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Abstract—In  this  paper,  we  present  the  Bayesian  Attack

Graph  for  Smart  Grid  (BAGS)  tool  to  quantify  smart  grid

resilience  in  the  presence  of  multiple  cyber-physical  attacks.

BAGS takes system functions, network architecture, applications

and a vulnerability report as input and generates three Bayesian

Networks  at  three  different  levels  of  hierarchy.  The  top  level

network is called Functional Bayesian Network that defines how

smart grid functions are connected. System engineers can select a

particular  function  on  a  dashboard  and  view  the  Network

Bayesian Network of that function at the second level. They can

also  choose  a  particular  network  component  to  see  the  list  of

vulnerabilities  and the probability  of  associated compromise at

the third level. System engineers can incorporate this functionality

into  their  system and analyze  the  impact  of  any compromised

component  of  the  smart  grid  system  on  its  resilience.

Furthermore, BAGS helps to identify the failure paths in advance

from one power grid function to another so that they can devise

secure strategies and deploy resources effectively and efficiently.

Index  Terms—Smart  Grid;  Bayesian  Network;  Cyber

Security; Cyber-Physical Security; Resilience; Industrial Control

System

NOMENCLATURE

S1:   Quality of Smart Meter and Electric Vehicle Reads 
S2:   Quality of Smart Sync Head
S3:   Billing System Performance
S4:   Performance of Outage Management System
S6:   Quality of Data captured by Vendor
S7:   Performance of Electricity Energy Control Center
S8:   Meter Data Management
R:     Resilience

I. INTRODUCTION

YBER-PHYSICAL Systems (CPS)  [16]  refer  to  a  new
generation  of  systems  where  physical  processes  are

controlled  and  monitored  from  the  cyber  domain  through
advanced  computation  and  communication  technologies
including  humans  in  the  loop.  Utilization  of  advanced
Information  and  Communication  Technologies  (ICT)  in  the
CPS provides the ability for system engineers to control and
monitor  the  physical  processes  in  real-time.  The  growing
interdependence  between  the  cyber  and  physical  world  has
opened  the  doors  for  various  Cyber-Physical  Threats  (CPT)
thus imposes extraordinary challenges on the security of CPS
such as Smart  Grid (SG). A Stuxnet-style attack on US SG
could cost $1 trillion to US government [15]. According to the
report,  such  high-profile  attacks  on  CPS  would  be  used  to

C

infect the electricity generation control rooms in some parts of
the  northern  US  by  exploiting  vulnerabilities  in  network
components with a motive to control power generation. Recent
multiple attacks on the Ukraine power grid [13] [14] indicate
that  cyber  attacks  on  such  critical  infrastructures  will  be
frequent.  Hence,  identifying,  understanding  and  modeling
CPTs and defining system’s resilience in the presence of CPTs
is now a necessity. 

Researchers  have focused  on describing  the resilience of
the SG system by analyzing different types of attacks on one of
its components/functions [5-9]. Although such efforts provide
relevant  insights  about  the  security  of  the  SG,  they  are
incomplete in the sense that they do not consider the effect of
one  compromised  function  onto  the  other  functions  and
ultimately on the system’s resilience. Furthermore, the current
work  does  not  consider  the  dynamic  nature  of  the
vulnerabilities  [7-9]  and  associated  attack  vectors.  The
likelihood of system component compromise is changing based
on the dynamic nature of the vulnerabilities associated with the
components  and actions taken by the system engineers.  For
instance,  we know the initial  probability of compromising a
server and that probability might change if we say that system
engineers  have  applied  security  controls  (patched)  to  that
server. So we revise our belief based on current information,
and this belief would be changed when there exists a zero-day
attack for that server. Another challenge is that it is misleading
to consider the vulnerabilities of the individual components [7].
It  is  possible  that  the  vulnerability  score  of  the  single
component  is  lower  than  the  combination  of  multiple
components,  which provide  the  same functionality  [4].  It  is
necessary  to include the causal  relationship between various
functions,  and  components  during  risk  analysis.  It  is
insufficient  to  quantify  and  analyze  Smart  Grid  Resilience
(SGR) based on the static analysis of the system. We have to
consider the dynamic nature of the vulnerabilities which is not
yet considered by the previous approaches [7] [5]. They have
failed to define a metric that can be used in real time to assess
the SGR.

In this paper, we propose the  Bayesian  Attack  Graph for
Smart Grid (BAGS) tool to quantify the SGR in the presence of
multiple CPAs in real  time.  BAGS takes functions,  network
architecture, applications and a vulnerability report as input and
generates  three  Bayesian  Networks  (BN).  The  top  level
network  is  called  Functional  Bayesian  Network  (FBN)  that
defines how SG functions are connected to each other,  their
probability  of  failure  and  connection  with  the  resilience
variables. The possibility of a function compromise is the joint
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probability distribution of its network components that is based 
on the vulnerabilities of each component. FBN can be 
expanded to the second level as Network Bayesian Network 
(NBN) that can be further expanded to the third level as 
Vulnerability Bayesian Network (VBN). BAGS provides ease 
to the system engineers to perform an in-depth study of one of 
the functions of the SG and evaluates its effect on the overall 
system resilience. The system engineers can incorporate this 
functionality into their system, and they can see the impact of 
any compromised component of the SG on its resilience. The 
tool enables them to analyze how a failure of a network 
component controlling a particular power grid functionality 
propagates from the cyber to the physical domain and its 
impact on the SGR. It also helps them to identify the failure 
paths in advance from one SG function to another so that they 
can devise appropriate secure strategies and deploy resources 
effectively and efficiently.  

The structure of the paper is as follows: Section II describes 
the related work. Section III discusses the challenges faced 
during SG risk analysis. Section IV and V describe the 
Resilience and Bayesian Network respectively. Section VI 
describes the SG architecture. Section VII explains the design 
of the BAGS tool. Section VIII describes the tool prototype 
and Section IX discusses the conclusion and future work.  

II.   RELATED WORK 

Traditionally, researchers have focused on modeling and 
analyzing the impact of CPTs on various functions and 
components of the SG system [5-9] [18-19]. Sanjab et al. [10] 
defined threats targeting the SG infrastructure, challenges 
involved in the understanding of CPAs and defensive strategies 
against such attacks. Neuman and Tan [8] described different 
types of CPAs and how they propagate from cyber to the 
physical domain and vice versa. Srikantha and Deepa [5] 
formulated a differential game that describes stealthy strategies 
for attackers to disrupt transient stability by leveraging control 
over Distributed Energy Resources (DERs). Researchers in [6] 
demonstrated an optimal attack scenario using false data 
injection attacks on Automatic Generation Control (AGC) 
functionality of the SG system. In [7], the authors defined the 
systematic approach to quantify the resilience of the SG system 
through PowerWorld simulation. The authors performed load 
drop attack by sending remote disconnect commands to smart 
meters at various locations and analyze its impact on the power 
system. Although such methods clearly demonstrate how 
power system gets affected because of changes in one of the 
functions of the SG due to the cyber attacks, they have failed to 
capture the dynamic behavior of attacks based on the 
vulnerabilities associated with the system components.  

Findrik et al. [11] present a framework for the development 
and evaluation of secure and resilient SG control applications. 
The coupling between the communication system simulator 
OMNeT++ to the power system simulator PowerFactory using 
flexible middleware is used to develop the proposed tool. After 
describing the development of the tool, the paper modeled the 
cyber attacks in OMNeT++ simulator and analyzed the impact 
of those attacks on the power voltage control system. One of 
the limitations of this approach is that it does not include the 
real time vulnerabilities of the SG system into consideration. 

Suppose a zero-day vulnerability is discovered or vulnerability 
is patched in a network component. How this tool would 
incorporate this information in the modeling and how SGR is 
affected by that change? A risk assessment approach for power 
system considering the reliability of the information system is 
presented in [17]. Through simulations, authors demonstrated 
that the failure of the information system brings more risk to 
the power system operation. The line overload and risk of bus 
voltage out of range are defined and calculated as risk indices. 
Both software and hardware components are considered to 
quantify the indices. The paper provides insights into the 
impact of the information system failure on the SG system 
which was not performed earlier in the literature.  

The concept of defining resilience using BN has frequently 
been used in securing engineered systems such as in [1-4] [18-
19]. Li. et.al [1] described a three-layer framework that 
assesses the potential risks introduced by the mobile apps 
within the Android mobile system. The authors formulated 
three layers called as static, dynamic and behavioral network 
where risks are identified, and their propagation through each 
layer is modeled as Bayesian Risk Graph. Similarly, 
researchers in [4] modeled IT infrastructure using BN that 
enables system engineers to quantify the chances of network 
compromise. In [3], researchers defined a BN framework with 
a motive to compute the resilience of inland waterway network. 
Nita and Pingfeng [2] outlined a framework using BN to 
measure the resilience of engineered systems quantitatively. 
According to them, resilience is the combination of reliability 
and restoration. And it is similar to what is described in [3] that 
is absorptive, adaptive and restorative capacity.  

We are motivated by the definition of resilience in [3] [4]. 
We have formulated a BN for the SG with a motive to quantify 
SGR in the presence of multiple CPAs in real time. Our 
research is different from current approaches (for assessing 
SGR) in a way that we have modeled the SG system as a 
dynamic BN where the probability to compromise system gets 
updated whenever there is a change in the vulnerabilities of the 
system. There is a need to develop a tool like BAGS so that 
system engineers not just can monitor the SG system 
components, functions and take decisions but can also control 
and compute the probability to compromise a particular 
function and analyze its effect on the SGR in real time. 
Furthermore, they should have the ability to perform an in-
depth study from functional level to vulnerability level of any 
function of the SG system.  

Note, this tool is not a replacement for intrusion detection 
and prevention systems or SCADA system, rather it works 
along with such systems. This tool provides better attack 
predicting capability and also enables system engineers to 
perform containment of compromised components to stop the 
propagation of attacks to other parts of the system. 

 

Fig. 1.   Smart Grid: Resilience Modeling 
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III.   CHALLENGES IN SMART GRID RISK ANALYSIS 

SG is a federated system with multiple complex 
components. These components are interconnected to each 

other, and they focus on different functionalities of the SG 

system. Each federated system consists of various network 

components that have different attack vectors to compromise. 

Due to the presence of large number of attack vectors in 

different SG components and platforms, the risk assessment is 

challenging. The main challenges faced by the system 

engineers to perform risk assessment are as follows: 

 

1.   Legacy System: Traditionally, SG systems were 

developed not keeping security in mind. This makes 

them the hub of security vulnerabilities that can be 
exploited remotely through the internet. Furthermore, it 

is impossible to patch vulnerabilities altogether since it 

requires to shutdown the system during the patching 

process. Thus, it is hard to track and patch all the 

potential risks present in such federated systems. 

2.   Complex Attack Vectors: Due to large surface area of 

attack, there are large number of attack vectors present. 

The cyber attackers can perform multiple attacks by 

combining different attack vectors. For instance, they 

combine remote code execution at smart meters or buffer 

overflow in smart meter head server followed by a 
DDOS attack to prevent legitimate signals reaching 

physical units and finally, they send control signals 

remotely to smart meters to manipulate power supply. 

To avoid such attacks, it is important to develop a tool 

that can track vulnerabilities of all the system 

components in real time and alert in case of emergency. 

3.   Risk Monitoring: The wide variety of vulnerabilities are 

associated with the SG network components. These 

vulnerabilities are changing in real time. Thus, it is hard 

for the system engineers to perform risk monitoring. 

Each function in the SG consists of network 

components, which further comprise of various 
vulnerabilities. There is a need of a tool that combines 

the risks associated with the network components of 

different functions into one model and quantifies it. 

IV.   RESILIENCE 

Resilience is the ability of a given system to avoid failures 
of its functions and components in the presence of the 
disruptive events and to quickly recover from those failures to 
an acceptable state without affecting function delivery. Fig. 1 
shows the general concept of SGR modeling. To model the 
resilience of complex engineering systems different variables 
are defined in the literature [2-4]. We define those variables in 
the context of the SG system:  

1.   Robustness: It is the ability of the SG to withstand 

disruptive events. For instance, if there is a shortage of 

power during the natural disaster such as earthquake or 

Tsunami, the power grid continues to meet electricity 

demand by using power storage units. To provide 

robustness against CPAs, the system must have 

following capabilities in place: generation units, power 

storage, fault protection system, peaker power plant, 

gas storage, backup of the control system and critical 

workstations on standby mode. Such set of capabilities 

provides robustness to the infrastructure with a motive 

to meet power demand even in the presence of attacks. 
2.   Adaptiveness: It is the ability of the SG to adapt in the 

presence of changing environment so that to overcome 

disruptive events. For instance, if some generation units 

in the grid stop producing power, the power capacity is 

redistributed to other working generation units within 

the same area and neighboring areas to meet the 

demand. To provide the adaptive capacity to the SG, 

the system must have following capabilities: 

automation feeder and switching control, automatic 

generation control, automatic voltage control, phase 

angle regulator, real time load management such as 

demand response, and real-time load transfer. All such 

functionalities regulate power generation, transmission, 

and delivery even in the presence of attacks. 

3.   Reliability: It is the ability of the SG to continue to 

perform its functions normally. It depends on the 

Robustness and Adaptive capacity of the system which 

further depend on the system characteristics and 

disruptive events that take place on the system 

components.  

4.   Restorative: It is the ability of the SG to restore/recover 

from the disruptive events to an acceptable state where 

system is reliable to deliver its function. The restoration 

capacity depends on the reliability of the system and 

system characteristics in the presence of disruptive 

events. To provide the restorative capacity, the system 

must have following capabilities: automatic islanding 

and reconnection, containment of system components, 

fault current limiting, automatic software patching and 

hidden networks to operate. All such features enhance 

resilience of the system against various contingencies.  

V.   BAYESIAN NETWORK 

In this section, we provide brief description of the BN and 

then, we describe how it is applied to the SGR modeling. 

A.   Bayesian Belief Network (BBN) 

BBN is a probabilistic graphical model based on Bayes’ 

theorem. It represents the conditional dependency between a 

set of random variables in a form of Directed Acyclic Graph 

(DAG) G = (V, E). V = {V1, V2, ......, VN} is a set of nodes or 

variables of the system and E is the set of edges representing 

the dependencies among variables. A link Ei, j from Vi to Vj 

represents the causal dependency between these two nodes. 

Here, Vj depends on the value of Vi and Vi is called parent 
(pa) of Vj. The relationship between variables of the BBN is 

measured using the conditional probability distribution (CPD). 

The joint probability distribution of N variables is: 

 

P (V1, …, VN) = Πi 
N P(Vi | Vi+1 …, VN)                 (1)                          
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Fig. 2.   Smart Grid Architecture 

 

Fig. 3.   Test Network 

 P (V1, …, VN) = Πi 
N P(Vi | Parents (Vi))                  (2) 

    To calculate the joint probability distribution, the individual 

distributions and conditional distributions among parent and 

children must be predetermined. Such expectations are 

measured from data analysis, expert knowledge or the 

combination of both and by performing the simulation. The 

major advantage of using BBN is to compute posterior 

probabilities of an event when certain events are observed in 

real time. This is called belief propagation. For instance, the 

likelihood of the SG to be in the resilient state is updated when 

certain disruptive events are observed on some of its 
components. Now we discuss how this concept is applied to 

quantify resilience.   

B.   BBN Applied to Resilience Modeling 

The probability of system resilience [2] is expressed 
regarding the probability of reliability and restorative capacity 
of the system. The likelihood of restoration depends on the 
likelihood of reliability and system characteristics when 
disruptive events are observed. The probability of reliability 
depends on robustness and adaptiveness of the system. The 
disruptive events can happen on different components of the 
SG. It depends on how system components are connected and 
how an event propagates from one part to other parts of the 
system. The joint probability distribution of the system 
according to Fig. 1 is defined as: 

P (Resilience) = P (Disruptive Events) *            (3) 

 P (Smart grid Components State | Disruptive Events) * 

 P (Robustness | Smart grid Components State) * 

 P (Adaptiveness | Smart grid Components State) *  

 P (Reliability | Robustness, Adaptiveness) * 

 P (Restoration | Reliability, Smart grid Components State) *  

 P (R | Reliability, Restoration) 

VI.   SMART GRID ARCHITECTURE AND TEST NETWORK 

In this section, we provide brief description about the SG 
architecture and then, we discuss the test network used for 
experiments. 

A.   Smart Grid Architecture (SGA) 

SGA (see Fig. 2) provides a full vision of the proposed 
system and ensures that minimum qualification of system 
requirements such as security management, network 
deployment, and policy implementation. It also identifies the 
key domain areas, functions, and their weaknesses. Thus, it is 
important to understand the SGA so that the system engineers 
can establish and implement security policies effectively. 

Starting from the left-hand side, building automation 
system, smart appliances, and electric vehicles are the 
endpoints that consume power from the grid. Building 
automation system manages the power consumption of the 
smart buildings and interacts with the central control system 
which controls other parts of the power network; smart 
appliances refer to power consumption devices at homes that 
connect to smart phones, desktop or laptops and provide you 
more control and information remotely. All such components 
send readings about the use of power by each appliance and 
electricity quality delivered to endpoints to AMI meters. 
Further, AMI meters send the collected data to the field 
collection system, vendor head end, and billing system. At 
these places, data is processed and stored in relevant databases. 
The data will then be sent to Meter Data Management (MDM) 
system where the data is used for various functions such as 
power prediction, customer load profile management, power 
outages, power quality at different places, and billing 
customers. MDM connects to Customer Information System 
(CIS) which maintains all the customer’s database. All the 
power quality readings are transferred to the SCADA where it 
monitors the overall power grid functionality.   
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Fig. 4.   Tool Design 

 Energy control center further manages power generation, 
distribution, and delivery. The data stored in the CIS and 
MDM, Outage Management System (OMS) predicts power 
outages and send information to the control center to manage 
power generation. Demand Response (DR) functionality is 
controlled through DR proxy. Many independent organizations 
are connected to DR proxy. DR proxy is further connected to 
DR Data Repository (DRDR). DRDR connects to DR Decision 
Support (DDS) and DR Automation Server (DRAS) that takes 
decision whether to perform DR functions in a given 
organization. DRAS interact with the OMS to check whether 
DR is required in response to reduced power generation. By 
understanding SGA, we know various power grid functions 
and components and how they are connected to each other. 
This understanding forms the basis of developing FBN in our 
model development of system design, which is explained in the 
Section VII-B. 

B.   Test Smart Grid Architecture 

 To develop a mock-up of our proposed design, we consider 
a test network in Fig. 3 which is a part of the SGA. The system 
consists of smart appliances and electric vehicle attached to the 
grid. The power consumption and electricity quality readings 
from these components are collected by the field collection 
systems, vendor specific heads, and billing system. Further, 
this information is communicated to MDM, and via MDM it is 
transferred to OMS to keep track of reserved power and power 
outages that might happen shortly. It also manages how much 
amount of power should be stored to meet the demand during 
contingencies. OMS interacts with the ECC to take decisions 
regarding power generation, DR, power delivery, etc. We 
develop the FBN, NBN, and VBN for this test graph and show 
how our proposed model is useful in quantifying resilience of 
the system. We explain the BN of the test network in the next 
section. 

VII.   TOOL DESIGN 

In this section, we discuss the input variables given to the 
tool, model development and output of the tool (see Fig. 4).  

A.   Input Variables 

1.   Network and SG functions: It represents the list of 

higher level network and SG funcitons such as energy 

management system, outage management system, 

power generation, demand response, smart meters, 

billing function and vendor head end.  

2.   Network and SG Architecture: The network architecture 

of the system that supports all the functions of the SG 

system. For instance, MDM consists of servers, 

workstations, database, and communication network. It 

also represents the interconnection between all these 

components.  

3.   Applications: The list of client side and server side 

applications is also given as input to the system. It also 

includes vendor side applications which integrate to the 

SGA.  

4.   Vulnerability Report: To compute the likelihood of a 

particular system compromise, we must have a list of 

vulnerabilities that exist in system’s components and 

applications. For instance, billing server has Cross Site 

Scripting (XSS), local file inclusion vulnerabilities, 

which can be exploited to gain control over the billing 

server. We will use Common Vulnerability Scoring 

System (CVSS) [12] scores to compute likelihood of 

compromise. 

 

Once we have these inputs to the system, it generates three 

BN at three different levels of hierarchy, which we describe in 

the next subsections. The output of the model is displayed on 

an interactive dashboard where system engineers can select a 

particular function and can view its system architecture, 

components, and information flow. Furthermore, they can 

select a particular component and can view its vulnerability 

report and likelihood of its compromise. These features give 

power to the system engineers to perform real-time monitoring 

and predict the impact of a compromise on different 

components of the system and finaly, quantify the resilience of 

the system.   

B.   Function Bayesian Network (FBN) 

FBN represents the causal interconnection between 
different functions of the SG. Nodes in the FBN describes the 
functions of the SG and edges represent the information flow 
from one function to another. It also describes how the impact 
of a system compromise travels across different functions. We 
use test network (in Fig. 3) to provide a better understanding of 
the FBN. Fig. 5 depicts the FBN of the test network. Smart 
meter function (S1) sends messages to the SG head function 
(S2) which further send messages to the billing system (S3). 
Similarly, electric vehicle charging data (consumption and 
power quality) is captured by the function (S5) and given to the 
Vendor particular head end (S6).   
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Fig. 5.   Test Network: Function Bayesian Network 

 

Fig. 6.   Test Network: Network Bayesian Network 

 

Fig. 7.   Test Network: Vulnerability Bayesian Network 

The data set from the billing system, head end and vendor 
specific end is provided to the MDM (S8). MDM connects 
with the OMS (S4), which is further connected to the ECC 
(S7). Finally, ECC is connected to Resilience function (R). 
Suppose an adversary compromises a smart meter by injecting 
a malware, he sends compromised messages about the power 
consumption all the way to the billing center and also exploits 
the vulnerability to gain control over the component. If he 
gains control over the billing system, he escalates privileges by 
exploiting vulnerabilities of other systems. FBN provides 
understanding to the system engineers that how information 
and control flow works in the SGA. They can also identify 
various attack paths an adversary may take if a certain function 
is compromised. In our model, they can choose any function on 
FBN and view its network components, which we describe in 
the next subsection. 

C.   Network Bayesian Network (NBN) 

NBN represents various network components supporting a 
particular function. The system engineers can select a specific 
function at the FBN level on the dashboard and can see its 
network components and analyze its functional status and 
information flow. Fig. 6 describes the NBN of the FBN 
illustrated in Fig. 5. To illustrate with an example, the smart 
meter functionality (S1) has components: home appliances, 
electric vehicles, smart meters and smart meter collector server. 
The communication between these components is mostly 

wireless. Smart Meter collector server collects data from all the 
smart meters defined in its zone and sends that information to 
the smart grid head end (S2) over the wireless mesh network. 
Further, S2 consists of workstations, database servers and 
smart grid head server which collects data from various S1 
systems. The significance of such modeling is to understand 
how data flows from one system to another, in other sense, 
whether there is any vulnerable path from one system to 
another. By providing such an interface, it provides the ability 
to analyze every system component and its impact on the 
overall system. In the next subsection, we describe that how an 
adversary compromises system vulnerabilities to move forward 
in the network. We have not shown firewalls and routers in this 
network diagram. We have displayed components that provide 
functionality to the SG and have vulnerabilities in their 
implementation. But we can extend this model to show other 
network components.  

D.   Vulnerability Bayesian Network (VBN) 

The system engineers can select a particular network 
component from the NBN and view the list of its 
vulnerabilities by vulnerability report submitted as an input to 
the system. It also provides the information about the 
likelihood of network component compromise based on the 
CVSS score. The possibility of the components combined to 
calculate the compromise probability of the network 
component and ultimately of the function to which network 
components belong to. Also, if there is a change in the 
vulnerability, the system automatically updates the belief of 
system compromise and propagate to other parts of the 
network. 

Attack Graph: Fig. 7. describes the attack graph from 
remote attacker’s point of view according to our test case. A 
remote attacker performs variety of attacks to gain access to the 
SG functions. According to our test case, the attacker exploits 
XSS, CSRF or SQL Injection vulnerability to gain access to the 
Vendor specific server or performs remote code execution on 
smart meters or smart meter collector. Once the attacker has 
access to the smart meter collector, he exploits open SSL heart 
bleed to gain access to the smart grid head server from where 
he targets the billing engine server. The SQL Injection 
vulnerability can be exploited to gain remote access through 
username and password from the database. Once he gains 
access to the billing engine, he performs the port scan over the 
network range and identify the MDM server.  

Once MDM server is identified, he exploits the buffer 
overflow vulnerability present in the server operating system. 
Then, the attacker gains access to the MDM directly without 
going through billing engine. Once he gains access to the 
MDM server, he performs the variety of attacks such as 
integrity attack by changing meter readings, but in this case, he 
is interested in having access to the energy control center. So 
he further performs scanning and identifies the OMS server 
which is connected to the MDM server. He exploits the open 
SSL v3 POODLE vulnerability and gets root access. Once he 
has access to the OMS server, he identifies and attacks the 
ECC by exploiting open heart bleed vulnerability. Table I 
indicates all the vulnerabilities corresponding to different 
servers in our test network. 
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 CVSS: Our motive is to compute the local probability 
distribution of system compromise based on the vulnerabilities 
of the system. For that, first, we need to calculate the likelihood 
of success for an attacker to exploit the known vulnerability. 
We use the process described in CVSS [12] to calculate this 
probability. CVSS score consists of three different scores: 
Base, Temporal and Environmental. The base score includes 
the essential properties of the vulnerability such as Attack 
Vector (AV), Attack Complexity (AC), User Interaction (UI) 
required or not, Privileged Required (PR) or not, affecting 
Confidentiality, Integrity, and Availability (CIA). The temporal 
score indicates the characteristics of the vulnerability that 
evolve over its lifetime. It includes variables like exploit code 
maturity, remediation level, and report confidence. And finally, 
the environmental score includes characteristics that are 
dependent on the implementation and environment of the 
organization. It includes variables such as the requirement of 
CIA and modified scope. We compute the probability of 
exploiting vulnerability by considering exploitability score as 
described in CVSS specification [12]: 

           P(Vi) = (8.22 * AV * AC * UI * PR)/10                (4) 

Table II represents the CVSS probabilities of compromise 
corresponding to each vulnerability. The local conditional 
probability distribution (LCPD) is computed when many 
exploits are involved. It depends on whether each vulnerability 
exploitation is a distinct event or not. If it is a distinct event, we 
compute LCPD using product rule (see eq. 5) otherwise we 
calculate joint probability for OR case (see eq. 6). Suppose an 
adversary compromises a known vulnerability of the system 
(X) and earns a user privilege (Y) to that system. It forms a 
causal relationship as X -> Y. 

TABLE I.    TEST SGA VULNERABILITIES 

System  

Name 
Vulnerabilities 

Smart Meters 
Default Password 
Remote Code Execution 

Smart Meter Collector Server Remote Code Execution  

Smart Grid Head End 
(Windows Server 2008) 

Open SSL Heart Bleed 

Billing Engine Server 

(Windows Server 2008) 
SQL Injection  

Meter Data Management 
Server (Windows Server 

2012) 

Open SSL v3 Vulnerability 

XSS client end  

Outage Management Server 

(Windows Server 2012) 
Open SSL POODLE Vulnerability 

Energy Control Center Server 
(Windows Server 2012) 

Open SSL POODLE Vulnerability. 

Vendor Specific Server 
(Windows Server 2012) 

Cross Site Request Frogery 
Cross Site Scripting (XSS) 
SQL Injection 

Workstations Buffer Overflow 

MS SQL Server 
SQL Injection 

MS SQL Buffer Overflow 

TABLE II.    EXPLOITABLE PROBABILITIES BASED ON CVSS 

Vulnerabilities  CVSS 

Probability  

Remote code execution  0.84  

Buffer Overflow 0.78 

Denial of Service 0.74 

SQL Injection MS SQL Server 0.72 

Open SSL Heart Bleed 0.75 

Open SSL POODLE  0.31 

Cross Site Scripting 0.61 

Cross Site Request Frogery 0.88 

 

P (Y | Parents(Y)) = Πi 
N P(Exploiti)               (5) 

P (Y | Parents(Y)) = 1 - Πi 
N (1 - P(Exploiti))          (6) 

 The probability of compromise of Y depends on the 
vulnerabilities that Y has and the likelihood of X to get 
compromised. X is the parent of Y. In case of multiple exploits 
that need to be exploited, the probability is computed via 
product rule. We compute the product of all the probabilities of 
exploits that are present in the parent of Y. LCPD is used to 
calculate the unconditional probability distribution 
corresponding to each vulnerability, by merging the marginal 
cases at each node. For instance, the unconditional probability 
of compromising billing server depends on all the nodes that 
influence it (smart meter, smart meter collector and smart grid 
head server). Similarly, the unconditional probability of the 
ECC server depends on all the nodes shown in the graph Fig. 7. 
The probability whether remote attacker attacks the SG system 
components is provided by the system engineers based on their 
experience and they revise their belief over a period. In our 
tool, the system engineers can change this probability to see the 
impact on the resilience of the system. 

 Posterior Probabilities: The probability to compromise a 
function changes over a period depending on the vulnerabilities 
of its network component’s and other factors. The posterior 
probabilities of system components are useful to evaluate the 
risk in the dynamic environment. For example, if we know that 
OMS is compromised, we can calculate the likelihood of 
MDM compromise using Bayes rule (eq. 7): 

 

     P(MDM/OMS) = P(OMS/MDM) P(MDM) / P(OMS)    (7)  

    = 0.99 

 
 We already know the value of P(MDM)=0.4786, 
P(OMS)=0.1484 (see fig. 12.) and P(OMS/MDM) = 0.31. The 
unconditional probability of MDM getting compromised was 
0.4786. But once we know that an attack incident at OMS, the 
posterior probability becomes 0.99. Similarly, the system 
engineers can calculate probabilities of successors of MDM 
and other nodes in response to an attack incident on OMS. 
Such technique allows the system engineers to see how the 
effect of an attack propagates to other parts of the system. For 
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instance, when the individual system gets outdated and has 
more vulnerabilities exposed to the outer world, the attacker 
has larger surface area to compromise the system, and that will 
affect the probability of compromise of other nodes as well. 
Similarly, the system engineers can also evaluate how attack 
surface area is reduced when a particular security control is 
placed on the node or vulnerabilities are reduced by updating 
the software. They can develop resource allocation algorithm 
to minimize the risk using posterior probabilities. 

 Another advantage of this approach is to partition the 
network by compromised probabilities. Once the likelihood of 
a component crosses a threshold, that component is either fixed 
immediately or removed from the network to reduce its effect 
on other parts of the system. The tool provides the ability to 
calculate posterior probabilities and show them on the 
dashboard so that system engineers can monitor the status of 
each network component.  

E.   Tool Output  

The main motive of this tool is to provide following 
functionalities:  

1.   Measure Resilience: The primary motive is to measure 

the resilience of the system in real time. By considering 

the vulnerabilities of the system components, the 

likelihood of their compromise is calculated. Using BN, 

we connect different system components and see how 

an attack propagates from one system to another. The 

resilience is computed based on the probability of 

likelihood of ECC compromise, which controls the 

power generation and distribution. If the probability of 

ECC compromise is high, the system is not resilient, 

and power delivery will be affected in case of an attack. 

As described in section IV, resilience is dependent on 

reliability and restorative measures. Due to lack of SG 

data, we only consider reliability. The probability of the 

ECC compromise works as an identifier of the 

resilience of the system.  

2.   Alert Mechanism: The alert mechanism helps system 

administrator to put check points on the probabilities of 

the system component compromise. Based on their 

knowledge of the system, they assign probability 

thresholds to each component described in the test 

network. If the probability of the system component 

compromise crosses threshold, an alarm is raised. This 

enables system engineers to identify most of the 

vulnerable components so that they can assign 

appropriate security controls and perform vulnerability 

assessment and penetration testing.  

3.   Predict Impact: The system engineers evaluate and 

predict the impact of a system component compromise 

on another components by computing posterior 

probabilities. 

4.   View System Architecture: The system engineers view 

the whole system on an interactive dashboard. The 

interactive dashboard provides a view of 1) FBN where 

all the system functions are logically connected, 2) 

NBN which is a detailed description of the function 

components and 3) VBN which describes the list of 

vulnerabilities associated with the components and 

probabilities of their compromise (unconditional 

probabilities) and attack graph. This enables system 

engineers to analyze the status of the SG system 

remotely, and they can perform impact analysis by 

simulating different attack scenarios on different 

components of the system.  

VIII.   TOOL PROTOTYPE 

In this section, we describe the simulation setup and the 
mock-up of the tool.  

A.   Tool Development 

 We have developed the User Interface (UI) of the tool in 
Java language using regular window toolkit class. It represents 
the framework that is visible to the system engineers on the 
dashboard. We maintain the static files database of the network 
components, functions and vulnerabilities (described in Section 
VII-A) as input to the tool. The tool parses the file and 
generates the FBN (see fig. 8.). In this mock-up, the lines are 
not directed. But in the real tool, the lines will be directed and 
marked by the type of information they represent. Note, here, 
our motive is to demonstrate a mock-up/UI of the tool that 
shows how powerful it is.  

 FBN represents the acyclic graph of the connected 
components according to the test network (see fig. 3 and 5). 
When a user clicks on a node of FBN, the function’s network 
components are represented and how they are connected (see 
fig. 9.). When the user clicks on a particular network 
component, the list of vulnerabilities associated with that 
component is generated (see fig. 10.). It also contains the 
details of the vulnerabilities, CVSS score and the probability of 
compromise. The system engineers can change the system 
configuration in the database consistently. The same changes 
are reflected in the tool on refreshing it. The system engineers 
can add or remove any component, discover or patch any 
vulnerabilities, and disconnect any component.  

 In this mock-up, we use the Bayes.jar to represent the 
unconditional probabilities of the functions. We create nodes 
corresponding to each functions and link them according to the 
test network (see fig. 11). Then, we provide the probability of 
compromise to each component. It gives the unconditional 
probabilities of compromise of each function as output. The 
system engineers view the expectations by selecting any 
function on the dashboard (see fig. 12.). 

 

Fig. 8.   Tool prototype: FBN. 
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Fig. 9.   Tool Prototype: NBN 

 

Fig. 10.  Tool Prototype: VBN 

In the future, we will implement the Bayesian algorithm in 
our tool. Over here our motive is to show the features of the 
BAGS tool available to the system engineers. In fig. 8, S7 
stands for the performance of ECC. This is the main 
component of the SG system. If ECC gets compromised, the 
power system may get shutdown. If this system has high 
probability of compromise, the overall system is at high risk. 
The cyber attackers can easily exploit the vulnerabilities and 
compromise S7. Functions that fall under the category of 
reliability, restoration, and adoption will be considered in our 
future work. Due to the limitation of space and the absence of 
real world dataset, it is difficult to demonstrate how they are 
modeled. 

 

Fig. 11.  Bayes.jar tool Function Nodes. 

 
Fig. 12.  Bayes.jar Unconditional Probability Distributions when Probability of 

remote attacker to attack is 0.70. 

 

Fig. 13.  Bayes.jar Unconditional Probability Distributions when Billing 

Engine’s SQL Injection vulnerability is patched. The effect of such 
change is propagated to other components. 

 

Fig. 14.  Bayes.jar: Unconditional Probability Distributions when remote Code 

Execution is vulnerability is discovered in Billing Engine server. The 
effect of such change is propagated to other components. 

B.   Results  

 Fig. 12. represents the unconditional probabilities of all the 
functions of the test network. Each function is a Bernoulli 
variable. True (T) variable represents the likelihood of 
compromise, and False (F) represents the probability of not 
compromise. They are computed by Bayes rule described in 
equation 2. Also, they are used to calculate the posterior 
probabilities of the components to get compromised. The 
system engineers can easily monitor the status of the 
components regarding compromise probabilities by analyzing 
the graph in fig. 5. If any vulnerability is discovered in a 
component or if any vulnerability is patched, the unconditional 
probabilities will automatically get change.  

 Fig. 13. represents the case when system engineers have 
patched the billing engine server, and its probability of 
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compromise becomes zero. There is a drastic change in the 
likelihood of compromise of other components which are 
children of billing engine server. Similarly, fig. 14 represents 
when the zero-day vulnerability is discovered in the billing 
engine server and how the probabilities to compromise of its 
children change. This is how BAGS enables engineers to 
evaluate the risk associated with every component and how 
risk propagates from one component to another in such 
interdependent network. Based on the experience of the system 
engineers, they set a threshold on the unconditional probability 
of any function and create an alert mechanism. This feature 
will also be implemented as part of the future work. 

IX.   CONCLUSION AND FUTURE WORK 

In this research paper, we presented the Bayesian Attack 

Graph for Smart Grid tool to quantify the resilience of a given 

smart grid system in the presence of multiple cyber-physical 

attacks in real time. BAGS takes system functions, network 

architecture, applications and vulnerability report as input and 

generates BNs at three different levels of hierarchy: FBN, 

NBN, and VBN. We have implemented a mock-up/UI of this 

tool by maintaining a static database of network architecture. 
The system engineers can incorporate this functionality into 

their system, and they can see the impact of any compromised 

component of the smart grid system on its resilience. BAGS 

enables system engineers to analyze how a failure of a cyber 

network component controlling a particular power grid 

functionality propagates from the cyber to the physical domain 

and its impact on SGR. It also helps them to identify the 

failure paths in advance from a smart grid function to another 

so that they can devise relevant secure strategies and deploy 

resources effectively and efficiently. BAGS works along with 

the intrusion detection and prevention systems or SCADA 
system. It provides better attack predicting capability and 

ability to perform containment of compromised components to 

stop the propagation of attacks to other parts of the system. 

The system engineers can feed this input to their dashboard of 

Security Operations Center to expedite the process of security 

risk assessment. Note, one can develop this tool to quantify 

the resilience of other CPSs such as oil and gas systems, 

nuclear plants, water treatment plants, etc. For that, they need 

to understand and incorporate the system’s cyber and physical 

infrastructure. Our future work will be to develop this tool 

using the real world dataset and deploy it in a SCADA system. 
We are in the process of discussion with companies that may 

provide SGA data to us. We will also implement Bayesian 

Algorithm and add features such as alert mechanisms and 

posterior probabilities as a part of our tool. Furthermore, we 

will develop an algorithm to allocate security controls to 

maximize the resilience of the system using game theoretic 

approaches. 
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