

Abstract —This paper presents a solution, which was

developed as a part of the competition AAIA'17 Data Mining

Challenge: Helping AI to Play Hearthstone. The goal of the

competition was to predict the probability of AI player win in

different intra-game states of Hearthstone game (online

computer game with cards). This solution got the third place at

the final leaderboard. The paper describes models and local

validation approach, which was very useful for models

development without overfitting.

I. INTRODUCTION

EARTHSTONE: Heroes of Warcraft [1] is a free-to-

play online video game developed and published by

Blizzard Entertainment [2]. It is a turn-based collectible card

game between two opponents, who use constructed decks of

thirty cards along with a selected hero with a unique power.

Players use mana points (money equivalent) to cast spells or

summon minions (units for battle) to attack the opponent,

with the goal to reduce the opponent's health to zero.

Author did not play this game before competition, but

read the game rules and wiki [3] when developed this

solution.

AAIA'17 Data Mining Challenge is the fourth data mining

competition organized within the framework of International

Symposium Advances in Artificial Intelligence and

Applications [4].

For the purpose of this challenge, organizers simulated a

large number of Hearthstone gameplays. The task for

participants of this competition was to construct a prediction

model that can learn how to evaluate accurately particular

intra-game states. These models would help to improve AI to

play the game of Hearthstone: Heroes of Warcraft.

The paper contains:

 the short description of a competition, data provided

to the competitors and the evaluation method that

was applied to submitted models

 the description of validation scheme which was used

for the models development

 the description of models and main features

 the final results of competition

I. COMPETITION TASK

The ability to assess accurately a winning chance in

different game states is substantial for designing efficient and

challenging AI players in many games. In this data mining

challenge, participants worked to develop a prediction model

for a popular game Hearthstone: Heroes of Warcraft - a

collectible card video game developed and published by

Blizzard Entertainment.

The data for the competition was generated by the

simulation of games between weak AI players. Ideas and

models from this competition could be used to improve AI

play.

The detailed information about the competition can be

found in [5].

A. Data

The data for this competition were provided in two

different formats: JSON and tabular. I worked with JSON

files as they contained more information than tabular ones.

Files with train data contained information about condition

of each of the competing heroes, played minion cards, cards

in the hand of the first player (it is assumed that the first

player always starts the game) and other features.

The “decision” was a target variable to predict with values
‘1’ if the first player won the game and ‘0’ otherwise.

The test data is available in the same format as the training

sets, however, there is no information about the “decisions”.

It was allowed to use external knowledge bases about

Hearthstone cards.

Initially, the training data contained descriptions of

2,000,000 game states. During the competition test data were

replaced by new ones, data from old test became available

for training, and full training set appeared to be 3,250,000

records.

New test data contained 750,000 game states.

B. Evaluation

The participants of the competition were asked to submit

likelihoods of winning by the first player.

H

Application of machine learning to help AI to play Hearthstone

 Evgeny Patekha
Russia

Email: evgeny.patekha@gmail.com

Communication papers of the Federated Conference on

Computer Science and Information Systems, pp. 45–48

DOI: 10.15439/2017F566

ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 45

The submitted solutions were evaluated on-line and the

preliminary results were published on the competition

leaderboard (public LB). The preliminary score was

computed on a subset of the test set, fixed for all

participants. It corresponded to approximately 5% of the test

data. The final evaluation was done after the completion of

the competition having use the remaining part of the test data

(final LB). Those results were also published on-line.

The assessment of solutions was done using the Area

Under the ROC Curve (AUC) measure.

II. SOLUTION

 The final solution was the mix of the Gradient Boosted

Decision Trees and the Neural Net models. All models were

developed in R with LightGBM [6] and MXNet [7] libraries.

data.table library [8] was used for data processing before

training.

A. Validation

During the competition organizers decided to replace test

data, because of the information that different stages of one

game could be both in the train and the test sets, and it could

lead to inadequate and useless result of the competition.

However, the same problem was actual for local

validation while model training. Training records with

different stages of the same game led to model overfitting

when Gradient Boosting Trees were used for training. To

overcome this issue I decided to split data to different folds

and tried to put all potential records from one game to one

fold.

The only features that could be used for this goal were

“hero_card_id” of a player and an opponent (each could

have 9 different values). Therefore, I split data into 9 folds

by the unique combination of “pl.hero_card_id” and

“op.hero_card_id” (total 81 combinations, 9 to each fold). I

tried to achieve uniform distribution of data among the folds

so that only one kind of “pl.hero_card_id” and one kind of

“op.hero_card_id” were put in each fold.

This solution fixed the problem of overfitting and was

very good for local evaluation of created models. The local

results of cross-validation (CV) had high correlation with

public leaderboard. This kind of CV gave me excellent tool

for fine-tuning of my models without overfitting (to choose

right features and to find best parameters).

The score of my model dropped less between public and

final leaderboards than the scores of other participants in

top-10 (Table I). I suppose that was thanks to the good

validation scheme.

B. Features

Based on the initial data many of new features were

created and tested by cross-validation. Features were

selected to be used in the final models if they improved score

with local validation by more than 0.0001, and scores were

improved for most of validation folds.

The following features made a major contribution to

improving the score (measured by cross-validation):

 Difference between cumulative “attack” (sum of

“attack” of a player and his played cards) and

cumulative “health” of an opponent (sum of

“health” of an opponent and his played cards) and

vice versa

 Difference of “health” of a player and an opponent

divided by “health” of a player

 Sum of “health” of minions at player’s hand

 Cumulative “attack” gain (compared to base levels)

of played cards

 Number of played cards ready to attack

In addition, I used as features a number of cards

(separately played and in hand) with specific IDs, specific

costs. The most useful of IDs features were features with IDs

of spell cards.

The full list of used features listed in the Appendix.

C. External data

The competition rules allowed to use external data. I used

information about cards properties from hearthstonejson.com

[9]. For each card, the database contains base information

about cost, attack, health plus some additional features like

card class, race, faction, collectible and others.

I tried to use additional features in my model. The most of

those features did not improve my models. Only feature

“number of neutral class cards” (number of cards with

neutral class in player’s hand) used in the main final model.

D. Models

The main model was the Gradient Boosting Decision

Trees (GBDT) implemented by the LightGBM library.

GBDT is a machine learning technique for regression and

classification problems, which produces a prediction model

in the form of an ensemble of weak prediction models of

decision trees [10, 11].

The main model had 140 features. The individual score

(AUC) of this model was 0.7987 at public LB.

The second model was the LightGBM too. The features

were taken from the first model. There was an idea to review

the main model features and create another model by adding

them one by one from the beginning. As a result, I got

another model with only 58 features with score similar to the

main model (0.7983 at public LB). The predictions of these

models were slightly different. The mix of these models

produced a good gain (0.001) on CV and public LB.

The third model was the Neural Network by the MXNet

library. I used the same features as in the first model. The

model had 2 fully connected hidden layers of 192 units each,

ReLu activation with 50% dropout and softmax output [12].

This model had score 0.7980 at public LB and gave

moderate improvement when combined with two LightGBM

models.

46 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

I used grid-search with cross-validation to find the best

parameters for each models. The final parameters listed in

Table I.

TABLE I

PARAMETERS OF THE MODELS

Parameters LGBM 1 LGBM 2 NN

learning_rate 0.03 0.03 0.07

num_leaves 12 12 -

max_depth 4 4 -

feature_fraction 0.8 0.8 -

bagging_fraction 0.75 0.75 -

averaged by CV

num_iterations
3599 3547 46

batch_size - - 32768

E. Additional model

Based on analysis of the data, I discovered that for the

first two turns the outcome of the game is mostly uncertain.

A definite outcome is very rare at this stage. I decided to

build another model only for first two turns. The idea was to

restrict the model by exclusion of usage of some patterns

from the next turns. The prediction of this model was scaled

and inserted to the prediction of the main model. This

approach helped to drop some of the false predictions with

moderate improvements of the score.

F. Other improvements

After replacement of the test data during competition,

some features of the new test set became very different from

train set. The rules of the game were changed while new test

data were collected. The changes affect features “turn”,
“op.deck_count” and “op.hand_count”.

 I tried to reduce those differences and changed train data:

 data with value of the feature “turn” more than 16

were not used in the models because maximum

value of the feature “turn” in the new test data was
16;

 all cases where value of the feature “turn” was less
than 11 and value of the feature “pl.crystals_all”
was less than value of the feature “turn” were
equate to “turn” value;

 for “turn” 1 and 2 values of the feature

“op.deck_count” were increased by 1;
 for “turn” 1 and 2 values of the feature

“op.hand_count” were decreased by 2 and 1
respectively;

These changes led to moderate improvement of the score.

G. Other steps without success

One of ideas that I tried without success was the idea to

swap data between player and his opponent (with missing

cards in player’s hand which we did not have for opponent)
to get additional data for training. I hope that some different

game states would be good addition to the train data, but this

approach did not help to improve the score. I suppose that

the reason for this is that we already have enough data for

training.

I tried other machine learning technologies, such as

xgboost [13], as it was the best of gradient boosting

implementation before LightGBM, K-nearest neighbor

(KNN) with different number of neighbors and logistic

regression, but all of them had worse score and did not

improve the score of the main models when I tried ensemble.

I also tried to build second level model to stack different

models, as it very popular in many competitions method to

improve score, but did not find a way to validate second

level model without overfitting. Prediction from stacked

model did not improve score at public leaderboard while it

was better on my CV.

H. Training process and final prediction

As we had big training dataset, predictions for the test data

were made by each of iterations during 9-folds cross-

validation (at the point of the best validation score) and were

averaged before submit. This approach had better scores

than predictions from single model with full train set with

approximation of number of training iteration.

For the final submission all models were trained with 3

different random seeds and the predictions were averaged.

This approach is traditional way to increase stability of

models.

The final prediction was a weighted mean of models with

weights 30% for each of 2 LightGBM models and 40% for

the MXNet model. This blend got score 0.8001 at public LB

and 0.79895 at final LB (3 place).

III. FINAL RESULTS

There were submissions from 188 teams from 28 different

countries. Top-10 scores are listed in Table II.

I think that the main contribution to my good result was

made by a good local validation scheme. My CV allowed me

to check many different ideas and to choose the best ones

without overfitting the models.

TABLE II

FINAL RESULTS (TOP-10)

Rank Participants

Public

lb

Final

lb Drop

1 iwannabetheverybest 0,8041 0,80185 -0,0022

2 hieuvq 0,8016 0,79922 -0,0024

3 johnpateha 0,8001 0,79895 -0,0011

4 vz 0,7997 0,79733 -0,0024

5 jj 0,7997 0,79707 -0,0026

6 karek 0,8000 0,79685 -0,0032

7 podludek 0,79657

8 akumpan 0,7995 0,79654 -0,0030

9 iran-amin 0,79637

10 basakesin 0,7988 0,79617 -0,0026

EVGENY PATEKHA: APPLICATION OF MACHINE LEARNING TO HELP AI TO PLAY HEARTHSTONE 47

APPENDIX

At the first and the third models were used 140

features(for played IDs used only top important features):

• pl.hero_card_id, pl.crystals_all, pl.crystals_current,

• pl.hp, pl.armor, pl.attack, pl.special_skill_used,

• pl.weapon_durability,

• pl.deck_count,

• pl.hand_count, pl.played_minions_count

• op.hero_card_id, op.crystals_all, op.crystals_cur-

rent,

• op.hp, op.armor, op.attack, op.special_skill_used,

• op.weapon_durability,

• op.deck_count,

• op.hand_count, op.played_minions_count

• pl.cum_attack, pl.cum_hp_cur, pl.cum_attack_gain,

• pl.cum_hp_loss, pl.num_taunt, pl.num_can_attack,

• pl.cum_crystals_cost

• op.cum_attack, op.cum_hp_cur,

op.cum_attack_gain,

• op.cum_hp_loss,

• op.num_taunt,

• op.num_can_attack, op.cum_crystals_cost

• turn, pls.cum_attac_hp_dif, pls.cum_attac_hp_dif1,

• pls.cum_attac_hp_dif2,

• pls.hp_dif,

• pls.hp_dif_to_hp,

• pl.ids_count,

• op.ids_count,

• pl.crystals_use, op.crystals_use, pl.cristal_turn_dif,

• op.cristal_turn_dif

• m_cum_attack,

• m_cum_hp,

• m_num_taunt,

• m_num_freezing, m_cum_crystals_cost, s_num,

• s_cum_crystals_cost,

• w_attack,

• w_num,

• w_cum_crystals_cost,

• m_ids (30), s_ids (44), pl_ids (top 3), op_ids

(top 3)

At the second model were used 58 features:

• pl.hero_card_id, pl.crystals_all, pl.hp, pl.armor,

• pl.attack,

• pl.deck_count,

• pl.hand_count,

• pl.special_skill_used,

• pl.played_minions_count,

• pl.max_cost, pl.avg_hp_cur, pl.cum_attack_gain,

• pl.cum_hp_loss, pl.nocan_cum_attack

• op.hero_card_id, op.crystals_all, op.hp, op.armor,

• op.attack,

• op.deck_count,

• op.hand_count,

• op.special_skill_used, op.played_minions_count,

• op.max_cost, op.avg_hp_cur,op.cum_attack_gain,

• op.cum_hp_loss, “op.nocan_cum_attack

• m_cum_attack, m_cum_hp, m_num_neutral_class,

• s_cum_cost

• turn, pls.cum_attac_hp_dif, pls.cum_attac_hp_dif1,

• pls.cum_attac_hp_dif2,

• pls.hp_dif_to_hp,

• pls.cum_attac_hp_dif_by_turn,

• pl.crystals_use,

• op.crystals_use,

• pl.cristal_turn_dif,

• op.cristal_turn_dif

• op.cost1, op.cost2, op.cost3, op.cost4, op.cost7,

• m_cost5, m_cost6, m_cost7, s_cost1, s_cost2,

• s_cost3, s_cost4, s_cost5, s_cost6, s_cost7, pl.cost7

Next prefixes were used in the features names:

• pl. – player played cards

• op. – opponent played cards

• m_ – minions at player hand

• s_ – spell at player hand

• w_ – weapon at player hand

REFERENCES

[1] Hearthstone: Heroes of Warcraft. [Online]. Available:
http://eu.battle.net/hearthstone/en/

[2] Blizzard Entertainment. [Online]. Available: http://www.blizzard.com
[3] Hearthstone wiki. [Online]. Available: http://hearthstone.gamepedia.

com
[4] International Symposium Advances in Artificial Intelligence and

Applications. [Online]. Available: https://fedcsis.org/2017/aaia
[5] AAIA'17 Data Mining Challenge. [Online]. Available:

https://knowledgepit.fedcsis.org/contest/view.php?id=120
[6] Microsoft LightGBM lidrary. [Online]. Available:

https://github.com/Microsoft/LightGBM
[7] MXNet library. [Online]. Available: http://mxnet.io

[8] data.table library. [Online]. Available: http://r-datatable.com
[9] hearthstonejson.com. [Online]. Available: https://api.hearthstonejson.

com/v1/18792/enUS/cards.json
[10] Jerome H. Friedman, “Greedy function approximation: A gradient

boosting machine.” Ann. Statist. 29 (2001), no. 5, 1189–1232.
doi:10.1214/aos/1013203451 [Online].Available: https://statweb.

stanford.edu/~jhf/ftp/trebst.pdf
[11] Tianqi Chen, Carlos Guestrin, “XGBoost: A Scalable Tree Boosting

System” KDD ’16, August 13-17, 2016, San Francisco, CA, USA
doi:10.1145/2939672.2939785 [Online]. Available:

https://arxiv.org/abs/1603.02754
[12] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Sala-

khutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting” Journal of Machine Learning Research 15 (1).

1929-1958 [Online]. Available: http://jmlr.org/papers/volume15/
srivastava14a/srivastava14a.pdf

[13] xgboost library. [Online]. Available: https://github.com/dmlc/xgboost

48 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

