
Virtual Laboratory Based on Node.js Technology
and Visualized in Mixed Reality Using Microsoft

HoloLens
Erich Stark, Pavol Bisták, Erik Kučera, Oto Haffner and Štefan Kozák

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava

Bratislava, Slovakia
Email: erich.stark@stuba.sk, erik.kucera@stuba.sk

Abstract—The paper demonstrates remote control of test
experiment in the virtual laboratory. This is a common problem,
but another way can always be used to solve it. The paper
compares several existing virtual laboratories and their possible
issues at present. To develop such a new solution JavaScript
technology was used on both client and server side using Node.js
runtime. The modern approach is a visualization of received data
in mixed reality using Microsoft HoloLens or another compatible
device with Windows Mixed Reality platform.

I. INTRODUCTION

P
RACTICAL exercises in the laboratory are an important
part of the process of training people with technical back-

ground in general. Ancient Chinese philosopher Confucius
once said: "Tell me, and I will forget. Show me, and I may
remember. Involve me, and I will understand" [1]. We know
from experience that man can learn in the fastest way when he
tries things several times, and after that, he understands how it
works. Unfortunately, you cannot always provide direct access
to real devices to perform the experiment for researchers or
students. There may be several issues: the higher price of
laboratory equipment, workplace safety (depending on the
experiment), or lack of qualified assistants.

In recent years, the development of virtual machines has in-
creased mainly due to the technological evolution of software
engineering. The progress of modern technology gives us the
better approach to solve new challenges while creating whether
the virtual systems for online teaching or specific virtual
laboratories where physical processes can be simulated. In ex-
periments conducted in a virtual environment, it is possible to
share resources of this environment for more connected users
who want to perform the same experiment, which would not
be possible on our computers. This makes virtual laboratory a
good complement to study whether research, where you can
try different variations of the experiment without risk to health
or destruction of the device. Later, experiments can be tested
on real devices, if necessary.

II. VIRTUAL LABORATORIES

At the time when the Internet was not yet widespread in
use, the experiments were done in real laboratories. It was

Fig. 1. The difference between a face-to-face and remotely controlled
experiments

important to keep on with different safety regulations to the
possibility of personal injury or damage to equipment.

Distance and lack of financial resources make real exper-
iments difficult to perform, especially in cases where it is
necessary to have some advanced and sophisticated tools.
Another encountered problem is the lack of good teachers.
Although at present there are already online courses that
provide instructional videos, but it solves the problem only
partially. Thanks to internet experiments can be structured
for visualization and control remotely. Nowadays, a lot of
equipment already provides an interface to connect computer
and process data from it. Experimenting over the internet
allows the use of resources, knowledge, software and data
when physical experiments cannot [2].

In this paper, we discuss the creation of virtual laboratory
(VL). Before we describe the list of technologies to create
VL, we must explain what we consider under VL. Generally,
we can say that VL is a computer program, where students
interact with the experiment by the computer via the Internet
as it is depicted in the Fig. 1.

A typical example is the simulation experiment, where
the student interacts with the web/app interface. Another

Communication papers of the Federated Conference on
Computer Science and Information Systems, pp. 315–322

DOI: 10.15439/2017F313
ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 315

TABLE I
COMPARISON OF REAL, VIRTUAL AND REMOTE LABORATORIES [3]

Laboratory Type Advantages Disadvantages

Real real data, interaction
with real experiment,
collaborative work, in-
teraction with supervi-
sor

time and place restric-
tions, requires schedul-
ing, expensive, supervi-
sion required

Virtual good for concept ex-
planation, no time and
place restrictions, in-
teractive medium, low
cost

idealized data, lack of
collaboration, no inter-
action with real equip-
ment

Remote interaction with real
equipment, calibration,
realistic data, no time
and place restrictions,
medium cost

only "virtual presence"
in the lab

possibility is a remote-controlled experiment where the student
interacts with the real device via the computer interface,
although he can be far away. This is the case when a virtual
laboratory turns into a remote laboratory.

When the web excludes the second option, so we have the
following definition: "We call it a virtual laboratory where
the student interacts with the experiment, which is physically
at distant from him or her and not to demand any physical
reality".

After explaining what is VL, look at the benefits they can
bring. They are described in the Table I.

People often think that the main benefit of a virtual labora-
tory is to replace the real one. But it is not. You cannot replace
the experience of the real work with the VL. Although VL is
better than no experience. VL should not be seen as providing
the maximum possible interaction experience.

A. Existing solutions

There are currently many different virtual and remote labo-
ratories, which are used by foreign universities for teaching or
research. This paper briefly reviews often used laboratories that
are accessible over the Internet. A comparison of functionality
and the use of technology can be seen in the Table II,
where different virtual laboratories created in the world are
summarized.

There are also some from our Faculty of Electrical En-
gineering and Information technology, Slovak University of
Technology in Bratislava in the Table III.

B. Disadvantaged of existing solutions

At the beginning of the design of a virtual laboratory,
it was appropriate to examine the possibilities of existing
solutions. Avoiding various design issues is important. Alter-
natively, technologies that have been used are already outdated.
Nowadays, the development of new technologies is incredibly
fast. Such an analysis of existing solutions we have done
in the previous section. Our aim was to create a cross-
platform solution using one programming language on client
and server side, which cannot be done with WCF or COM
technology as in the previous solutions. JMI is only suitable for

TABLE II
COMPARISON OF VIRTUAL LABORATORIES CREATED OUTSIDE OF FEI

STU [4]

Name of VL Client technol-

ogy

Server technol-

ogy

Simulation

software

Weblab-
DEUSTO

AJAX, Flash,
Java applets,
LabVIEW,
Remote panel

Web services,
Python,
LabVIEW,
Java, .NET, C,
C++

Xilinx-
VHDL,
LabVIEW

NCSLab AJAX, Flash PHP Matlab,
Simulink

ACT HTML, Java ap-
plets

PHP Matlab,
Simulink

LabShare
Sahara

AJAX, Java ap-
plets

Web services,
Java

Java

iLab HTML, Active
X, Java applets

Webservices,
.NET

LabVIEW

RECOLAB HTML PHP Matlab,
Simulink

SLD AJAX, HTML Web services,
PHP

Matlab,
Simulink

TABLE III
COMPARISON OF VIRTUAL LABORATORIES CREATED AT FEI STU [5]

Year Author Simulation
software

Data flow Client
technol-

ogy

Server
technol-

ogy

2011 R.
Farkas

Matlab,
Simulink,
Real
device

JMI Sock-
ets

Java Java

2012 T.
Borka

Matlab,
Simulink,
Real
device

WCF .NET,
WPF

.NET

2014 M.
Kun-
drat

Matlab,
Simulink

JMI,
SOAP

HTML, JS Tomcat,
Java JSF,
EJB3,
MySQL

2014 T. Cer-
veny

Matlab,
Simulink

JMI,
HTTP

HTML, JS Jetty, Java

2015 S.
Varga

Matlab,
Simulink

COM,
HTTP

HTML, JS .NET,
PHP

solutions where Java platform is used. The server cannot also
be used with LabVIEW technology or .NET (multi-platform
version - .NET core is already under development). Client
solutions such as Flash, ActiveX and Java applets are no longer
supported in browsers, so their use is not appropriate.

C. Components of virtual laboratory

There are plenty of existing laboratories, but usually, it is
not possible to guarantee compatibility between them, because
there is not a solid standard. Anyway, it is always possible to
identify the basic components that virtual laboratories can use.
Some of them can be even used more times.

Components:

• The experiment itself
• The device with possibility to control and acquiring data
• Laboratory server, which provides control, monitoring

and data processing of the experiment

316 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 2. Design of communication between components

• Server providing connection between remote users and
laboratory server, usually via the internet

• Web camera connected to a server, which can be used
for remote user as a visual and audible feedback on the
actual status of the experiment

• Tools enabling multi-user audio, video and chat commu-
nication

• Client software controlling and representing data of the
experiment [6]

It is important to realize which of these components could
be used, because for a creation of a virtual laboratory it is
not necessary to have them all. Alternatively, others that are
perfectly suited for a role can also be used. Sometimes it is
used e.g. database server if experiments will be stored and
processed later. It is also important to realize what type of VL
we want to create. Certainly, differences will be in the design
of single-user as opposed to multi-user VL, even with multiple
experiments simultaneously. It should bear in mind as properly
solve the scalability, potential safety issues, multi-user access
and other possible issues.

III. ARCHITECTURE PROPOSAL

As the main component, Node.js was selected. It is the
server which handles communication between components of
VL. The parts of architecture will be explained based on Fig.
2. The data are fetched periodically from Simulink into Matlab
workspace. In the beginning, it was not sure whether it would
be possible to achieve to run multiplatform soft real-time
Simulink based simulations. Because only Windows based
solution was found directly from MathWorks. For our solution
Real-Time Pacer [7] was used that allows us to run simulations
in soft real-time even under MacOS or Linux. It is used to slow
down the simulation to the soft real-time.

To communicate with RESTful web service Matlab R2015a
uses the built-in rarely used function webread and webwrite

[8]. Firstly, the simulation must be run through the web

browser, after that data will be transferred over socket.io
library channel. These data will be shown in the graph of
the web browser, and it is possible to save them to MongoDB
database for later processing (Fig. 2).

A. Reference simulation model

For a development purpose, we used the simulation of
the dynamic system called projectile motion implemented in
Simulink that runs through the web interface. This simulation
needs to be run with two files. The purpose of the first is the
initialization of variables needed to calculate the coordinates
of the point. This experiment has three parameters. The first
and second parameter are initial values for simulation. The last
parameter userFromWeb is not necessary for simulation itself,
but it is important to identify the user who runs the simulation.
This makes it possible to assign the simulation results in later
processing from the database.

B. Experiment handler

The second Matlab file is a handler code sending the data
to Node.js. Because of its length of implementation, it is not
possible to display the whole source code, so we describe only
the key part.

During initialization, the URL path is set for Express.js
REST API where Matlab will send the data.

The model is preloaded using the Matlab function
load_system(’projectile_motion’). This function searches in
the current folder for projectile_motion.mdl file and sets it
as the top-level model. After this initial settings, simulation
must be run using the command set_param(model, ’Simula-

tionCommand’, ’Start’).
In the next block of the Matlab code, it is running an

infinite while loop that makes possible to collect data from the
simulation to the state until it is complete. Inside of the while
loop the function set_param(model, ’SimulationCommand’,

’WriteDataLogs’) is called, which is looking for the current
top-level simulation. In the soft realtime the calculated data
are written to the Matlab workspace. Without that function,
data would be written only after the simulation ends.

Meanwhile, it is necessary to prepare required format of
data for the web service. Thus, before sending them to the
REST API, it is suitable to wrap data to the JSON structure.
We used the Matlab library JSONlab v1.2 [9].

A sequence of these two commands is required to cre-
ate the desired JSON format and send it to Express.js
API. Create JSON with the command json = savej-

son(’result’, struct(’user’, userFromWeb, ’status’, ’Running’,

’data’, struct(’time’, timeFinal, ’you’, vyFinal, ’y’, yFinal, ’x’

xfine))) and transfer it to the service with response = webwrite

(URL, JSON, options).
The command get_param(model, ’SimulationStatus’) is

used to check current status of the simulation. If the simulation
is still running the status is "running". As soon as the status

is "stopped", the loop needs to be stopped using the break

keyword and we know that all data is transferred to Node.js.

ERICH STARK ET AL.: VIRTUAL LABORATORY BASED ON NODE.JS TECHNOLOGY 317

Fig. 3. Start Matlab in command line using shell.js library

C. Communication between components

One of the aspects of the individual components of the
laboratory is communication. Although in each component
communication works differently, it is still based on the HTTP
protocol.

The sequence diagram in the Fig. 6 shows that commu-
nication starts from the web browser. The user inserts the
parameters of simulation, which are sent to StarkLab via the
REST web service. This service starts Matlab on the current
operating system with the necessary files and simulation pa-
rameters. Meanwhile, the user waits until Matlab starts in the
background. Simulation is immediately initialized and starts
sending data to StarkLab, which sends them directly to the
web client from where the simulation has been originated.
All the received data will be reflected in the chart, animation,
and table in the web browser. This sequence is repeated until
the condition contains SimulationStatus == "running". After
stopping the simulation, the client sends a request to save
data through StarkLab directly into the document database
MongoDB.

D. Run Matlab from command line

In the beginning, it was not clear how to run the simulation.
It was necessary to determine whether Node.js allows to carry
out the commands of the operating system, respectively run
programs. The simulation was working in such a way that
the Matlab was opened manually and we put there all the
necessary initialization files, then the simulation itself. But this
solution is not sufficient in terms of automation and autonomy.

It has been found that Node.js can launch any software that
can run through the terminal. To simplify this workflow the
shell.js library [10] was used which provides such an option.

The sample of code in the Fig. 3 shows how Matlab
is started via Node.js route http://localhost/matlab/run. This
route is called immediately after the form was sent with initial
parameters of the experiment from the web browser.

IV. REMOTE CONTROL OF EXPERIMENT

A. Web client created with Angular framework

Client application was created with the JavaScript frame-
work Angular [11] (version 1.5.5). The role of the web client
was to verify the functionality of the server that sends sim-
ulated data. The functionality has been verified, and screens
will be described specifically.

Fig. 4 shows login page for web client application. It is
authenticated against LDAP server of Slovak University of
Technology.

Fig. 4. Login to web application

Fig. 5. Parameters of simulation / initial velocity and angle in degrees

The details of the login process via LDAP is not interesting
for this part of the paper. After successful login, the dedicated
page for the tested experiment is showed. Our experiment
was projectile motion. It takes two parameters to run a
simulation. On Fig. 5 it can be seen the form that takes
two parameters to run a simulation. The page is redirected
to http://localhost/matlab route, where the user is waiting to
see the data from Node.js REST API.

It redirects to the dashboard page, and the user has to wait
until the start of Matlab simulation. When it starts, the user
will see new data coming to graph, animation, and table in
his web browser. This part could be accelerated by a powerful
server running with Matlab.

Visualization of the received data is done by Chart.js
library on Fig. 7. Our implementation of chart was created
using Angular directive with name <ui-graph></ui-graph>.
Because of this approach (the usage of Angular components),
it can be used multiple times with the same codebase.

In the beginning, it is necessary to get an element from
DOM (Document Object Model) tree. Next step is to obtain
canvas context and create the object with initial data.

The plotted data at the bottom of the picture is identical
to the data in the graph. The difference is in the way of
implementation as animation. This animation was created
using HTML Canvas technology.

318 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 6. Communication between components

Fig. 7. Graph and Animation of projectile motion in [x, y] position

The last section, where the data can be seen is a table where
data were added over time as well as chart and animation
before. In this table Angular databinding [11] is used to set
received object as one row with their properties. As simulation
runs, the Angular adds new rows to table dynamically.

This system is not only about the real-time rendering of

Fig. 8. Table data / time, x, y, vy values of projectile motion experiment

ERICH STARK ET AL.: VIRTUAL LABORATORY BASED ON NODE.JS TECHNOLOGY 319

Fig. 9. Table of saved simulation for currently logged user

data, but also for later viewing and processing of them. On the
site of simulations, we can see all the entries for the currently
logged in user - Fig. 10. The list is obtained from MongoDB
using Angular $http.get(url, callback) function from web client
to our Node.js server, which can have access to database.

When the one of the results is opened, the output looks the
same as in Fig. 7, but it is possible to set data sampling and
time of simulation. The second option is about time rendering.
There are two options: to see data output immediately or soft
real-time as it was firstly run.

V. SUMMARY OF EXPERIENCE WITH THE CREATION OF

MATLAB-NODE.JS VIRTUAL LABORATORY

After the experience with this kind of development, we
assess that the creation of virtual laboratory platform on
Node.js development was easier thanks to the use of JavaScript
on the server and client side. We thought that due to the
single thread loop of Node.js would handle more clients and
simulations than the similar solution on a different platform.
The problem was not in many of registered users, but only
when we run multiple simulations in Matlab. In our test
computer - MacBook Pro there was already a problem with
two parallel simulations. It can be improved using a powerful
server for Matlab calculations.

The work is not over yet and StarkLab can be extended with
another interesting functionality such as the creation of the
unified protocol for data interchange. Suitable would also be
interfaces for other calculation and simulation software. Mat-
lab deployment on a separate server with an available domain
would help to availability. Another interesting functionality
would be uploading simulation and calculation scripts through
a web interface.

The current solution is not possible to deploy into produc-
tion without certain modifications and integrations, but it might
serve as a solid basis for adding new features. There are many
ways to improve this solution.

All code is open source and available at
https://github.com/erichstark/.

VI. VISUALISATION OF VIRTUAL LABORATORY IN MIXED

REALITY

Modern forms of education are now realized on the basis
of the development of new ICT technologies (e.g. interactive
applications made in 3D engine [12], virtual reality or mixed
reality). Visualisation of process modelling, identification and
control of complex mechatronic systems, elements and drives
using virtual and mixed reality allows students to get a
much better and quicker understanding of the studied subject
compared to conventional teaching methods.

A. Introduction to mixed reality

Nowadays, there is a trend of using interactive 3D applica-
tions and virtual reality in many prestigious universities.

Very interesting project is a virtual clinic [13]. This project
is supported by the University of Miami or Charles R. Drew
University of Medicine and Science in Los Angeles. This
interactive application offers an insight into the actual func-
tioning of a larger clinic, and they can also try to diagnose
patients. Students are thus trained through a real experience
with the health system, but this complex system is modelled
and simulated in virtual reality.

There are also interactive applications from Animech Tech-
nologies. This company offers many education modules like
Virtual Car, Virtual Truck or Virtual Gearbox [14]. Using
these applications students can understand the functioning of
mentioned devices and they can look into their interior and
detach their individual components in detail.

An absolute novelty is Microsoft HoloLens [15], the arrival
of which has led to the emergence of a completely new
segment of mixed reality. Mixed reality has unquestionable
advantages over virtual reality, as the user perceives a real
world and also a virtual world in the same time. The use of
this feature is in practice undisputed and it is assumed that
mixed reality will become a new standard in many areas such
as education, marketing, modeling of complex mechatronic
systems, etc.

For Microsoft HoloLens there are more education applica-
tions.

Application HoloTour [17] provides 360-degree spatial
video of historical places like Rome or Peru. The application
complements 3D models of important landmarks that have not
been retained or supplementary holographic information about
elements in the scene.

Application HoloAnatomy [18] allows interactive education
of anatomy of the human body. The advantage is that if the
application is used by more users in the same time, everyone
sees the same model of a part of the human body. This allows

320 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 10. Microsoft HoloLens - mixed reality application (Volvo) [16]

Node.js virtual
laboratory

Unity application in
HoloLens

UDP stream

Fig. 11. Scheme - visualisation of virtual laboratory in mixed reality
developed in Unity

an interaction between students that results in a significant
multiplier education effect.

From technical fields there is an application called Holo-
Engine [19]. This application allows understanding of the
complex 3D mechanical structures of the combustion engine.
The application allows you to see the engine in the air, start
it and even look inside it and closely monitor the mutual
interaction of the mechanical parts.

B. Virtual laboratory in mixed reality

For development Unity engine was used. Proposed Unity
application for Microsoft HoloLens brings a visualisation of
results from described Node.js virtual laboratory in mixed
reality. By this application, students get better insight into the
results of the experiment.

It was needed to connect Unity application with Node.js
laboratory. There is a free library for Unity called Socket.IO
for Unity [20] which was used in the proposed application.

In Fig. 12, it is possible to see the results from the virtual
laboratory in Unity engine. The application was deployed on
Microsoft HoloLens. The results in mixed reality you can see
in Fig. 13.

VII. CONCLUSION

After the experience with this kind of development, we
assess that the creation of virtual laboratory platform on
Node.js development was easier thanks to the use of JavaScript
on the server and client side. We thought that due to the
single thread loop of Node.js would handle more clients and
simulations than the similar solution on a different platform.
The problem was not in many of registered users, but only

Fig. 12. Results from virtual laboratory in Unity engine

Fig. 13. Results from virtual laboratory in mixed reality (Microsoft HoloLens)

when we run multiple simulations in Matlab. In our test
computer - MacBook Pro there was already a problem with
two parallel simulations. It can be improved using a powerful
server for Matlab calculations.

The work is not over yet and StarkLab can be extended
with another interesting functionality such as the creation of a
unified protocol for data interchange. Suitable would be also
interfaces for other calculation and simulation software. Mat-
lab deployment on a separate server with an available domain
would help to availability. Another interesting functionality
would be uploading simulation and calculation scripts through
a web interface.

The future work will also focus on additional development
for Windows Mixed Reality platform and Microsoft HoloLens
headset.

ERICH STARK ET AL.: VIRTUAL LABORATORY BASED ON NODE.JS TECHNOLOGY 321

The source code of the virtual laboratory is available as
open source at https://github.com/erichstark/.

ACKNOWLEDGMENT

This work has been supported by the Cultural and Educa-
tional Grant Agency of the Ministry of Education, Science,
Research and Sport of the Slovak Republic, KEGA 030STU-
4/2015 and KEGA 030STU-4/2017, by the Scientific Grant
Agency of the Ministry of Education, Science, Research and
Sport of the Slovak Republic under the grant VEGA 1/0937/14
and VEGA 1/0819/17 and by the Tatra banka Foundation
within the grant programme Quality of Education, project
No. 2016vs046 (Support of education in mechatronics through
virtual reality).

REFERENCES

[1] R. R. Wright, “Using 3 dimensional simulation in nursing education,”
in 43rd Biennial Convention (07 November-11 November 2015). STTI,
2015.

[2] V. team. (2016) The philosophy of virtual laboratories. [Online].
Available: http://vlab.co.in

[3] Z. Nedic, J. Machotka, and A. Nafalski, Remote laboratories versus
virtual and real laboratories. IEEE, 2003, vol. 1.

[4] I. Santana, M. Ferre, E. Izaguirre, R. Aracil, and L. Hernandez, “Remote
laboratories for education and research purposes in automatic control
systems,” IEEE transactions on industrial informatics, vol. 9, no. 1, pp.
547–556, 2013.

[5] E. Stark, “Virtual laboratory using javascript on the server side (in
slovak),” Master’s thesis, Slovak University of Technology in Bratislava,
2016.

[6] L. Gomes and S. Bogosyan, “Current trends in remote laboratories,”
IEEE Transactions on industrial electronics, vol. 56, no. 12, pp. 4744–
4756, 2009.

[7] G. Vallabha, “Real-time pacer for simulink,” The MathWorks, Inc,
vol. 21, 2010.

[8] M. team. (2017) Web access. [Online]. Available: https://www.
mathworks.com/help/matlab/internet-file-access.html

[9] Q. Fang. (2016) Jsonlab: a toolbox to encode/decode json
files. [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/33381-jsonlab--a-toolbox-to-encode-decode-json-files

[10] Contributors. (2017) shell.js. [Online]. Available: https://github.com/
shelljs/shelljs

[11] M. Hevery and team. (2016) Angular framework. [Online]. Available:
http://angularjs.org

[12] Triseum. (2017) Variant: Limits. [Online]. Available: https://triseum.
com/calculus/variant/

[13] D. Parvati, W. L. Heinrichs, and Y. Patricia, “Clinispace: a multiperson
3d online immersive training environment accessible through a browser,”
Medicine Meets Virtual Reality 18: NextMed, vol. 163, p. 173, 2011.

[14] A. Technologies. (2014) Virtual gearbox. [Online]. Available: http:
//www.animechtechnologies.com/showcase/virtual-gearbox/

[15] P. A. Rauschnabel, A. Brem, and Y. Ro, “Augmented reality smart
glasses: definition, conceptual insights, and managerial importance,”
Working paper, The University of Michigan-Dearborn, Tech. Rep., 2015.

[16] E. Uhlemann, “Connected-vehicles applications are emerging [connected
vehicles],” IEEE Vehicular Technology Magazine, vol. 11, no. 1, pp. 25–
96, 2016.

[17] M. Corporation. (2017) Holotour. [Online]. Available: https://www.
microsoft.com/en-us/hololens/apps/holotour

[18] S. Prajapati, E. Madrigal, and M. T. Friedman, “Acquisition, visualiza-
tion and potential applications of 3d data in anatomic pathology,” 2016.
doi: 10.15190/d.2016.15

[19] 360world Europe Kft. (2016) Holoengine. [Online]. Available:
https://www.microsoft.com/en-us/store/p/holoengine/9nblggh4wkh9

[20] F. Panettieri. (2014) Socket.io for unity. [Online]. Available: https:
//www.assetstore.unity3d.com/en/#!/content/21721

322 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

