!− scheduled at 1 - 9 − >

18 <condition><time><phase>nomad.my_turn

19 </phase></time></condition>

20 </function>

21 </functions>

22 </xagent><agents>

23 // Agent logic

24 int new_turn() {

25 MY_TURN = (myX % 3) + 3 * (myY % 3) + 1;// get 0-8

26 }

27 int random_walk() {

28 bool unoccupied[] = {true, true, true, true};

29 for (int i=0; i<4; i++) {//for each of N, E, S, and W

30 int newX = computeCoord(myX, i);get its coordinates.

31 int newY = computeCoord(myY, i);

32
33 // START_MESSAGE_AGENTLOC_MESSAGE_LOOP

34 if (message_agentloc_message->x == newX &&

35 message_agentloc_message->y == newY)

36 unoccupied[i] = false;

37 // FINISH_MESSAGE_AGENTLOC_MESSAGE_LOOP

38 }

39 random = moveset.array[rand() % 4];choose a neighbor

40 for (int i = 0; i <

41 if (unoccupied[random] == true) {if not occupied

42 myX = newX; migrate there

43 myy = newY;

44 return 0;

45 }

46 random += (random + 1) % 4; choose another

47 } }

Fig. 9. Agent Migration in FLAME

2) Collision Detection: Agent migration needs a space

concept to detect agent collisions on given coordinates. Both

MASS and RepastHPC facilitate such a space as the Places

or the SharedDescreteSpace class, both visualizing remote

processor boundary as ghost space to local agents. For this

purpose, logically neighboring processors have to exchange

their ghost space with each other at each migration event. On

the other hand, due to lack of space concepts, FLAME must

have each agent broadcast its current location to all the others

and compare its coordinates with others to avoid collisions.

This results in N × N message exchanges and comparisons

by each migration event.

3) System-level Collision-free Migration: System-level

location-ordered migration is feasible as far as a space concept

is supported by a system. From this standpoint, MASS and

RepastHPC have potential to implement this migration algo-

rithm. However, direction-ordered migration is more challeng-

ing unless a system can access each agent’s next destination.

RepastHPC can capture such agent information only when

an agent calls projection.balance() to migrate over a space,

which is too late for collision detection. Needless to say,

FLAME cannot access each agent’s private data. The reason

why MASS was able to support direction-ordered migration

at the system level is that MASS can forecast each agent’s

next destination by comparing a difference in coordinates

between the agent and its current place, (i.e., Agent.index[]

and Place.index[]).

4) Quantitative Measures: For each of MASS, RepastHPC,

and FLAME, we measured the number of files and lines of

code (LOC) necessary to implement RandomWalk and embed

an application-level location-ordered migration algorithm in it.

Systems #Files Lines of Code (LOC)

MASS 5 727
RepastHPC 5 921
FLAME 5 (16) 783

All of these three systems need five different files. Both

MASS and RepastHPC requires (1) a simulation scenario in

main.cpp, (2) a simulation space definition in Land.h, (3)

its implementation in Land.cpp, (4) an agent definition in

Nomad.h, and (5) its implementation in Nomad.cpp. On the

other hand, FLAME needs one XML definition, three C-

based agent-controlling functions, and one more C program

that describes simulation rules. Notable is that, since FLAME

automatically generates C template and stub files from the

XML definition, the nominal number of files is 16. For the

code size comparison, MASS was slightly the smallest. More

specifically, it was 7% smaller than FLAME. Although we

gave RepastHPC a few advantages by re-engineering the

source code and subtracting space and comment lines from

it, its LOC could not beat out neither MASS or FLAME.

This was resulted from RepastHPC’s coding style as discussed

above: nine events must be declared independently and agent

management need to be implemented in Context separately.

From these four observations, we feel that MASS facilitates

collision-free migration more efficiently than the other two.

IV. PERFORMANCE EVALUATION

We coded all the four RandomWalk programs with MASS

both at the application and system levels, with RepastHPC, and

with FLAME. They respectively correspond to Figures 6, 7, 8,

and 9 in Section III. To compare their execution performance,

we implemented system-level direction-ordered collision-free

agent migration in MASS C++ and installed RepastHPC 2.1.0,

and FLAME 2.1.3 on a cluster of 16 3.4GHz Intel Core i7

desktop machines, each equipped with 16GB memory and

running Ubuntu 14.04. Figure 10 shows an execution of

RandomWalk with the MASS library.

A. Performance Comparison of MASS, Repast-HPC, and

FLAME

We first compared MASS at both application- and system-

level implementations (called MASS App and MASS Lib

respectively in the following discussions) with RepastHPC and

FLAME for their parallel performance.

Figure 11 shows their performance with four computing

nodes as increasing the number of threads from one to four.

MUNEHIRO FUKUDA ET AL.: COLLISION-FREE AGENT MIGRATION IN SPATIAL SIMULATION 71

Fig. 10. A random walk execution with the MASS library

Fig. 11. Performance of MASS, RepastHPC, and FLAME running over 4
computing nodes

In this evaluation, 400 agents walked over a 100× 100 space.

With a single thread, RepastHPC performed 1.7 times better

than MASS App and FLAME. This is because RepastHPC’s

Context object quickly scans a list of agents to invoke

each agent’s randomWalk function, whereas MASS needs

two phases of operations: (1) updating ghost space among

neighboring places and (2) calling each agent’s randomWalk();

and FLAME needs N × N inter-agent communication over

four computing nodes. However, using four threads per each

node, RepastHPC slowed down due to its serialized accesses

to the same agent list by multithreaded Context objects.

FLAME could not improve its parallel performance because

of its inter-agent communication overheads. On the other

hand, MASS App improved 1.27 times faster than its single-

threaded execution. This is because MASS controls fine-

grained synchronizations among threads.

Notable is MASS Lib’s performance that showed 7.9 to

13.6 times faster than RepastHPC. The biggest factor of this

improvement is that MASS Lib groups agents into north, east,

south, and west directions, thus scans the agent list only once

for this grouping work, and completes migration in four turns.

On the other hand, RepastHPC needs nine turns of migration

where each turn must scan the entire agent list.

Figure 12 measures execution performance with 16 comput-

ing nodes. The evaluation was able to extend its simulation size

to 3600 agents over a 300 × 300 space. The reason was that

both RepastHPC and FLAME needed a large space of memory

Fig. 12. Performance of MASS, RepastHPC, and FLAME running over 16
computing nodes

that couldn’t fit a smaller number of computing nodes. Similar

to the four-way parallelization, FLAME was the slowest and

unable to improve its performance with multithreading due

to its communication overheads. RepastHPC ran faster than

MASS App whose performance loss was however mitigated to

14%-21% slow-down as we used a larger problem size. Again,

MASS Lib performed fastest among the four test cases, more

specifically 4.0 to 5.1 times better than RepastHPC.

B. Performance of MASS Library

We focused on the MASS library’s CPU scalability for its

collision-free agent migration. Our performance measurement

walked 3,600 agents over a 300 × 300 space, (i.e., 4%

population density) as increasing the number of nodes from

one to 16 and the number of threads from one to four.

Figures 13 and 14 demonstrate MASS App’s and Lib’s

CPU-scalable execution respectively. Despite RandomWalk’s

fine-grained pallalelization where each agent computes only

the next destination to visit, MASS App showed that 16 single-

threaded computing nodes performed 2.2 times faster than a

sequential execution. MASS Lib scaled up its parallelization

to 8 ways, (i.e., four computing nodes, each with two threads)

and ran 2.9 times faster than a sequential execution.

These results confirm three advantages of the MASS library:

(1) both MASS App and Lib are CPU scalable; (2) MASS Lib

is at least four times faster than the other ABM simulators;

and (3) MASS saves memory space efficiently to run a larger

simulation with a fewer computing nodes.

V. CONCLUSIONS

Needless to say, there are many applications that need

no agent migration, which FLAME could benefit well with

static agents that communicate with each other. On the other

hand, a number of application domains need to observe agent

migration over a space: vehicle flow in traffic simulation,

pedestrian flow in emergency evacuation, and immune cells’

attack to bacteria, etc. Model designers used to address such

72 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 13. Performance of MASS application-level collision-free migration

Fig. 14. Performance of MASS system-level collision-free migration

agent collisions in conceptual models [11], [10] by controlling

agent migration or slicing simulation time and space finely

or to implement collision avoidance mechanisms in their

application-specific parallel execution [8], [9]. Therefore, from

the programmability viewpoint, it is worthwhile supporting

system-level collision-free agent migration in general-purpose

simulators.

As shown in Figure 5, agent collisions increase in pro-

portional to the growth of agents’ population density until

the growth reaches 50% of the entire simulation space. As

observed in Figure 3, if agents are uniformly distributed to

occupy less than only 1/9 or 1/5 of an entire simulation

space in the Moore or the von Neumann neighborhood, the

probability of agent collisions remains negligible (but does not

result in zero even with the 1% population density). In such

scenarios, the trial-and-error migration could most effectively

reduce the turns of agent migration. However, the population

of agents is dynamic in most cases, (e.g., in Sugarscape [13]),

and agents may gather around (as observed in Wa-Tor [14]).

Once a collision is detected, the trail-and-error algorithm may
cost more than the other two migrations.

Therefore, we developed and focused on location and

direction-ordered collision-free migration. Since the MASS

library has access to each agent’s index[] variable, (i.e., the

current and the next locations), it was able to implement

direction-ordered migration at the system level. This paper

demonstrated its simple programmability in and faster execu-

tion of system-supported agent migration.

Our future plan is to continue our verification work on the

MASS library’s collision-free migration, using actual applica-

tions such as Sugarscape and Wa-Tor. We recently made the

MASS library available to the public through:

http:://depts.washington.edu/dslab/MASS.

REFERENCES

[1] MATSim Homepage, “http://www.matsim.org,” 2012.
[2] F. Kawasaki, “Accelerating large-scale simulations of coortical neuronal

network development,” Master’s thesis, Master of Science in Computing
and Software Systems, University of Washington, 2012.

[3] D. L. Chao, M. E. Halloran, V. J. Obenchain, and I. M. Longini Jr,
“FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation
Model,” PLoS Computational Biology, vol. Vol.6, no. No.1, pp. 517–
527, January 2010.

[4] M. Oryani, “Applying agent-based modeling to studying emergent
behaviros of the immune system cells,” Master’s thesis, KTH Electrical
Engineering, Stockholm, Sweden, May 2014.

[5] R. M. D’Souza, S. Marino, and D. Kirschner, “Data-parallel algorithms
for agent-based model simulations of tuberculosis on graphics process-
ing units,” in Proc. of Agent-Directed Symposium - ADS09. San Diego,
CA: SCS, March 2009.

[6] Argonne National Laboratory, “Repast for High Performance Comput-
ing, http://repast.gifhub.io/repast hpc.html.”

[7] C. Geenough and M. Holcombe, “FLAME Flexible Large-scale Agent
Modeling Environment, http://www.flame.ac.uk.”

[8] A. U. K. Wagoum, B. Stefen, A. Seyfried, and M. Chraibi, “Parallel
real time computation of large scale pedestrian evacuations,” Advances

in Engineering Software, vol. Vol.60-61, pp. 98–103, 2013.
[9] J. Barceló, J. Ferrer, D. Garcća, and R. Grau, “Microscopic traffic

simulation for att systems analysis. a parallel computing version,” in
25th Anniversary of CRT, August 1998.

[10] A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider, and
M. Schreckenberg, “Discretization effects and the influence of walking
speed in cellular automata models for pedestrian dynamics,” Journal of

Statistical Mechanics: Theory and Experiment, vol. Vol.2004, no. No.10,
p. P10011, October 2004.

[11] S. Bandini, L. Crociani, and G. Vizzari, “Towards a more comprehensive
estimation of social costs in pedestrian facilities,” in Proc. of the

Workshop on The Challenge of Ageing Society: Technological Roles

and Opportunities for Artificial Intelligence in conjunction with the 13th

Conference of the Italian Association for Artificial Intelligence, (AI*IA

2013), Turin, Italy, December 2013, p. paper 7.
[12] C. L. Barrett et al., “TRANSSIMS(TRansportation ANalysis SIMulation

System) Volume 0 - Overview,” Los Alamos National Laboratory,” LA-
UR-99-1658, May 28 1999.

[13] J. Epstein and R. Axtell, Growing artificial societies: social science from

the bottom up. Brookings Institution Press, October 1996, p. 224.
[14] A. K. Dewdney, “Computer recreations sharks and fish wage an ecolog-

ical war on the toroidal planet wa-tor,” Scientific American, pp. 14–22,
December 1984.

[15] M. Fukuda, “MASS: A Parallelizing Library for Multi-Agent Spatial
Simulation, http://depts.washington.edu/dslab/MASS.”

MUNEHIRO FUKUDA ET AL.: COLLISION-FREE AGENT MIGRATION IN SPATIAL SIMULATION 73

