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Abstract—This document presents a novel method for visual
representation of mutual objects location (relative to each other)
in 3D. The motivation and inspiration for such a work come
from chromosome territory (CT) adjacency analysis. This paper
describes: the idea of the cone of sight (CoS ), with an explanation
of the origin of such approach; the way a mathematical model of
CoS was build and a process of a space segmentation with CoSes.
Next, the way how distance-profile chart (DPC ) is designed and
created was described and finally, DPCs on the exemplary dataset
was presented. Finally, some conclusions were formulated.

I. INTRODUCTION

E
VERY DAY we assess where different objects are sit-

uated around us, and in which distance they are. In

fact, this is a basis that allows us to live and move – by

perpetual environment observation, we can notice any change

in surrounding world. Then, in dependency on the situation,

we can take a proper, adequate to a situation action: either we

can come closer (e.g. to take something) or make a step back

to avoid injury. For orientation in an environment (navigation)

– determination of direction and distance in which any object

is situated humans for ages used rhumb (marine navigation)

[1], the wind rose or – so do now we use the clock-related

method. It is the easiest way to instruct someone saying "It is

on your four, in 2 meters distance" or during outdoor activity

– "It is to the south-east of you, in 15 meters distance". This

works, but only in 2D. We do not have either a 3D wind rose

or 3D clock to determine direction when we want to orient

in a 3D space.

A. Motivation and background

When we started to work on chromosome territory (CT) [2]

modeling algorithm and application for model visualization [3]

we did not assume that it will result in further methodological

and algorithmic problems (others that concerns only model

itself). But, when finishing Chromosome Territory Modeler

(ChroTeMo) and Chromosome Territory Viewer (ChroTeVi)

[3] subsequent question appears: OK, so we have a proba-

bilistic 3D model of chromosome territory for certain species.

Such a model can be visually analyzed and compared by

the human to the photos from FISH microscopy using chro-

mosome paintings method, but . . . how can we automate and

objectify adjacency analysis of certain chromosomes, pairs of

chromosomes or chromosome arms? Although at first sight it

seems to be practically impossible, or at least difficult – an

author decided to try to cope with that problem, and results

of the first attempt are described and shown in this paper.

Fig. 1. Visualization of CT’s with the use of ChroTeVi Model based
on human species data.

This paper describes attempts of developing a method that

allows automatically, in a reproducible and objective way get

an answer to the question: which CT’s (visualized as groups

of spheres (see Fig. 1) are nearest to a given chromosome

territory. How distant a surrounding objects are? Is a territory

occupied by the cloud of a green spheres nearest to territory

occupied by the red or rather by the orange ones (in 3D

of course)? How near or how far they are? How they are

situated in relation to each other? The first idea was to use

some projection methods – but in that way, some information

has been lost. There were also an attempt to make use of

the Hausdorff distance to calculate distance among CT’s. The
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Hausdorff distance (HD ) was computed according Eq. 1 ([5],

p.150) (for the two sets, A and B, where x ∈ A, y ∈ B):

Hdist(A,B) = max(lim sup(dist(x,B), lim sup dist(y,A)))
(1)

From my initial experiments, it looks that this method gives

acceptable results with objects (approximated by the cloud of

3D points) with less complicated shape than CT’s territories,

so results of using HD were not satisfactory. I also take a look

at octree [4] (quadtree in 3D): this approach gives detailed and

complete 3D space segmentation, but does not give intuitively

imaginable description of direction where other objects are

located in relation to a given object. Moreover, method itself

is not easy to follow by non-tech/IT person – CT analysis are

to be developed for life scientists as a target group. This led

to the necessity of rethinking this problem in a different way.

B. Shaft of Light and The Cone of Sight idea

The idea of cone of sight was inspired by the shaft of

light (a lighthouse or a torch). When you are in the dark

and turn on the torch, pointing the light in a certain direction

(for example to the left in relation to you), then you can see

objects in the shaft of light. Then you can assess if at all, and

how distant different objects are to the left of you. Directing

the light in different directions (left, right, up, down, front,

rear) allows you to explore entire space around you. This able

you to make a kind of a "mental image" – the "map" of objects

and their location in your surrounding.

To use this idea, developing a mathematical model of a shaft

of light was necessary. The shaft of light has a shape that is

similar to a cone (see Fig. 2): consists of a single point at the

beginning and staying wider when far away.

The cone, as a solid block known from stereometry (solid

geometry), cannot be described with the equation. The desir-

able solution for computational purposes would be the solution

that allows writing conical-like shape in a form of equation.

The solution came from analytical geometry: the conical

surface [6] is one of the quadratic surfaces and can be

described with a mathematical equation. Thus, the interior of

space, limited by and located inside a conical surface could be

considered as an appropriate model of the interior of the shaft

of the light, suitable for computational purposes.

II. MATHEMATICAL MODEL OF THE CONE OF SIGHT

Conical surface is known as a family of lines, crossing

at a certain point and tangent to the sphere (see Fig. 2). The

equation of conical surface can be derived as a set of lines

that are tangent to a certain shape (base – often circular)

and crossing one point (the cone vertex). For the purpose of

this paper, the base is circular, i.e., it is a circle made by

a cross-section of the sphere by the plane that passes through

a diameter.

So, when there is a need to cover 3D space around fixed

object(point) with a certain set of cones, it is enough to have

a set of spheres basing on which a certain cone equation could

be derived. The problem of covering space with spheres is

Fig. 2. Conical surface construction. Conical surface as a surface created
by lines, crossing by a fixed point and tangent to the given sphere

known as "sphere packing" ([7], [8]) and will not be discussed

here further.

To uniquely define a sphere in 3D you have to know

the coordinates of the center of the sphere and the radius

of this sphere. The coordinates of the additional point, that

will become vertex should also be known. This point is also

assumed to be the center of the given object, in relation

to which we want to determine a relative position of other

objects. For the purpose of this work, it is assumed that this

point is a geometrical center of a given object – in general.

In the case of CTs, the centromere is regarded as center of

chromosome. To simplify calculation it is also assumed that

the center of object is the vertex of conical surface and is the

center of the coordinate system O(0, 0, 0). The equation of

any sphere, with the center in (a, b, c) and radius R is shown

on Eq. 2:

(x− a)2 + (y − b)2 + (z − c)2 = R2 (2)

For a given sphere (or set of spheres) with a center in a point

(a, b, c) and a radius R, it is possible to derive the equation

of a desirable conical surface (with a vertex in a given point).

A parametric equation of a line in 3D space, crossing a point

P0(x0, y0, z0) has the following form:






x = x0t

y = y0t

z = z0t

(3)

where t is a parameter.

If point P0 belongs to the line that is also tangent to

the sphere, then both equations those of the sphere and the line

have to been fulfilled. So:

(x0 − a)2 + (y0 − b)2 + (z0 − c)2 = R2 (4)
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Fig. 3. Cones of sight that are located alongside axes.

Substituting equation 3 to the equation of the sphere 4, after

making some transformation (according [9], p. 227) we have

a conical surface equation derived (Eq. 5):

(−2ax−2by−2cz)2−4(x2+y2+z2)(a2+b2+c2−R2) = 0
(5)

With the inequality (Eq. 6) it is possible to determine which

certain points in 3D space are outside or inside the conical

surface. A certain point with coordinates (x, y, z) will be

inside conical surface if and only if its coordinates will

conform (satisfy) Eq. 6.

(−2ax−2by−2cz)2−4(x2+y2+z2)(a2+b2+c2−R2) ≥ 0
(6)

This is all we need to make 3d space segmentation, and

after segmentation we can check which objects are in which

space segment represented by a (CoS ).

This approach was used by the author to create a set of

cones, that allows to segment 3D space into precisely defined

sectors (representing directions). Those sectors will be further

refereed to as Cone of Sight (CoS ), and the process of dividing

3D space into cones will be refereed to as conification. Conifi-

cation itself does not ideally cover the space – there are "gaps"

between conical surfaces. Additional procedure that allows to

assign yet unassigned points to the certain CoS is described

later in this paper altogether with discussion of coverage

during conification. In this paper the most intuitive (and thus

relatively easy to understand) conification was used: CoSes

were placed alongside axes in 3D Cartesian coordinate system

(see Fig.3), with top of all cones placed at the beginning of

this system, in the point O(0, 0, 0).
Then, there will be six CoSes (see also Fig. 3 and 5):

• OX+ (relative direction: right),

• OX- (relative direction: left),

• OY+ (relative direction: front),

• OY- (relative direction: rear),

• OZ+ (relative direction: up),

• OZ- (relative direction: down).

Each CoS represents direction in which someone can look

at. To be able to uniquely determine to which CoS a certain

point belongs the only thing is to substitute a given point

coordinates to the equation of the conical surface (Eq. 6) and

check whether it fulfills the inequality.

if CoS_eq(x_p,y_p,z_p)<=0:

p inside CoS

else:

p outside CoS

The number of required comparison, at these stage of seg-

mentation, equals (number of points times number of CoSes).

After this procedure, some of the points may still reside

outside any CoS. As you can see on Fig. 3 CoSs itself does

not fulfill space entirely, there is a little space in between

them. Anyway, we have to have all points (of all objects)

being allocated to CoS. To solve this problem, the topological

measure (known as the distance from the point x to the set A

([5], p.140)) was used (Eq. 7):

dist(x,A) = lim inf |x− a|, a ∈ A (7)

Points that remain unallocated after conification process

are then allocated to the nearest CoS according mentioned

measure (Eq. 7).

It was interesting how many points are conified and how

many have to be assigned using additional, mentioned above

measure. To check coverage of conification, a set of testing

sets (with different number of points) were prepared. They

were a spherical 3D sets generated with the normal or unified

distribution. Percentage of points assigned in conification step

and in the second (as distance between point and the set) step

is shown in Tab. I.

It is easily to notice that during conification 76-81 % of points

are assigned to CoSes, so 19-24 % have to be assigned using

measure defined by the Eq. 7 to reach full conification. It

can be also seen that most of the points were assigned during

the first step. The assignment made during the second step

assure us, that no point remains unallocated.

So, having uniquely segmented 3D space (or – thinking

in categories of the shaft of light – everything visible inside

a shaft) – we can go into checking what is inside this certain

shaft (CoS ) (what can be "seen" inside). After full conification

(conification and assignment of remaining points to the nearest

CoS ) each point Pi is characterized by the set of parameters

Pi(xi, yi, zi, objid, CoSid). Therefore we can subset all points

grouping them by CoSid.

Having sets of points located in a certain CoS ’s (segment

of space) we are able to state which objects can be seen in a

predefined part of a space (CoS ) around given object. When

a set of points is limited only to points being inside CoS,
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TABLE I
NUMBER OF CONIFIED POINTS (SPHERICAL SET WITH UNIFORM AND

NORMAL DISTRIBUTION WITH DIFFERENT NUMBERS OF POINTS). THE

LOWEST IS IN italics, THE HIGHEST IN BOLD

.

distribution no of points conified remaining

n
o
rm

al

1000 77% 23%
2000 76% 24%
5000 77% 23%
7500 76% 24%

10000 76% 24%

u
n
ifi

ed

1000 81% 19%
2000 81% 19%
5000 81% 19%
7500 80% 20%

10000 80% 20%

then it is easily to compute the less and the most distant

points of a given object inside certain CoS. It is also possible

to state (e.g. in percent), which part of points representing

object are inside. Therefore, all the data necessary to make

"a mental map" (mentioned in section I-B) of any object

(with its surrounding) is present. Those (often numerous) data,

although contains all information necessary to make adjacency

analysis can be stored in a tabular form, but this is not easy

to review format by humans. Humans have visual perception

stronger than any other sense, so decision to present those

relationships in visual form was taken. However, in some

applications (e.g. computer vision) storing and processing this

data in a form of a table or array can be more useful.

III. CONSTRUCTING DISTANCE-PROFILE CHARTS (DPCs )

In this section the idea and details of distance-profile chart

will be presented. After conification process, the following

information concerning every given object is present:

fraction of other objects that are located in the surrounding

examined objects CoSes and the distances of the nearest and

the outermost point for every other object. Basing on these

information, a kind of "mental map" (that allows us to

imagine what object, to which extent, and in which ranges

of distance it spreads) can be prepared. This is a situation

similar to those, when in a darkness a torch is used: the one

can turn and look around to determine the location and

distance of objects that are visible in torch’s shaft of light (as

mentioned previously).

The assumption for the chart was that it should show

all the information necessary to create "a mental map" of

all objects surrounding a given one. That means, it should

reflect the range of distances and the fraction of all objects

located inside each CoS (direction), because this information

is necessary to asses mutual location of objects in 3D space.

Such set of charts were named the Distance-Profile Chart,

(DPC ). Such a name was given because this visualization

shows the "profile of distances" of all other objects in relation

to a given object.

Each DPC consists of a given number of sub-charts. Each

sub-chart presents distance range, and a fraction of objects

located in a certain CoS (so the number of sub-charts equals

CoS id

d
is

ta
n
c
e

min

max

[%]

obj(1) obj(2)obj(0)

Fig. 4. Distance-profile chart construction schema.

to the number of CoS that divides the space, for every given

object). The idea of creation each sub-chart and parameters is

shown on Fig. 4.

It is easy to notice, that it is somehow inspired by a boxplot

charts. The sub-charts are placed on a grid to present in a

concise way all information about what is inside every CoS

in relation to a given object. Each grid field represent one

CoS, so this chart is "CoS -centered". The grid used to show

arrangement of subcharts is presented in the Fig. 5.

The color of the bars corresponds to the scale that represents

the fraction (percentage) of an object inside a given CoSs.

The scale used in this paper is shown in Fig. 6.

A. DPC of the exemplary dataset

To show how CoS idea and DPC work in practice a special

testing set (consists of three easy to show and imagine objects)

was prepared. This set consists of three elliptical objects

that are positioned in such a way that looks like the head of

a mouse with ears (see Fig. 7).

This set was fully conified, and the DPCs were generated.

Because this set of objects consists of three objects – also

three DPCs were created (one for every object: head, left ear

and right ear). All three DPCs are shown on Fig. 8–10.

Reading of DPCs needs some training. On the presented

Mouse 3D exemplary dataset we can see three object: "the

head", and two "ears". "Ears" are located above "head".

Moreover, "ears" are located on opposite sideways. So, placing

center of coordinate system in the center of the "head" we can

see, that (refer to Mouse 3D image on Fig. 7):

• "head", as a center of coordinate system lie on every ax

(in every direction),
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OX+

OZ+

OY-OY+

OZ-

OX-

Fig. 5. Grid with fields for DPC subcharts. OX+ means that this is a CoS
alongside OX+ axis, OY+ alongside OY axis and so on.

Fig. 6. Scale – percentage of object included in a certain CoS.

X coord−800−600−400−200 0 200 400 600 800

Y coord

−400
−200
0

200
400

Z coord

−400

−200

0

200

400

600

800

Head (H)
Left ear (L)
Right ear (R)

Fig. 7. Mouse 3D exemplary set.

• both ears lie in a "range" of OZ+ axis,

• one of the ear lies in a range of OX+ axis,

• the second ear lies in a range of OX- axis.

Let’s take a look on the DPC "for" the "head" object

(Fig. 8): it is the only object that has the smallest distance

from the center of coordinate system (starting nearby zero)

AND is in every CoS. It is depicted on a horizontal ax as

second object. What does it means? The second object is

around center of coordinate system, alongside OY and OZ axes

the most distant point is in the same distance, but alongside OX

ax distance is greater than alongside OY and OZ. That means

that the object being a point of reference (object in relation

to which we assess mutual position of other objects) is longer

alongside OX. The dark blue color on fields OY+, OY-, OZ+,

OZ- means, that there is 10-20% of the object. The light blue

on fields that represents OX+ and OX- means, that there is

a 20-30% of the object. Putting together information about

extent of the bar concerning the set and information about

fraction of object coded as color, we can infer, that head of

mouse is not symmetrical and is longer alongside OX axis.

Looking at length of bars, we can ascertain, that the part

of the second object located in every CoS is more or less

the same in size than entire objects one and three. On field

that represent OX+, OX- and OZ+ we can see additional bars.

They are related to the other objects. First object on horizontal

axis of the DPC corresponds to the right ear, third object

corresponds to the left ear

On OX+ DPC field we can see an object that is farther than

the head. The same object appears also in OZ+. This means

that this object spans between OX+ and OZ+. We can see

that it is located through diagonal to the upper right. Reading

fraction from colors, we can say that this object is more in OZ+

(50-60%) than in OX+, so is shifted more up than to the right.

This is how the right ear is situated (this can be verified

looking at Fig. 7)

Then, we can read information about third object. It appears

on DPC in the field OX- and OZ+. Analyzing in the same way

as in a case of the firs object, we can infer that this object is

located in the left upper "corner". Opposite to the first object,

it is more "shifted" towards OX- (what can be read from color

– contains more points).

The next DPC to analyze is presented on Fig. 9. On this

figure we can see the bars in all CoS for object one – so this

is our object of reference. We can also see one additional bar

(object) on field OZ-, and two additional bars on OX- field.

This means, that, in relation to this object only one object is

located below. But the same object is also located in OX- field

in proportion 50-60% in OZ- and 40-50% in OX- field. This

means that bigger part of object two is located below. Looking

at length of bars, we can also ascertain that the second object is

bigger (in size) than object one and two (spans more widely).

Looking at third object presented as red bar in OX- field of

CoS we can see that it is about twice in size in comparison

to the object one, begins somewhere in a middle of the object

two, but ends further – the distance to its extreme point is
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Fig. 8. Distance-Profile Chart for the Mouse 3D testing set. CoSes defined
in relation to 3D Mouse’s "head".

greater than in a case of object two. The red color means that

this third object is situated in OX- almost in full.

This description is adequate as description of a surrounding

of the object being the left mouse "ear": the third object (right

"ear") is entirely located to the right of the left "ear", on the

bottom-right direction the "head" is located. Moreover, basing

on bar length, we know that the "head" is bigger than the

"ear".

The last DPC for the Mouse 3D set is presented on Fig. 10.

This DPC is symmetric to those presented on Fig. 9 and can

be read in a similar way as presented above.

As you can see, (comparing 3D set visualization (Fig. 7) and

DPCs (Fig. 8 – 10), after a little training (to accustom to such

charts and learn how to read them) you can recreate the most

important features of objects positioning, their distance and

distribution in relation to each other basing only on DPCs.

On Fig. 11 an exemplary DPC for the CT model is

presented. This is DPC generated only for one object, as

the number of pages in this paper is limited. This chart can

be read in a similar way that charts for 3D Mouse exemplary

set.

Data for this DPC charts was taken from Brachypodium

Distachyon chromosome territory model, generated with

ChroTeMo [3]. This certain DPC shows a mutual location

of CTs of the other chromosome arms for the first arm of

the fifth chromosome as an object of reference.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel methodology for assessing mutual

3D objects location in a 3D space was presented with the use

of the cone of sight idea. For the ease of perception for

humans the novel method of visual presentation of 3D object

adjacency – the distance-profile chart DPC was developed.

The advantage of such approach is, that there is no need

to have a special tool for visualization of 3D objects

(which is computationally demanding and requires relatively

powerful hardware). Also, the one examining the problem of

the proximity of the objects in 3D does not have to spend a lot

of time manually zooming in, zooming out and rotating scene

to determine which objects are closer to the given object of

interest, and how the objects are situated in relation to each

other. The researcher can print DPC, share tis in such form

and also analyze offline. Additionally, DPC approach allows

to asses the mutual proximity of 3D objects by providing

the exact and objective measure of proximity and thus made

mutual proximity assessment of 3D objects reproducible,

comparable and objective.

The future work is:

• refactor the code and provide it as a library for wide use,

• check different arrangement of spheres (basing on which

conical surface equation is derived) in the context of

space coverage, to maximize coverage during conification

• made benchmarks of the performance of this approach

covering computational time, memory load in a context
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Fig. 9. Distance-profile chart for the Mouse 3D testing set. CoSes defined
in relation to mouse’s left ear.
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Fig. 10. Distance-profile chart for the Mouse 3D testing set. CoSes defined
in relation to mouse’s right ear.
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Fig. 11. Distance-profile chart for exemplary CTs model. Charts in relation
to the 1st arm of the 5th chromosome in Brachypodium Distachyon.

of the type of sphere arrangement, the quantity of conified

dataset and number of objects in a dataset.
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