
Overview of Verification Tools
for Business Process Models

Anna Suchenia (Mroczek)
Cracow University of Technology

ul. Warszawska 24, 31-155 Kraków, Poland
Email: asuchenia@pk.edu.pl

Piotr Wiśniewski, Antoni Ligęza
AGH University of Science and Technology

al. A. Mickiewicza 30, 30-059 Krakow, Poland
E-mail: {wpiotr,ligeza}@agh.edu.pl

Abstract—Formal verification of process models is an impor-
tant issue in Business Process Management. Such a verification
provides the information about the correctness of a process
model, can be also used for checking business compliance or
as a preliminary step to simulation. In this paper, we provide an
overview of the existing tools for such a verification.

Index Terms—process models verification, process models
anomalies, verification tools, business process verification

I. INTRODUCTION

D
ESIGNING process models is currently a broad term.
Considering designing processes, one can think about

models designed manually by business analysts, as well as
models generated from other representations such as: natural
text description [1], structured text [2], spreadsheets [3], other
representations like UML [4], or mining such models from
event logs [5]. All such models can suffer from various
anomalies [6]–[8]. Some of such anomalies can be avoided
by validation models [9], [10] or verification [11] of models.

Business Process Model and Notation (BPMN) [12] is
the most common notation for representing process models.
BPMN supports process documentation, communication and
visualization using clear graphical representation understand-
able even for non-technical business people. Although it
provides a standardized understanding of BPMN elements
and constructs, no formal semantics is provided within this
specification. This can lead to misinterpretations or errors in
models. Thus, there is a field for studies focusing on formal
representation and verification of such process models.

Such a verification of process models can provide the
information about the correctness of a process model in terms
of syntactic and structural anomalies of models. The main
focus of this paper is to present an overview of the verification
tools for process models which can detect some anomalies in
business processes. This paper provides an overview of several
existing tools. Their capabilities and properties were analyzed.

The rest of the paper is organized as follows. Section II
covers the presentation of the BPMN notation. Section III
and IV give the literature overview on process anomalies,
especially concerning anomalies in BPMN models. Section V
provides the description and comparison of various verification
tools used for verifying business process models. The final
section concludes the paper.

The paper is supported by the AGH UST grant.

II. BUSINESS PROCESS MODEL AND NOTATION

Process models in BPMN are represented as diagrams mod-
eled using a limited set of graphical elements. There are four
main groups of elements, namely: flow objects, connecting
objects, swimlanes and artifacts.

Flow objects are the key elements describing the process.
The set of flow objects consist of three core element types:
events, activities and gateways (see Fig. 1):

1) activities – represented by rounded-corner rectangles,
describe the work that has to be completed within
a process,

2) events – represented by circles, describe something that
happen during the time of the process,

3) gateways – represented by diamond shapes, control the
flow of the token between flow objects.

Fig. 1. BPMN flow objects of internal Business Process Model

In the case of activities, there are two kinds of them: tasks
and sub-processes. A task represents a single unit of work
should not be divided. A sub-process is used for complex work
which can be divided into smaller units and specified in the
lower level as a separated process.

There are three types of events: the start, intermediate
and the end event. The start event works like a trigger to
a process and shows its beginning (and under what conditions
the process begins). The end event indicates where the business
process ends. The intermediate event represents what happens
between start and end events.

Communication papers of the Federated Conference on
Computer Science and Information Systems, pp. 295–302

DOI: 10.15439/2017F308
ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 295



Gateways constitute the mechanism of controlling the way
in which business process is executed. The most typical types
of gateways are as follows:

• data-based exclusive gateway – used for controlling the
process flow based on given process data (see Fig. 2),

Fig. 2. Data-Based Exclusive Gateway

• inclusive gateway – used for creating potentially parallel
paths based on the conditions of all outgoing flows (see
Fig. 3),

Fig. 3. Inclusive gateway

• parallel gateway – used for paralleling the flows without
the need of checking any conditions (see Fig. 4).

Fig. 4. Parallel gateway

• event-based gateway – used for modeling alternative paths
that are based on events (Fig. 5).

Fig. 5. Event-based gateway

Flow objects are connected using connecting objects, which
are of three types: sequences, messages, and associations.
Sequence flow shows the order in which particular activities
are performed in a process. Message flow shows the flow of
messages between two process participants. Association links
some artifacts to activities, events, gateways or flows.

A simple auction process, presenting the basic BPMN flow
objects, is depicted in Fig. 6.

For demonstrating what business function a particular flow
object is connected with or by which part of system it is
executed, BPMN usually uses the concept of swimlanes.
Participants are represented as pools, which can be divided
into sub-partitions called lanes. These can be used for rep-
resenting specific objects or roles in a process. Artifacts, in
turn, are diagram elements which show additional pieces of
information. BPMN naively supports several kinds of artifacts
like data objects and data stores, groups and annotations.

Additionally, many different extensions of BPMN have
been proposed for capturing various aspects of business pro-
cesses [13]–[16]. Thus, in such an advanced and complex
notation, it is hard to avoid model anomalies. Moreover, it
is possible to mistake a correct model with incorrect one,
especially because two BPMN models with different struc-
ture, but behaviorally equivalent, can be both correct and
unambiguous [17]. It is because the BPMN notation allows
for expressing the same semantics using various syntactic
structures. However, it is possible to transform such equivalent
structures to the equivalent ones [18]. Another way is to use
some kind of a guide which provides help in modeling. This
can be done using some recommendation technique during
process modeling [19]–[21] or the environment capable to
detect some semantic issues [22]–[25].

III. APPLICATIONS OF THE VERIFICATION IN THE AREA OF

ANOMALIES IN PROCESS MODELS

There are many possibilities of defining incoherent business
logic specification and its interpretation. Even in basic process
models, some anomalies can be observed [26]. An improve-
ment is required in the mechanism which provides cohesion
in detecting anomalies in business processes [27]. Anomalies
have been defined in numerous papers [28], yet a unified
definition was presented in IEEE standard classification for
Software Anomalies [29]: Each condition different from the

expected is an anomaly. In a business logic, an anomaly can
be considered as every negative influence on modeling and
models. There is a special kind of anomaly — a defect, which
blocks the correct and efficient flow of objects completely.

Some anomalies can be found by searching the BPMN
models for some patterns. In [30], several anti-patterns are
found using a query language for BPMN. In [31], typical
gateway constellations leading to problematic situations in the
flow work diagram are presented. A similar solution was used
in [32], where an ’anomaly pattern’ are detected using anti-
patterns in the data flow. Patterns as well as anti-patterns
can be represented as LTL formulae and be used in formal

296 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017



Fig. 6. An example of a process model in BPMN

verification of a business process model transformed to a high-
level Petri Net [33]. The approach of Lam [34] transforms
BPMN models to the New Symbolic Model Verifier (NuSMV)
language in order to do a model-checking analysis. This
approach has formal foundations and addresses the correctness
issue of the transformation. It requires to encode properties
of a model using Computation Tree Logic (CTL) formulas.
Another approach, which stems from formalism or inadequacy
of the tools, is presented in [35].

Control flow anomalies concern problems connected with
flow control and gateways conditions [36]. In [37], a problem
of control over many semantically identical connections be-
tween two workflow elements was presented. This multiplicity
complicates changes in the workflow, which is not desired.
Roy et al. [38] described the method of control flow error
detection based on Petri Net analysis and evaluated it on
a set of industrial examples. An extensive survey of process
model verification techniques regarding flow correctness and
variability was presented in [39].

Formal verification of workflow-oriented software models
based on the semantic tableaux method that uses the deductive
approach was proposed in [40].

Ou-Yang and Lin proposed a Petri-net-based approach [41],
which evaluates a feasibility of a BPMN model, e.g. to
reveal deadlocks and infinite loops. This approach consists
in manually translating of the BPMN model to the Modified
BPEL4WS representation, and then to Colored Petri-net XML
(CPNXML). The CPNXML representation can be then verified
using CPN Tools. The approach has some major restrictions,
such as limited assessment criteria, and lack of support of the
multiple merge and split conditions.

Gateways can also caused some anomalies. XOR-gateways
with undefined gateway conditions can cause practical prob-
lems or even be a reason of an error. A similar thing occur
when XOR-gateways conditions do not exclude each other and
partially or fully overlap. What happens in flow control in a
case of a lack of synchronization is multiple flow execution.
For example, branches and some loop instruction cause such
an anomaly [42].

A flow deadlock is a situation, in which the workflow is
stopped in the current position of the path and cannot be
accomplished. Another lock of flow is known as livelock. In

[30] it is called an ’infinite loop’. Flow livelock keeps the
operating work flow system in an infinite loop. The reasons
are bad modeling conditions, which prevent leaving the loop.
An approach based on business process event logs, where both
deadlocks and livelocks can be detected as well as tasks which
can never be executed, was presented in [43].

Badica et al. consider formalized models using Role Ac-
tivity Diagrams for BP business process verification [44] as
well as including logic-based ones in similar multi-agent
approaches [45]. Other formalized approaches in modeling
complex heterogeneous information systems include [46].

Another class of anomalies in processes are anomalies in
the rules used in a process model. Such rule-based anomalies
are described in a number of papers [47]–[51]. These involve
several problems connected with rules, such as: rule-base
consistency (concerning the coherence of rules), rule-base
livelock, also called ’circular rules’ [48] or rule-base deadlock.
This type of anomaly suggests that rule-base does not encom-
pass the basic context in which it is used. Coverage anomalies
concern the rules in which conditions can be fulfilled by the
context but conclusions are modeled in such a way that no
effect will ever be seen. A formal verification of business rules
violations using Business Rule Language (BRL) and Depth-
First Search algorithm was conducted in [52].

Business process related anomalies may also refer to the
violation of temporal constraints and dependencies added to
the process model as well as can be used for validation of
time related processes [53]–[59]. In [59], a BPMN model
is transformed to a set of Timed Automata (TA) and is
verified using Clocked Computation Tree Logic (CCTL). A
similar method is described in [57], where BPMN mod-
els are verified using TA-networks with respect to business
performance indicators. Temporal properties of a business
process can be also verified using a framework based on the
declarative specification of a process model and the Answer
Set Programming (ASP) technique [58]. Dynamic detection
of temporal violations and providing possible solutions to
a specific problem was proposed in [55]. In [56], in turn,
the authors proposed a solution where an extended BPMN
model is mapped onto timed automata and then verified using
UPPAAL model checker.

ANNA SUCHENIA (MROCZEK) ET AL.: OVERVIEW OF VERIFICATION TOOLS FOR BUSINESS PROCESS MODELS 297



IV. ANOMALIES IN BUSINESS PROCESSES

There is a number of business process anomalies which
can occur during modeling business processes. A common
classification distinguishes: syntactic and structural anomalies.

A. Syntactic Anomalies in Business Process

Syntactic anomalies constitute the problem in improper
usage of modeling elements. Such anomalies can be divided
into four groups:

• Incorrect usage of activities – this anomaly results from
improper use of start or end event. The BPMN specifica-
tion defines the start and end events as optional. However,
if there is a start event used in a diagram, each activity
– that do not have an end event on its path – can be
considered as incorrect.

• Invalid use of gateway – this anomaly is especially
connected with the data-based XOR gateway and event-
based XOR gateway. The data-based gateway has to use
a data to determine the token flow, so using event-based
objects for data-based gateway is incorrect. In the case
of the event-based gateway, it cannot be used as a merge
gateway, but can only be used as a decision type gateway.

• Incorrect usage of connecting object – this anomaly is
concerned with such situations as using a message flow
within the pool or using conditional flow from the event
type source.

• Incorrect usage of swimlanes – such an anomaly can oc-
cur when a model uses multiple pools as a single process
where message flows indicate sequence of activities. This
can lead to situation, where activities in a pool are not
connected with sequence flows (see Fig. 7). On the other
hand, there are also situations of improper use of lane as
a pool.

B. Structural Anomalies

Structural anomalies are broadly described in the literature
[60]–[64]; such anomalies correspond to a wrong dynamic
behavior and can be divided into four types:

• Deadlock – a situation, in which the flow cannot continue
because a requirement of the model is not satisfied. There
are two types of deadlocks: deterministic deadlock, when
concurrent flow are connected by the AND-join (parallel)
gateway (see Fig. 8) and non-deterministic one, if they are
connected by an OR-join (inclusive) or complex gateway.

• Lack of synchronization – a situation where there is more
than one token on some sequence flow that it should be. It
occurs when concurrent paths (starting with an OR-split
or an AND-split) are joined by an XOR-join (see Fig. 9).
If the paths were split by the AND gateway, this problem
is deterministic. It is non-deterministic, if decision about
splitting is made at the execution time.

• Dead Activity – a situation, in which there is an activity
which cannot be executed, because there is no path
leading from the start event to this activity (see Fig. 10).

• Infinite Loop – also called the closed loop – is a cycle in
the process, in which token is looped and can not escape

the loop. This can be caused by improper use of gateways
(see Fig. 11). If such gateway is of the OR type, the loop
is non-deterministic; if it is the AND type, then the loop
is deterministic.

V. VERIFICATION TOOLS

There are several automatic or interactive tools for process
model verification such as: Signavio (BpStruct, LoLA) [65],
UPPAAL [66], SPIN, Wolfan, NuSMV, nuXmv, and Alvis.
This section provides the analysis of several of such tools.

A. Signavio

Signavio [65] uses colored Petri nets for process verifica-
tion. These can handle unreachable states (such as unreachable
activities) as well as deadlocks (caused by wrong usage of
gateways). Signavio also uses two additional tools BPStruct
and LoLA [65].

As it comes to the BPMN syntax, Signavio can check the
usage of the elements from the defined BPMN subset, as well
as mandatory attributes, definition of required dictionary links
and consistency with attributes of the linked dictionary item,
uniqueness of element names, etc. In the process structure,
usage of different elements in various contexts can be checked,
e.g. usage of activities before or-splits, consistent usage of
signals correct usage of boundary events, message flows,
etc. Additionally, absence of loops, deadlocks, multi merges,
subprocess relation cycles, multiple incoming sequence flows
can be checked.

There are many properties checked by Signavio’s tool, for
example:

• Lack of the flow source or flow target.
• Source and target of the sequence flow are not part of the

same process.
• Start-event without outgoing flows.
• Event-based gateway with less than two outputs.
BPStruct supports transforming unstructured process mod-

els into well-structured ones. A model can be called well-
structured, if for every node with multiple outgoing arcs (a
split), there is a corresponding node with multiple incoming
arcs (a join), and the other way round. Such the fragment of
the model between the split and the join should form a single-
entry-single-exit (SESE) component.

LoLA (Low Level Petri Net Analyzer) is a tool used to
verify a model in Signavio. The LoLA can load the model
as a Petri net and the provided properties specified in CTL*.
These properties are analyzed and in the case a property is not
fulfilled, it can provide a counter-example.

B. UPPAAL

UPPAAL [66], [67] is an integrated tool for modeling,
simulation and verification of real-time systems. It consists of
two main parts: a graphical user interface and a model-checker
engine. Its model-checker is based on symbolic processing,
which reduces the problem of verification to constraint pro-
gramming. It is an appropriate tool for systems which can be
modeled as a set of non-deterministic processes with finite

298 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017



Fig. 7. Missing sequence flow

Fig. 8. Deterministic deadlock

Fig. 9. Lack of synchronization

control structure and real-valued clocks that communicates
using channels or shared variables [68].

UPPAAL provides a graphical editor and a graphical sim-
ulator as well as path generator for system verification and
visualization.

C. SPIN

SPIN model checker [69] is an open-source verification tool
which can be used to verification of multithreaded applica-
tions. SPIN is also a general tool for verifying the correctness

Fig. 10. Dead Activities

Fig. 11. Infinite Loop

of models in an automated fashion. It is oriented on checking
the interactions of processes.

The tool provides ’on-the-fly’ verification (the full state
graph is not required, so much larger models can be verified)
as well as it supports native C code, what allows code based
verification.

D. Woflan

Woflan (WOrkFLow ANalyser) [70], [71] is a workflow
analysis tool, which checks if a Petri net conforms to specified

ANNA SUCHENIA (MROCZEK) ET AL.: OVERVIEW OF VERIFICATION TOOLS FOR BUSINESS PROCESS MODELS 299



restrictions for workflows [72]. Woflan can help in detecting
errors made at design-time Woflan also helps in providing
the diagnostics why the process is wrong and how it can
be repaired. For that reason, Woflan generates high-quality
diagnostic information, which can guide the designer towards
the error. The advantage of the tool is that it transforms the
model into the coverage graph, which often causes a significant
reduction in state space.

E. NuSMV

NuSMV [73], [74] is a symbolic model checker for temporal
logic. In this approach, the process is modeled as a finite state
transition system and specifications are given as formulae,
which can be expressed in LTL or CTL logic. This tool is
used to verify if the model satisfies the provided specifications.
The input file with a model definition in SMV language can
be generated based on a Petri Net [75] or behavioral elements
extracted from a business process specification [76].

F. nuXmv

Another symbolic model checker is nuXmv [77], an exten-
sion of the NuSMV tool, which can be used for both finite and
infinite state transition systems. It offers more functionalities
such as boundedness and liveness verification. It also allows
a user to generate an explicit state representation in a form of
an XMI file which can be then visualized as a UML diagram.
Process model verification using nuXmv can be executed by
generating model definition from the coverability graph of
a real-time coloured Petri Net [78].

G. Alvis

Alvis is a formal modelling language, tool set, and frame-
work created to verify and model check distributed concurrent
systems [79]–[82]. The advantage of Alvis modelling frame-
work are readable graphical and a code layers of specification
of modelled system behaviour. The graphical layer presents
data exchange channels of communicating distributed units
and enables hierachical specification that hides complexity
of huge models [83]. The code layer specifies behaviour of
particular distributed units using mixture of domain specific
language (called Alvis language) and Haskell. The possibil-
ity of exchanging Haskell with other standard programming
languages was studied in [84].

Alvis was used in BPMN model verification [85], [86]. One
can verify time constraints of concurrent system with time
version of Alvis framework [87]. The Alvis tool set may be
used not only to verify a model of concurrent system but to
simulate a provided model together with computation of time
dependent statistics of simulation results [88], [89].

VI. CONCLUSION

The relatively broad spectrum of tools for a process model
verification is discussed in this paper. We have given the lit-
erature overview on process anomalies, especially concerning
anomalies in BPMN models and provided the description of
various verification tools used for verifying process models.

The research presented in this paper is a proposal for further
studies related to verification issues of BPMN process models.
Our future work will focus on practical assessment of process
models especially with the existing tools [90]–[93].

REFERENCES

[1] F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation
from natural language text,” in Advanced Information Systems Engi-

neering, ser. Lecture Notes in Computer Science, H. Mouratidis and
C. Rolland, Eds. Springer Berlin Heidelberg, 2011, vol. 6741, pp.
482–496.

[2] K. Kluza and K. Honkisz, “From SBVR to BPMN and DMN models.
proposal of translation from rules to process and decision models,” in Ar-

tificial Intelligence and Soft Computing: 15th International Conference,

ICAISC 2016, Zakopane, Poland, June 12-16, 2016, Proceedings, Part II,
ser. Lecture Notes in Computer Science, L. Rutkowski, M. Korytkowski,
R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, Eds.
Springer International Publishing, 2016, vol. 9693, pp. 453–462.

[3] K. Kluza and P. Wiśniewski, “Spreadsheet-based business process mod-
eling,” in Computer Science and Information Systems (FedCSIS), 2016

Federated Conference on. IEEE, 2016, pp. 1355–1358.
[4] J. R. Nawrocki, T. Nedza, M. Ochodek, and L. Olek, “Describing

business processes with use cases,” in BIS, 2006, pp. 13–27.
[5] A. A. Kalenkova, M. de Leoni, and W. M. van der Aalst, “Discovering,

analyzing and enhancing BPMN models using ProM?” in Business

Process Management-12th International Conference, BPM, 2014, pp.
7–11.

[6] A. Ligęza, K. Kluza, and T. Potempa, “AI approach to formal analysis
of BPMN models. towards a logical model for BPMN diagrams,” in
Proceedings of the Federated Conference on Computer Science and

Information Systems – FedCSIS 2012, Wroclaw, Poland, 9-12 September

2012, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2012, pp.
931–934.

[7] A. Suchenia and A. Ligęza, “Event anomalies in modeling with BPMN,”
International Journal of Computer Technology & Applications, vol. 6,
no. 5, pp. 789–797, 2015.

[8] A. Mroczek and A. Ligeza, “A note on BPMN analysis. Towards a
taxonomy of selected potential anomalies,” in Computer Science and

Information Systems (FedCSIS), 2014 Federated Conference on. IEEE,
2014, pp. 1097–1102.

[9] M. A. Mach and M. L. Owoc, “Validation as the integral part of a
knowledge management process,” in Proceeding of Informing Science

Conference, 2001.
[10] M. Mach-Król and K. Michalik, “Validation and verification of temporal

knowledge as an important aspect of implementing a temporal knowl-
edge base system supporting organizational creativity,” in Computer

Science and Information Systems (FedCSIS), 2015 Federated Conference

on. IEEE, 2015, pp. 1315–1320.
[11] M. Mach-Król and K. Michalik, “Verification of temporal knowledge

bases as an important aspect of knowledge management processes in
organization,” in Advances in Business ICT: New Ideas from Ongoing

Research. Springer, 2017, pp. 1–15.
[12] OMG, “Business Process Model and Notation (BPMN): Version 2.0

specification,” Object Management Group, Tech. Rep. formal/2011-01-
03, January 2011.

[13] A. Yousfi, C. Bauer, R. Saidi, and A. K. Dey, “ubpmn: A bpmn extension
for modeling ubiquitous business processes,” Information and Software

Technology, vol. 74, pp. 55–68, 2016.
[14] R. Martinho, D. Domingos, and J. Varajão, “Cf4bpmn: a bpmn extension

for controlled flexibility in business processes,” Procedia Computer

Science, vol. 64, pp. 1232–1239, 2015.
[15] R. M. Pillat, T. C. Oliveira, P. S. Alencar, and D. D. Cowan, “Bpmnt: A

bpmn extension for specifying software process tailoring,” Information

and Software Technology, vol. 57, pp. 95–115, 2015.
[16] K. Kluza, K. Jobczyk, P. Wiśniewski, and A. Ligęza, “Overview of time

issues with temporal logics for business process models,” in Computer

Science and Information Systems (FedCSIS), 2016 Federated Conference

on. IEEE, 2016, pp. 1115–1123.
[17] K. Kluza and K. Kaczor, “Overview of BPMN model equivalences:

towards normalization of BPMN diagrams,” in 8th Workshop on

Knowledge Engineering and Software Engineering (KESE2012) at

the at the biennial European Conference on Artificial Intelligence

300 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017



(ECAI 2012): August 28, 2012, Montpellier, France, J. Canadas, G. J.
Nalepa, and J. Baumeister, Eds., 2012, pp. 38–45. [Online]. Available:
http://ceur-ws.org/Vol-949/

[18] V. S. W. Lam, “Equivalences of BPMN processes,” Service Oriented

Computing and Applications, vol. 3, no. 3, pp. 189–204, 2009.
[19] S. Bobek, G. J. Nalepa, and O. Grodzki, “Integration of activity modeller

with bayesian network based recommender for business processes,”
in Proceedings of 10th Workshop on Knowledge Engineering and

Software Engineering (KESE10) co-located with 21st European

Conference on Artificial Intelligence (ECAI 2014), Prague, Czech

Republic, August 19 2014, ser. CEUR Workshop Proceedings, G. J.
Nalepa and J. Baumeister, Eds., vol. 1289, 2014. [Online]. Available:
http://ceur-ws.org/Vol-1289/kese10-05_submission_10.pdf

[20] S. Bobek, M. Baran, K. Kluza, and G. J. Nalepa, “Application of
bayesian networks to recommendations in business process modeling,”
in Proceedings of the Workshop AI Meets Business Processes 2013

co-located with the 13th Conference of the Italian Association for

Artificial Intelligence (AI*IA 2013), Turin, Italy, December 6, 2013,
L. Giordano, S. Montani, and D. T. Dupre, Eds., 2013. [Online].
Available: http://ceur-ws.org/Vol-1101/

[21] K. Kluza, M. Baran, S. Bobek, and G. J. Nalepa, “Overview
of recommendation techniques in business process modeling,” in
Proceedings of 9th Workshop on Knowledge Engineering and Software

Engineering (KESE9) co-located with the 36th German Conference

on Artificial Intelligence (KI2013), Koblenz, Germany, September 17,

2013, G. J. Nalepa and J. Baumeister, Eds., 2013. [Online]. Available:
http://ceur-ws.org/Vol-1070/

[22] G. J. Nalepa, K. Kluza, and U. Ciaputa, “Proposal of automation
of the collaborative modeling and evaluation of business processes
using a semantic wiki,” in Proceedings of the 17th IEEE International

Conference on Emerging Technologies and Factory Automation ETFA

2012, Kraków, Poland, 28 September 2012, 2012.
[23] K. Kluza, K. Kaczor, G. Nalepa, and M. Slazynski, “Opportunities for

business process semantization in open-source process execution envi-
ronments,” in Computer Science and Information Systems (FedCSIS),

2015 Federated Conference on, Sept 2015, pp. 1307–1314.
[24] K. Kluza, G. J. Nalepa, M. Ślażyński, K. Kutt, E. Kucharska, K. Kaczor,

and A. Łuszpaj, “Overview of selected business process semantization
techniques,” in Advances in Business ICT: New Ideas from Ongoing

Research. Springer, 2017, pp. 45–64.
[25] W. T. Adrian, S. Bobek, G. J. Nalepa, K. Kaczor, and K. Kluza,

“How to reason by HeaRT in a semantic knowledge-based wiki,”
in Proceedings of the 23rd IEEE International Conference on

Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, Florida,
USA, November 2011, pp. 438–441. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6103361&tag=1

[26] J. Mendling, H. Verbeek, B. F. van Dongen, W. M. van der Aalst, and
G. Neumann, “Detection and prediction of errors in epcs of the sap
reference model,” Data & Knowledge Engineering, vol. 64, no. 1, pp.
312–329, 2008.

[27] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in
business process models: the provop approach,” Journal of Software

Maintenance and Evolution: Research and Practice, vol. 22, no. 6-7,
pp. 519–546, 2010.

[28] A. Suchenia, T. Potempa, A. Ligęza, K. Jobczyk, and K. Kluza,
“Selected approaches towards taxonomy of business process anomalies,”
in Advances in Business ICT: New Ideas from Ongoing Research.
Springer, 2017, pp. 65–85.

[29] I. Group et al., “1044-2009-ieee standard classification for software
anomalies,” IEEE, New York, 2010. [Online]. Available: https:
//standards.ieee.org/findstds/standard/1044-2009.html

[30] R. Laue and A. Awad, “Visualization of business process modeling anti
patterns,” Electronic Communications of the EASST, vol. 25, 2009.

[31] S. Kühne, H. Kern, V. Gruhn, and R. Laue, “Business process modeling
with continuous validation,” Journal of Software Maintenance and

Evolution: Research and Practice, vol. 22, no. 6-7, pp. 547–566, 2010.
[32] N. Trčka, W. M. Van der Aalst, and N. Sidorova, “Data-flow anti-

patterns: Discovering data-flow errors in workflows,” in Advanced In-

formation Systems Engineering. Springer, 2009, pp. 425–439.
[33] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of

complex business processes based on high-level petri nets,” Information

Sciences, vol. 385–386, pp. 39 – 54, 2017.

[34] V. S. W. Lam, “Formal analysis of BPMN models: a NuSMV-based ap-
proach,” International Journal of Software Engineering and Knowledge

Engineering, vol. 20, no. 7, pp. 987–1023, 2010.
[35] N. Lohmann and K. Wolf, “How to implement a theory of correctness

in the area of business processes and services,” in Business Process

Management. Springer, 2010, pp. 61–77.
[36] S. A. White, “Process modeling notations and workflow patterns,”

Workflow handbook, vol. 2004, pp. 265–294, 2004.
[37] L. Olkhovich, “Semi-automatic business process performance optimiza-

tion based on redundant control flow detection,” in Telecommunications,

2006. AICT-ICIW’06. International Conference on Internet and Web Ap-

plications and Services/Advanced International Conference on. IEEE,
2006, pp. 146–146.

[38] S. Roy and A. S. M. Sajeev, “A formal framework for diagnostic analysis
for errors of business processes,” in Transactions on Petri Nets and Other

Models of Concurrency XI, M. Koutny, J. Desel, and J. Kleijn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 226–261.

[39] H. Groefsema and D. Bucur, “A survey of formal business process veri-
fication: From soundness to variability,” in Proceedings of International

Symposium on Business Modeling and Software Design. SciTePress,
2013, pp. 198âĂŞ–203.

[40] R. Klimek, “A system for deduction-based formal verification of
workflow-oriented software models,” International Journal of Applied

Mathematics and Computer Science, vol. 24, no. 4, pp. 941–956, 2014.
[41] C. Ou-Yang and Y. D. Lin, “BPMN-based business process model

feasibility analysis: a petri net approach,” International Journal of

Production Research, vol. 46, no. 14, pp. 3763–3781, 2008.
[42] R. Liu and A. Kumar, “An analysis and taxonomy of unstructured

workflows,” in Business Process Management. Springer, 2005, pp.
268–284.

[43] O. Allani and S. A. Ghannouchi, “Verification of BPMN 2.0 process
models: An event log-based approach,” Procedia Computer Science, vol.
100, pp. 1064 – 1070, 2016.

[44] A. Badica and C. Badica, “Formal verification of business processes
represented as role activity diagrams,” in Federated Conference on

Computer Science and Information Systems – FedCSIS 2011, Szczecin,

Poland, 18-21 September 2011, Proceedings, M. Ganzha, L. A. Maci-
aszek, and M. Paprzycki, Eds., 2011, pp. 277–280.

[45] A. Badica and C. Badica, “Fsp and fltl framework for specification
and verification of middle-agents,” Applied Mathematics and Computer

Science, vol. 21, no. 1, pp. 9–25, 2011.
[46] J. Stepaniuk, J. G. Bazan, and A. Skowron, “Modelling complex patterns

by information systems,” Fundam. Inform., vol. 67, no. 1-3, pp. 203–
217, 2005.

[47] D. Xu, K. Xia, D. Zhang, and H. Zhang, “Model checking the incon-
sistency and circularity in rule-based expert systems,” Computer and

Information Science, vol. 2, no. 1, p. 12, 2009.
[48] A. K. Zaidi and A. H. Levis, “Validation and verification of decision

making rules,” Automatica, vol. 33, no. 2, pp. 155–169, 1997.
[49] M. Dohring and S. Heublein, “Anomalies in rule-adapted workflows-

a taxonomy and solutions for vbpmn,” in Software Maintenance and

Reengineering (CSMR), 2012 16th European Conference on. IEEE,
2012, pp. 117–126.

[50] A. Ligęza and G. J. Nalepa, “A study of methodological issues in design
and development of rule-based systems: proposal of a new approach,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-

ery, vol. 1, no. 2, pp. 117–137, 2011.
[51] M. A. Mach and P. J. Kalczynski, “Technique for reducing the number

of rules in a temporal knowledge base.” in BIS, 2006, pp. 442–454.
[52] A. Rachdi, A. En-Nouaary, and M. Dahchour, “Verification of common

business rules in bpmn process models,” in Networked Systems: 4th

International Conference, NETYS 2016, Marrakech, Morocco, May 18-

20, 2016, Revised Selected Papers, P. A. Abdulla and C. Delporte-Gallet,
Eds. Cham: Springer International Publishing, 2016, pp. 334–339.

[53] S. Cheikhrouhou, S. Kallel, N. Guermouche, and M. Jmaiel, “The
Temporal Perspective in Business Process Modeling : An Evaluative
Survey and Research Challenges,” Service Oriented Computing and

Applications, vol. 9, no. 1, pp. 75–85, 2015.
[54] R. Klimek and P. Szwed, “Verification of archimate process specifica-

tions based on deductive temporal reasoning,” in Computer Science and

Information Systems (FedCSIS), 2013 Federated Conference on. IEEE,
2013, pp. 1109–1116.

[55] Y. Du, P. Xiong, Y. Fan, and X. Li, “Dynamic checking and solution to
temporal violations in concurrent workflow processes,” IEEE Transac-

ANNA SUCHENIA (MROCZEK) ET AL.: OVERVIEW OF VERIFICATION TOOLS FOR BUSINESS PROCESS MODELS 301



tions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 41, no. 6, pp. 1166–1181, 2011.

[56] K. Watahiki, F. Ishikawa, and K. Hiraishi, “Formal verification of
business processes with temporal and resource constraints,” in Systems,

Man, and Cybernetics (SMC), 2011 IEEE International Conference on,
2011, pp. 1173–1180.

[57] L. E. Mendoza Morales, C. Monsalve, and M. Villavicencio, “Applica-
tion of formal methods to verify business processes,” in Formal Methods:

Foundations and Applications: 19th Brazilian Symposium, SBMF 2016,

Natal, Brazil, November 23-25, 2016, Proceedings, L. Ribeiro and
T. Lecomte, Eds. Cham: Springer International Publishing, 2016, pp.
41–58.

[58] L. Giordano, A. Martelli, M. Spiotta, and D. T. Dupre, “Business process
verification with constraint temporal answer set programming,” Theory

and Practice of Logic Programming, vol. 13, no. 4-5, pp. 641–655, 2013.
[59] L. E. Mendoza Morales, “Business process verification: The application

of model checking and timed automata,” CLEI Electronic Journal,
vol. 17, no. 2, 2014.

[60] W. M. van der Aalst, A. Hirnschall, and H. Verbeek, “An alternative
way to analyze workflow graphs,” in Advanced Information Systems

Engineering. Springer, 2002, pp. 535–552.
[61] L. Hong and Z. J. Bo, “Research on workflow process structure verifica-

tion,” in e-Business Engineering, 2005. ICEBE 2005. IEEE International

Conference on. IEEE, 2005, pp. 158–165.
[62] H. Lin, Z. Zhao, H. Li, and Z. Chen, “A novel graph reduction algorithm

to identify structural conflicts,” in System Sciences, 2002. HICSS.

Proceedings of the 35th Annual Hawaii International Conference on.
IEEE, 2002, pp. 10–pp.

[63] G.-W. Kim, J. H. Lee, and J. H. Son, “Classification and analyses of
business process anomalies,” in Communication Software and Networks,

2009. ICCSN’09. International Conference on. IEEE, 2009, pp. 433–
437.

[64] E. Börger, O. Sörensen, and B. Thalheim, “On defining the behavior
of or-joins in business process models.” Journal of Universal Computer

Science, vol. 15, no. 1, pp. 3–32, 2009.
[65] Signavio, “Following academic signavio,” http://www.signavio.com/

bpm-academic-initiative/, 2009, accessed: 2017-05-01.
[66] C. Pan, J. Guo, L. Zhu, J. Shi, H. Zhu, and X. Zhou, “Modeling and

verification of can bus with application layer using uppaal,” Electronic

Notes in Theoretical Computer Science, vol. 309, pp. 31–49, 2014.
[67] Basic Research in Computer Science at Aalborg University in Denmark

and the Department of Information Technology at Uppsala University in
Sweden, “Uppaal,” http://www.uppaal.org/, 1999, accessed: 2017-05-01.

[68] G. Rodriguez-Navas, J. Proenza, and H. Hansson, “An uppaal model
for formal verification of master/slave clock synchronization over the
controller area network,” in Proc. of the 6th IEEE International Work-

shop on Factory Communication Systems, Torino, Italy, IEEE Computer

Society Press, Los Alamitos, 2006.
[69] Bell Labs, “Spin,” http://spinroot.com/spin/whatispin.html, 1990, ac-

cessed: 2017-05-01.
[70] W. M. Van Der Aalst, “Woflan: a petri-net-based workflow analyzer,”

Systems Analysis Modelling Simulation, vol. 35, no. 3, pp. 345–358,
1999.

[71] H. M. Verbeek, T. Basten, and W. M. van der Aalst, “Diagnosing
workflow processes using woflan,” The computer journal, vol. 44, no. 4,
pp. 246–279, 2001.

[72] Eindhoven University of Technology, “Woflan – the workflow analyser,”
http://www.win.tue.nl/woflan/, 1998, accessed: 2017-05-01.

[73] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new
symbolic model verifier,” in International conference on computer aided

verification. Springer, 1999, pp. 495–499.
[74] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new

symbolic model checker,” International Journal on Software Tools for

Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.
[75] M. Szpyrka, A. Biernacka, and J. Biernacki, “Methods of translation of

petri nets to nusmv language.” in CS&P, 2014, pp. 245–256.
[76] P. Szwed, “Evaluating efficiency of archimate business processes ver-

ification with nusmv,” in Information Technology for Management.
Springer, 2016, pp. 179–196.

[77] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 334–342.

[78] A. Biernacka, J. Biernacki, M. Szpyrka, T. E. Simos, Z. Kalogiratou,
and T. Monovasilis, “State-based verification of rtcp-nets with nuxmv,”
in AIP Conference Proceedings, vol. 1702, no. 1. AIP Publishing, 2015,
p. 100011.

[79] M. Szpyrka, P. Matyasik, and R. Mrówka, “Alvis – modelling language
for concurrent systems,” in Intelligent Decision Systems in Large-Scale

Distributed Environments, ser. Studies in Computational Intelligence,
P. Bouvry, H. Gonzalez-Velez, and J. KoÅĆodziej, Eds. Springer-
Verlag, 2011, vol. 362, ch. 15, pp. 315–341.

[80] M. Szpyrka, P. Matyasik, and M. Wypych, “Generation of labelled
transition systems for alvis models using haskell model representation,”
in Proceedings of the 22nd International Workshop on Concurrency,

Specification and Programming (CS&P 2013), vol. 1032. Warsaw,
Poland: CEUR Workshop Proceedings, 2013, pp. 409–420.

[81] M. Szpyrka, P. Matyasik, R. Mrówka, and L. Kotulski, “Formal descrip-
tion of Alvis language with α

0 system layer,” Fundamenta Informaticae,
vol. 129, no. 1-2, pp. 161–176, 2014.

[82] T. Szmuc and M. Szpyrka, “Formal methods – support or scientific
decoration in software development,” in Proc. of Mixdes 2015, the

22nd International Conference Mixed Design of Integrated Circuits and

Systems, Torun, Poland, June 25–27 2015, pp. 24–31.
[83] M. Szpyrka, P. Matyasik, J. Biernacki, A. Biernacka, M. Wypych, and

L. Kotulski, “Hierarchical communication diagrams,” Computing and

Informatics, vol. 35, no. 1, pp. 55–83, 2016.
[84] M. Wypych, M. Szpyrka, and P. Matyasik, “Extension of Alvis compiler

front-end,” in International Conference of Computational Methods in

Sciences and Engineering (ICCMSE 2015), ser. AIP Conference Pro-
ceedings, vol. 1702. Athens, Greece: AIP Publishing, March 20-23
2015, pp. 100 015–1–100 015–4.

[85] M. Szpyrka, G. J. Nalepa, A. Ligęza, and K. Kluza, “Proposal of formal
verification of selected BPMN models with Alvis modeling language,” in
Intelligent Distributed Computing V. Proceedings of the 5th International

Symposium on Intelligent Distributed Computing – IDC 2011, Delft, the

Netherlands – October 2011, ser. Studies in Computational Intelligence,
F. M. Brazier, K. Nieuwenhuis, G. Pavlin, M. Warnier, and C. Badica,
Eds. Springer-Verlag, 2011, vol. 382, pp. 249–255. [Online]. Available:
http://www.springerlink.com/content/m181144037q67271/

[86] K. Kluza, G. J. Nalepa, M. Szpyrka, and A. Ligęza, “Proposal
of a hierarchical approach to formal verification of BPMN models
using Alvis and XTT2 methods,” in 7th Workshop on Knowledge

Engineering and Software Engineering (KESE2011) at the Conference

of the Spanish Association for Artificial Intelligence (CAEPIA 2011):

November 10, 2011, La Laguna (Tenerife), Spain, J. Canadas, G. J.
Nalepa, and J. Baumeister, Eds., 2011, pp. 15–23. [Online]. Available:
http://ceur-ws.org/Vol-805/

[87] M. Szpyrka, P. Matyasik, and M. Wypych, “Alvis language with time
dependence,” in Proceedings of the Federated Conference on Computer

Science and Information Systems, Krakow, Poland, 2013, pp. 1607–
1612.

[88] P. Matyasik, “Alvis virtual machine,” in Proceedings of the Federated

Conference on Computer Science and Information Systems, 2014, pp.
1639–1645.

[89] M. Szpyrka, P. Matyasik, L. Podolski, and M. Wypych, Simulation of

Multi-agent Systems with Alvis Toolkit. Zakopane, Poland: Springer
International Publishing, 2017, pp. 599–608. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-59060-8_54

[90] M. Mach-Król, “Tools for building a temporal knowledge base sys-
tem supporting organizational creativity,” Procedia Computer Science,
vol. 65, pp. 1031–1037, 2015.

[91] E. Kucharska, K. Grobler-Dębska, J. Gracel, and M. Jagodziński, “Idea
of impact of erp-aps-mes systems integration on the effectiveness of
decision making process in manufacturing companies,” in International

Conference: Beyond Databases, Architectures and Structures. Springer,
2015, pp. 551–564.

[92] E. Dudek-Dyduch, E. Kucharska, L. Dutkiewicz, and K. Rączka, “Almm
solver-a tool for optimization problems,” in International Conference on

Artificial Intelligence and Soft Computing. Springer, 2014, pp. 328–
338.

[93] E. Kucharska, K. Grobler-Dębska, and K. Rączka, “Almm-based meth-
ods for optimization makespan flow-shop problem with defects,” in
Information Systems Architecture and Technology: Proceedings of 37th

International Conference on Information Systems Architecture and

Technology–ISAT 2016–Part I. Springer, 2017, pp. 41–53.

302 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017


