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Abstract—In the article a new approach for aircraft landing
with the presence of the windshear phenomena was presented.
The differential-algebraic model with variability constraints
was under considerations. To transform the optimal control
problem into a nonlinear optimization task, a modified direct
shooting method was used. Then, to solve the obtained large-
scale nonlinear optimization problem, a barrier method was
applied. Moreover, in the proposed optimization-based approach,
the variability constraints imposed on the state trajectory were
considered directly.

Index Terms—variability constraints, DAE systems, aircraft
landing, barrier method.

I. INTRODUCTION

I
N THE past few decades a number of significant airplane

accidents have resulted from windshear, which can be ob-

served during takeoff or landing. Especially, such meteorolog-

ical and physical phenomena as convective turbulences, gust

fronts and terrain-influenced can be responsible for windshear.

In general, windshear cannot constitute a danger to an airplane

flying, nevertheless it may have a critical impact on flight

safety at low altitude. Moreover, in takeoff and landing phases,

the aircraft is low above the ground and it has no much time

or space to maneuver [14].

It is worth to indicate, that low-level turbulence, below 1600

ft (500 m), cannot be directly measured but only inferred

from observational data. In their work, Hon and Chan [9]

have analyzed such approaches, useful to observe a terrain-

induced low-level turbulence intensity. There are data obtained

by the scanning Doppler lidar, the terminal Doppler weather

radar (TDWR), a high-resolution anemometer, as well as

the operational Windshear and Turbulence Warning System

(WTWS).

Recently, Chan and Hon [5] have employed a high reso-

lution numerical aviation model (AVM) to forecast the wind-

shear occurrence and applied it at Hong Kong International

Airport to predict the terrain-induced windshear. To improve

the automatic landing procedure, Zhao et al. [22] proposed

a linear model of the aircraft in longitudinal motion. The

applied tracking error integral equations enables us to achieve

a desirable tracking performance. The presented approach has

been tested on the Boeing 747 airplane and the windshear

model and showed the effectiveness and robustness of the

proposed approach.

The aircraft landing problem in the presence of the winds-

hear in the context of the feedback control has been extensively

investigated by Patsko et al. [16]. It was assumed, that the

bounds on the wind velocity deviations from some nominal

values are known, while there is no information about the

windshear location and wind velocity distribution in the winds-

hear zone. Finally, to solve the presented problem, the methods

of differential game theory have been employed

• pilot (the first player) need to choose the control param-

eters to minimize the payoff function,

• nature (the second player) need to design an appropriate

wind disturbance to obtain an opposite interest.

The mathematical formulation of an aircraft abort landing

problem has been presented by Bulirsch et al. [3], [4]. The

flight maneuver can be described by a minimax optimal control

problem with nonlinear differential-algebraic model of the

aircraft dynamics. Moreover, a first-order state constraints, as

well as a control variable constraint have been imposed on

the model. The obtained optimal control problem has been

solved numerically using the multiple shooting approach in

connection with a homotopy strategy.

One of the first flight trajectories optimization procedures

in the presence of windshear have been designed by the Aero-

Astronautics Group of Rice University [13]. In the mentioned

research three situations have been deeply investigated: take-

off, abort landing, as well as penetration landing. Then, Pytlak

and Vinter [17] have presented an optimization algorithm for

optimal control problems with control, state, as well as termi-

nal constraints. The designed algorithm has been successfully

applied to solve the aircraft abort landing problem in the

presence of windshear.

Recently, to solve the aircraft abort landing problem in

a windshear downburst, Li et al. [10] designed and imple-

mented a smooth approximate function method for solving

a general class of minmax optimal control problems. Finally,

the necessary and sufficient optimality conditions have been

derived. To solve the obtained optimal control problem the

control parameterization approach, as well as a time scaling

transform have been applied.

The modern numerical control procedures are designed

on the basis of efficient nonlinear optimization algorithms.

Especially, new variants of a barrier method are treated as
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effective procedures to solve large-scale optimization prob-

lems. Baccari et al. [1] designed a new variant of the barrier

function approach for constrained Model Predictive Control

(MPC) problems. Moreover, the parallelization mechanism

enabled to obtain the encouraging results without increasing

the computation time. A Nonlinear Model Predictive Control

(NMPC) method for the trajectory tracking problem of an au-

tonomous underwater vehicle (AUV) has been investigated

by Shen et al. [18]. Then, to handle the realistic constraints

on the AUV thrusters, the authors have incorporated the log

barrier functions into the cost function and modified the

continuation/generalized minimal residual algorithm designed

by Ohtsuka [15]. Finally, the effectiveness and efficiency of the

new algorithm for the AUV tracking control problem has been

demonstrated. Steinboeck et al. [20] designed a new NMPC

algorithm for optimization complex systems described by

hyperbolic partial differential equations. Then, the discretized

constrained optimal control problem has been formulated in

the form of barrier functions. The model predictive control

approach for linear discrete-time systems subject to state con-

straints has been investigated in [8]. In the on-line optimization

procedure a relaxed barrier function has been implemented.

Finally, both the theoretical and numerical results have been

presented.

The mentioned recently designed control procedures require

efficient nonlinear optimization algorithms. Therefore, accord-

ing to the presented advances in Nonlinear Model Predictive

Control methods, in the next sections the new optimization-

based approach for aircraft landing in the presence of the

windshear is presented.

The article is constructed as follows. In Section 2 a detailed

description of the problem is presented. Then, in Section

3, the new optimization-based solving procedure with the

modified direct shooting method is discussed. The results of

computational simulations are presented in Section 4. Finally,

the presented considerations are concluded in Section 5.

II. THE PROBLEM DESCRIPTION

During the aircraft landing maneuver, the situation presented

on the Fig. 1 can be observed:

1) the plane lowers the flight,

2) the speed of the aircraft is reduced,

3) the downdraft zone,

4) the strong wind from the back of the plane.

Fig. 1. The aircraft landing with the presence of the windshear [21].

The dynamical properties of the aircraft motion can be

described by the following ordinary differential equations

ẏx = yν cos yγ + wx, (1)

ẏh = yν sin yγ + wh, (2)

ẏν =
1

m
[T cos(α+δ)−D]−g sin yγ−(ẇx cos yγ+ẇh sin yγ),

(3)

ẏγ =
1

myν
[T sin(α+δ)+L]−

g

yν
cos yγ+(ẇx sin yγ−ẇh cos yγ),

(4)

where the state variables

y(t) =




yx(t)
yh(t)
yν(t)
yγ(t)


 (5)

are the horizontal distance yx, the altitude yh, the relative

velocity yν and the relative flight path angle yγ . Moreover,

the thrust and aerodynamic forces were defined

T = βT⋆,

T⋆ = a0 + a1yν + a2y
2

ν ,

D = 1

2
CDρSy2ν ,

CD(α) = b0 + b1α+ b2α
2,

L = 1

2
CLρSy

2

ν ,

CL(α) =





c0 + c1α, for α ≤ α⋆,
c0 + c1α+ c2(α− α⋆)

2,
for α⋆ ≤ α ≤ αmax,

β(t) =

{
β0 + β̇1t, for 0 ≤ t ≤ tβ ,
1, for tβ ≤ t ≤ tF .

(6)

where the thrust, drag and lift were denoted as T , D and

L, respectively. Upon sensing a downdraft, the pilot increases

power at a constant rate until reaching the maximum value at

time

tβ = (1− β0)/β̇0. (7)

and holds it constant. The windshear is modeled as follows

wx = A(yx),

wh = h
h⋆

B(yx),
(8)

where

A(yx) =





−50 + ay3x + by4x, for 0 ≤ yx ≤ 500,
1

40
(yx − 2300), for 500 ≤ yx ≤ 4100,

50− a(4600− yx)
3 − b(4600− yx)

4,
for 4100 ≤ yx ≤ 4600,

50, for 4600 ≤ yx,
(9)
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TABLE I
THE MODEL PARAMETERS OF A BOEING 727 AIRPLANE [2].

tF 40 sec
umax 3 deg/sec
αmax 17, 2 deg

ρ 0, 2203× 10−2 lb sec2 ft−4

S 0, 1560× 104 ft2

g 3, 2172× 101 ft sec−2

mg 1, 5× 105 lb
δ 2 deg

a0 0, 4456× 105 lb

a1 −0, 2398× 102 lb sec/ft

a2 0, 1442× 10−1 lb sec2 ft−2

β0 0, 3825

β̇0 0, 2 sec−1

b0 0, 1552
b1 0, 12369 rad−1

b2 2, 4203 rad−2

c0 0, 7125
c1 6, 0877 rad−1

c2 −9, 0277 rad−2

a⋆ 12 deg
h⋆ 1000 ft

a 6× 10−8 sec−1 ft−2

b −4× 10−11 sec−1 ft−3

c −ln(25/30, 6)× 10−12 ft−4

d −8, 02881× 10−8 sec−1 ft−2

e 6, 28083× 10−11 sec−1 ft−3
x0 0 ft
γ0 −2, 249 deg
h0 600 ft
α0 7, 353 deg
ν0 239, 7 ft/sec
γF 7, 431 deg

B(yx) =





dy3x + ey4x, for 0 ≤ yx ≤ 500,
−51 exp[−c(yx − 2300)4],

for 500 ≤ yx ≤ 4100,
d(4600− yx)

3 + e(4600− yx)
4,

for 4100 ≤ yx ≤ 4600,
0, for 4600 ≤ yx.

(10)

The model parameters of a Boeing 727 airplane were summa-

rized in the Table I.

The goal of this problem is to avoid having the airplane

crash. To achieve this, two important conditions need to be

satisfied. An unknown parameter hmin represents the mini-

mum altitude that occurs during the maneuver. Moreover, an

additional inequality constraint

yh(t) ≥ hmin. (11)

was introduced. Then, a new objective function can be con-

structed

hmin → max (12)

This representation of the optimization problem guarantees

that aircraft will be as high above the ground as possible.

In the considered task the angle of attack α(t) is treated as

the control variable. Moreover, the control variable is subject

to the two inequality constraints

u(t) = α(t) ≤ αmax (13)

and

|u̇(t)| = |α̇(t)| ≤ umax. (14)

The eq. (14) has a character of a variability constraint.

In the presented task five flight phases can be distinguished.

Each flight phase is characterized by the appropriate boundary

conditions, as well as additional features.

Phase 1: 0 = t1
0
≤ t ≤ t1F

yx(t
1

0
) = yx0

,

yν(t
1

0
) = yν0

,

yh(t
1

0
) = yh0

,

yγ(t
1

0
) = yγ0

,

uα(t
1

0
) = uα0

,

yx(t
1

F ) = 500,

A(yx) = −50 + ay3x + by4x,

B(yx) = dy3x + ey4x,

β(t) = β0 + β̇0t.

(15)

Phase 2: t2I ≤ t ≤ t2F = tβ

yx(t
2

0
) = 500,

A(yx) = −50 + ay3x + by4x,

B(yx) = dy3x + ey4x,

β(t) = β0 + β̇0t.

(16)

Phase 3: tβ = t3I ≤ t ≤ t3F

yx(t
3

F ) = 4100,

A(yx) = 1

40
(yx − 2300),

B(yx) = −51 exp(−c(yx − 2300)4),
β(t) = 1.

(17)

Phase 4: t4
0
≤ t ≤ t4F

yx(t
4

0
) = 4100,

yx(t
4

F ) = 4600,

A(yx) = 50− a(4600− yx)
3 − b(4600− yx)

4,

B(yx) = d(4600− yx)
3 + e(4600− yx)

4,

β(t) = 1.
(18)

Phase 5: t5
0
≤ t ≤ t5F

yx(t
5

0
) = 4600,

yγ(t
5

F ) = yγF
,

A(yx) = 50,

B(yx) = 0,

β(t) = 1.

(19)
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As one can observe, each stage of the process is described

by a system of differential-algebraic equations

ẏ(t) = F (y(t), z(t),u(t),p, t)

0 = G(y(t), z(t),u(t),p, t)
(20)

where y(t) ∈ Rny denotes a differential state trajectory,

z(t) ∈ Rnz is an algebraic state trajectory, u(t) ∈ Rnu

denotes a control function, p ∈ Rnp is a vector of global

parameters constant in the time. The indendent variable was

time denoted by t ∈ R. Moreover, two vector-valed functions

are considered

F : Rny ×Rnz ×Rnu ×Rnp ×R → Rny (21)

G : Rny ×Rnz ×Rnu ×Rnp ×R → Rnz (22)

Assumption 2.1: The index of the DAEs system (20) is not

greater than 1.

To solve the flight optimization task presented by eq. (1)-(19),

the new optimization-based solving procedure was designed.

III. THE NEW OPTIMIZATION-BASED SOLVING PROCEDURE

The optimization procedure is consisted on two main steps.

The first one is based on the multiple shooting method and

a control vector parameterization. In the second step - the

parameterized model is optimized by a barrier algorithm.

Each phase of the flight was described by a system of

differential-algebraic equations (1)-(19). Moreover, each phase

was discretized using a modified direct shooting approach,

where left-hand side of ODEs are treated also as additional

decision variables [7]. Then, with 3 shooting points in each

interval, in the considered process 3 × 5 = 15 subintervals

were distinguished. Therefore, the time domain

t ∈ [t0 tf ] (23)

was divided according to the indicated 15 subdomains in the

following way

ti ∈ [ti
0

tif ], i = 1, · · · , 15, (24)

where

t0 = t1
0
< t1f < · · · = t15

0
< t15f = tf . (25)

The considered DAE constraints were pointwise discretized as

follows

xẏi = F̃ i(xyi ,xzi ,xui ,xp, t
i)

0 = G̃i(xyi ,xzi ,xui ,xp, t
i)

(26)

where
xẏi = ẏ(ti

0
)

xyi = y(ti
0
)

xzi = z(ti
0
)

xui = u(ti
0
)

xp = p

(27)

and

F̃ i : R
nx

yi ×R
nx

zi ×R
nx

ui ×Rnxp ×R → R
nx

yi (28)

G̃i : R
nx

yi ×R
nx

zi ×R
nx

ui ×Rnxp ×R → R
nx

zi (29)

for i = 1, . . . , 15.

Moreover, if

X =




xẏ1

...

xẏ15

xy1

...

xy15

xz1

...

xz15

xu1

...

xu15




(30)

and with differential-algebraic constraints in the following

form

F̃ i(xyi ,xzi ,xui ,xp, t
i)− xẏi = 0

G̃i(xyi ,xzi ,xui ,xp, t
i) = 0

(31)

for i = 1, . . . , 15. Then, the process constraints can be reduced

to the general form

F̂ (X) = 0

Ĝ(X) = 0

(32)
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The presented modified direct shooting approach enables us

to consider the variability constraints in the following form

yL ≤ ẏ(t) ≤ yU (33)

directly by

xLẏ ≤ xẏ ≤ xUẏ , (34)

where L and U denote lower and upper bounds, respectively.

After that, the appropriate nonlinear optimization problem with

a pointwise-continuous differential-algebraic constraints can

be considered

min
X

f(X) (35)

subject to

F̂ (X) = 0

Ĝ(X) = 0

Xẏ ≤ V(X)

XL ≤ X ≤ XU

(36)

To solve the nonlinear optimization problem with the vari-

ability constraints, the barrier method implemented in function

fmincon in MATLAB Optimization Toolbox was applied

[11]. The obtained results were presented in the next section.

IV. RESULTS OF COMPUTATIONAL SIMULATIONS

The aircraft state trajectories have been obtained after 1,101

iterations and 170,855 objective function evaluation. The final

value of the objective function was equal to 429.6 m. The re-

sults of the presented solving procedure were illustrated on the

Fig. (2)-(6). The results and shape of the state trajectories are

comparable with the solution obtained using Sparse Optimal

Control Software - SOCS, developed by The Boeing Company

[2].

Fig. 2. The state trajectory yx(t).

V. CONCLUSION

In the article the modified direct shooting approach for the

aircraft landing control problem in the presence of windshear

was presented. In the discussed methodology, the values of the

state trajectories, as well as left hand-side values of the ODEs,

are treated as the additional decision variables. As the results

of presented transformation, a large-scale nonlinear optimiza-

tion problem with pointwise-continuous differential-algebraic

Fig. 3. The state trajectory yv(t).

Fig. 4. The control trajectory α(t).

constraints was obtained. To solve the nonlinear optimization

task, the barrier algorithm implemented in fmincon function

in Matlab environment was used.

The future work should be concentrated on the NLP solver

improvements in order to minimize number of the objective

function evaluations. Moreover, the presented modifications

can be applied in the autonomous takeoff and landing proce-

dures [6], [12], [19].
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