
Abstract—For evolving trustworthy software, engrossing on

uncovering process of fault in software is central. Nevertheless,

during testing, modifications in the testing routine, defect grav-

ity or testing-skill maturity and working environment, there

can be notable change in fault detection rate. When this sort of

pattern is observed in testing time it is called change point. In

this article, we inquire a resource distribution problem that op-

timally distributes software developing resources in such a way

that the cost of development is curtailed to optimization. In this

problem, for all modules the effect of chief circumstantial ele-

ment of change-point is considered. The constraint of pulling

off the desired reliability level for every individual module is

also incorporated in the formulation of the problem. A frame-

work based on Karush Kuhn Tucker (KKT) conditions is pre-

sented to work out the resulting non-linear optimization prob-

lem. A simulated numerical illustration has been analyzed to

reflect the formulation of the case and its solution by the algo-

rithm proposed.

Index Terms—Modular Software, Change-point, Software

Reliability Growth Model, Resource Allocation

I. INTRODUCTION

REAKING a vast and complex assignment into small

simple steps of objectives’ is one of the deep-seated

rules to success. This law prevails into software industry as

well. The quality, convolution and size of software have

risen, resulting in complete development of it as a hard

process. So, today maximum soft coded sharewares are de-

veloped by amalgamating small ordered independent soft

codes called modules. This methodology of developing Mod-

ular Software System helps soft code teams to proficiently

build the large sized coded complex development process in

a structured manner.

‘B

With the rising popularity of having efficient modular

software, there arises the need of designing reliable struc-

tures. As per texts [13], Software reliability is kept as the

chances that the software does not go wrong within an as-

signed period of time under given circumstances. Therefore,

with shortened maturity cycles, raised complexity of soft-

ware design, and great caustic penalty of software failures, a

major responsibility lies in the area of software testing. Dur-

ing the advance in development of modular software, faults

can seep in modules owing to individual flaw. These faults

make themselves marked in expressions of malfunction

when the codes are weathered autonomously during the

module testing phase of software development life cycle. To

evaluate modular software quantitatively and to find the to-

tal number of faults removed from each module mathemati-

cal tools namely software reliability growth models

(SRGMs) are employed. Assorted noteworthy metrics, like

primary number of faults, failure concentration, Trustwor-

thiness within a specific period of time, number of faults

residual, can be smoothly dogged through SRGM’s.

Through the last three decades, a great number of SRGMs

have been framed in literature [3, 13, 16, 19, 20, 22]. Early

researches related SRGM with respect to testing time [3,

17]. However, incorporation of testing resources leads to de-

velopment of more accurate SRGMs [4, 5, 9, 26]. The rea-

son being, the detection of faults are more intimately linked

to the amount of resources expended [18, 24] on testing as it

includes-

(a) Manpower, that takes into account

 Testing group (malfunction recognition personnel).

 Debugging group (Programmers\Failure rectification

personnel).

(b) CPU working moments

Huang et al. [5] worked with logistic resource function.

They established that both exponential-type and S-type

NHPP models can come under ideal and imperfect debug-

ging situations. Later, Kapur et al.[9] deliberated on the

testing resource reliant learning process and classified faults

into two types on the source of amount of testing resources

needed to remove them. This paper models fault exclusion

rate in terms of testing resource.

For accomplishing the goal of developing reliable modu-

lar software, the consideration of fault detection process is

vital as it aid in establishing the value of uncovering bugs

that lie dormant in the software by test techniques and test

cases. A lot of SRGMs in literature supposed that during the

fault detection process each failure caused by a fault occurs

independently and at random time according to the same

distribution [3, 20]. However, practically as the testing

evolves, the testing team gains insight and with the employ-

ment of new tools and techniques the fault detection rate

(FDR) gets markedly changed. Further, the other factors that

can affect the fault detection rate are operation environment,

testing stratagem and shortcoming density. And the point of

A study of Optimal Testing Resource Allocation Problem for

Modular Software with Change Point

Gurjeet Kaur1, Anu G. Aggarwal2, Aman Kedia3

1Shaheed Sukhdev College of Business Studies, University of Delhi, India
2Department of Operational Research, University of Delhi, India

3Shaheed Sukhdev College of Business Studies, University of Delhi, India
1gurjeetkaur@sscbsdu.ac.in, 2anuagg17@gmail.com ,3aman.kedia1111@gmail.com

Proceedings of the First International Conference on Information

Technology and Knowledge Management pp. 77–84

DOI: 10.15439/2018KM11

ISSN 2300-5963 ACSIS, Vol. 14

c© PTI, 2018 77

time where change in fault detection rate is observed is

termed as ‘Change Point’. It was Zhao [28] who came up

with the concept of Change point in software as well as

hardware reliability modeling. He established that incorpo-

ration of change point in SRGMs is vital for effective fault

detection modeling. Shyur [23], Wang and Wang [25] also

made offerings in this area. In accumulation, some studies

included change-point analysis in their models as the testing

resource consumption may not be smooth over time [4,

10, 15].

Another core apprehension in the software production is

the software development outlay. Overspending on develop-

ment cost can result in financial crisis for the company. On

the other hand, spending less can result in low quality soft-

ware product as in this case the software development firm

will have to set low reliability aspiration level for each mod-

ule. Thus, there arises the need of optimizing total develop-

ment cost of modular software. In modular soft code testing

stage, each modular code is tested autonomously. But this

has to be carried out in finite time. However, completing this

task involves on an average of 50% of the total budget of

software development cost. Hence there is requirement of

resource distribution decisions popularly known as “Testing

Resource Allocation problems”. This research is adding

contribution in Resource Allocation Area. We have devel-

oped change point incorporated non linear resource distribu-

tion case which is solved by Karush Kuhn Tucker (KKT)

optimality conditions.

The work is organized as follows: Section 2 details the lit-

erature review on testing resource allocation problem Sec-

tion 3 highlights on the Goel-Okumoto software reliability

growth model with change point and testing resource, re-

quired for modeling the failure mechanism of the modules.

Section 4 elaborates on formulation of our testing resource

allocation problem. Further in this section we also discuss an

optimization algorithm based on the KKT optimality condi-

tions. Section 5 illustrates the optimization problem solution

through a numerical example. Eventually, conclusions are

derived and are given in section 6.

II. LITERATURE REVIEW ON TESTING

RESOURCE ALLOCATION PROBLEMS

The value of SRGMs is not constrained to reliability as-

sessment of software systems. There application is well re-

searched and applied in resource distribution cases. These

decision problems are critical for software development

firms aligned to reliability, cost, time and resources parame-

ters. But the goal goes specific with the company needs.

There are software development firms that aim at optimiza-

tion of failure numbers. There are some that goes with opti-

mal cost decisions. Then there are others that go with con-

strained optimization problems. With these different inter-

ests consideration, software allocation has a rich repository

of research papers. Ohetera and Yamada [21] proposed re-

source distribution problem for optimizing the remaining

faults and optimizing resources respectively. Yamada et al.

[27] also formulated a constrained resource distribution

problem with constraint of reliability level. Hyper-geometric

model for modeling software reliability growth was em-

ployed by Huo et al. [7] to make optimal distribution of re-

sources amongst modules. Kapur et al. [8] discussed the

concept of marginal testing effort function (MTEF) and re-

lated optimal resource distribution problem. Not only this,

Kapur et al.[11,12, 29], using S-Shaped and exponential

SRGMs [3,20] have provided different allocation cases stud-

ied various resource allocation problems maximizing the

number of faults removed from each module. Khan et al.

[14] Huang et al. [6] too formulated and solved constrained

optimal resource distribution cases with one or more param-

eters of cost, fault and reliability. Sindhuja et al.[30] have

investigated assorted software make public decision policies

and resource distribution cases considering the dual restric-

tions of reliability and expenses.

However, the impact of change point has yet not been

considered in allocation problems for modeling the reliabil-

ity growth of modules. In this paper, we inquire a resource

distribution problem that optimally distributes software de-

veloping resources in such a way that the cost of develop-

ment is curtailed to optimization. In this problem, for all

modules the effect of chief circumstantial element of

change-point is considered. The constraint of pulling off the

desired reliability level for every individual module is also

incorporated in the formulation of the problem. (figure 2.1).

Figure 2.1 Modular Software incorporating Change Point

and Testing Resources

III. GOEL-OKUMOTO(GO) MODEL INCORPORATING TESTING

RESOURCE AND CHANGE POINT

A. Model Notations

a Initial number of faults

W(t) Cumulative testing resource in the

time interval (0,t]

w(t);

() ()
d

w t W t
dt

Testing resource intensity

 Change Point

() (())m t or m W t Cumulative number of faults

removed by time t

() (())b t or b W t Testing resource expenditure

based fault detection rate per

remaining fault

78 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

1b Fault detection rate per remaining

fault before change point

2b Fault detection rate per remaining

fault after change point

The GO software reliability growth model incorporating

testing resource and change point [4] taken in this article has

its foundation on Non Homogeneous Poisson Process

(NHPP). The NHPP models are based on the supposition

that the software system is constrained to failures at random

times caused by manifestation of remaining faults in the sys-

tem. So, for modeling the software fault detection phenome-

non, counting process (); 0N t t is defined. This

counting process exhibits the collective number of faults

discovered by testing time t. And the SRGM formulated on

this can be put mathematically as-

(3.1)

B. Model Assumptions

 NHPP governs removal phenomenon.

 Software is prone to failures during the execution

caused by faults remaining in the software.

 On a malfunction, the slip causing that failure is

without delay distant and no fresh faults are

introduced.

 The fault detection rate is with reverence to testing

resource strength and is proportional to the existing

fault content in the software.

 The fault recognition rate may transform at some time

moment (called change point, denoted by).

In view of the above assumptions, the model can be sum-

marized by the following differential equation.

d
m(t)

dt b(t)(a m(t))
w(t)

 (3.2)

Since, fault detection rate (FDR) changes at time point ,

therefore, it is defined as:

1

2

b , when 0 t

b(t)

b , when t

(3.3)

Case 1: For 0 t
Using equation (3.2) and (3.3), we have the following dif-

ferential equation

1

d
m(t)

dt b (a m(t))
w(t)

 (3.4)

Solving (3.4) with initial condition m(t=0)=0, we get,

1 ()
() 1

b W t
m t a e

 (3.5)

Case 2: t
Again by equation (3.2) and (3.3), we have

2

d
m(t)

dt b (a m(t))
w(t)

 (3.6)

The solution of above differential equation under initial

condition () ()m t m is

 b W() b W(t) W()1 2
m(t) a 1 e

(3.7)

Combining Case 1 and Case 2, we have the following ex-

pression of m(t)

1

b W() b W(t) W()1 2

b W(t)
a 1 e , when 0 t

m(t)

m(t) a 1 e , when t

where m(t) is the mean value function of the counting

process N(t).

IV. TESTING RESOURCE ALLOCATION PROBLEM

Let us consider modular software with N modules. These

soft coded structures vary in parameters like- (a) Complex-

ity (b) Size (c) Performing functions. We also consider that

the testing of these modular codes is done independently.

We also take into account a reasonable assumption of not

having infinite faults in the software modular structures. The

optimization problem considered is to minimize the software

development cost underneath a conjecture that there is

change in fault detection rate in each soft code module and a

set level of reliability is to be pulled-off.

A. Notations

i Module number counter i=1,2,…N

ai
Initial number of faults in module i

i
Change point for ith module

W(i) Testing resource consumed by ith module till
i .

b1i
Detection process pace in terms of rate before change point

in each module

b2i
Detection process pace in terms of rate after change point

in each module

C1i
Fault removal cost per fault before change point in ith

module during testing phase

C2i
Fault removal cost per fault after change point in ith module

during testing phase

C3i
Fault removal cost per fault from ith module in operational

phase.

C4
Testing cost

R0
Reliability level

W Sum testing resource

 () exp ()
() , 0,1,2,...

!

nm t m t
Pr N t n n

n

GURJEET KAUR ET AL.: A STUDY OF OPTIMAL TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE 79

B. Modeling mean value and reliability function for the

modules

It is not possible to test all the test cases of a large com-

plex Software. The two major reasons for this infeasibility is

(i) Deadline for the development, that is its release time

(call it T). (ii) Resources of testing. Let Wi be the testing re-

source used up on the ith module during testing time T.

Therefore, devoid of any loss of generality the numeral of

faults distant by time T can be assumed to be a function of

testing resource explicitly and using the model discussed in

section 3, the mean value function for the faults removed

from each module can be written as:

1i i

1i i i 2i i i i

b W
i i

i i

b W () b (W W ()
i i

a 1 e when 0 t

i.e. m (W)

a 1 e , when t

i 1, 2, , N (4.1)

Modeling expected number of faults removed from each

module using such an SRGM is advantageous because it

takes into consideration the consequence of change point.

Mathematically, reliability of soft codes of modules can

be described by [13]-

 () ()
() (|) exp i im t t m t

i iR t R t t t
 (4.2)

There is one more way to define Eq. (4.2). This was kept

by Huang et al. [5]. Eq. (4.3) states reliability as the fault re-

movals to the proportion of initial number of faults. That is-

Ri(t)= mi(t)/ai i 1, 2, , N (4.3)

Using Eq. (3.1) and (3.4) we have reliability of each module

is given by:

()i i

i

m W

a
 i 1, 2, , N (4.4)

When the reliability is defined by expression (4.3) it is as-

sumed that all the faults of the software are of same type and

are equally likely to be detected during testing. Thus as-

sumption goes well with respect to the constant FDR for the

model under consideration here.

C. Modeling Cost Function for Modular Software

For modeling cost function with respect to time, we have

1 2 3 4() () (() ()) (())C T C m C m T m C a m T C T (4.5)

Eq. (4.5) is with respect to time. Cost modeling with re-

spect to testing resources can be put as-

1 2 3 4() (()) (() (())) (())C W C m W C m W m W C a m W C W (4.6)

Further, since the software is modular and each module of

software is designed independently; therefore, the outlay of

fixing and testing of all components is the addition of indi-

vidual modules testing cost. Mathematically, we have:

1

1 2
1 1

3 4

1 1

() ()

(()) (() (()))

(())

N

i i

i

N N

i i i i i i i i i i
i i

N N

i i i i i

i i

C W C W

C m W C m W m W

C a m W C W

(4.7)

D. Problem Structure and Solution Algorithm

The resource distribution problem is structured with this

scenario- (a) W is the sum resources that needs to be distrib-

uted in N independent modules. (b) The aim of the alloca-

tion problem is- Minimizing Software Development Cost

given by Eq.(4.7) (c) The objective is constrained to aspired

reliability of at least R0

N

i i

i 1

N N

1i i i i 2i i i i i i

i 1 i 1

N N

3i i i i 4 i

i 1 i 1

Min C(W) C (W)

C m (W ()) C (m (W) m (W ()))

C (a m (W)) C W

Constrained to

N

i
i 1

W W

 ,

0iR R i 1,2, , N

iW 0 , i 1, 2, , N

(P1)

After substituting the value of i im (W) and iR from

(4.1) and (4.4) in (P1) we get problem as;

1i i i 2i i i i

1i i i 2i i i i

N

i i

i 1

N N
b W () b (W W ()

i i i i 2i i i i i

i 1 i 1

N N
b W () b (W W ()

3i i i 4 i

i 1 i 1

Min C(W) C (W)

C m (W ()) C a 1 e m (W ())

C a a 1 e C W

Constrained to

N

i
i 1

W W

 ,

 1 2() (()
01 i i i i i i ib W b W W

ia e R
 i 1, 2, , N

iW 0 , i 1, 2, , N

Dropping the constant terms and re-writing the above

problem in maximization form, we get the problem as:

Max Z(W)=

N

i i

i 1

C (W)

 =

 1i i i 2i i i i

N N
b W () b (W W ()

3i 2i i 4 i

i 1 i 1

C C a 1 e C W

80 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

Constrained to

N

i
i 1

W W

 ,

 1 2() (()
01 i i i i i i ib W b W W

ia e R
 i 1, 2, , N

iW 0 , i 1, 2, , N (P2)

Now, the reliability constraint of (P2) can be re-stated as:

 0 1 2

2

1
ln(1) ()

i i i i i i

i

W R b b sayY
b

Here, it may be noted that summation of Yi should always

be less than equal to W, otherwise the constraints of the for-

mulated problem will be inconsistent.

Therefore, using the constraint on reliability and letting

iW = i iX Y , the problem can be transformed as:

Max Z(W)=

 1i i i 2i i i i i

N N
b W () b (X Y W ()

3i 2i i 4 i i

i 1 i 1

C C a 1 e C (X Y)

Subject to

N N

i i

i 1 i 1

X W Y

 ,

 iX 0 , i 1,2, , N

(P3)

The first term of the objective function of (P3) is concave

and second term i iX Y is linear, therefore –(i iX Y)

can be treated as concave. Hence the objective function of

(P2) is concave function given to linear constraint. There-

fore the case is of convex programming problem.

Thus, the essential most favorable situations pertaining to

Karush Kuhn-Tucker for convex programming problem is

also sufficient [1]. For the problem (P3) we can affirm the

follow saddle value decision making statement:

 1 2() (()

1, 2, , 3 2
; 1,2,...

1

4

1 1 1

(....) 1

()

i i i i i i i i

i

N
b W b X Y W

N i i i
X i N

i

N N N

i i i i

i i i

Max Min F X X X C C a e

C X Y X W Y

(P4)

The necessary and sufficient situations for (X0, 0) where

X0= {Xi
0: i = 1,…, N) to be a saddle spot for the saddle

value cases are based on the KKT conditions and are speci-

fied by the next theorem.

Theorem 1. A feasible decision Xi (i =1,..,N) of (P4) is best

possible if and only if

(1) 1i i i 2i i i i ib W () b (X Y W ())
4 3i 2i i 2iC C C a b e

(2) 1i i i 2i i i i ib W () b (X Y W ())
i 4 3i 2i i 2iX C C C a b e 0

This theorem can be derived straight from KKT conditions.

Ruling a feasible key at optimality condition

Concerning KKT conditions to the (P3) we get-

 1 2
, ,..., ,

N

i

F X X X

X

=0

implies

i

0
i 3i 2i i 2i 4 1i i 2i i i

2

1
X ln C C a b ln C b b Y

b

(4.8)

and
 1 2, ,..., ,NF X X X

1 1

0
N N

i i

i i

X W Y

 implies

2 3 2 2 1 2
0 1 1

4

2

1

1/ ln

exp

1/

i

i

N N

i i i i i i i i i i

i i
N

i

b C C a b b b Y W Y

C

b

(4.9)

The solution algorithm of above problem, using KKT is as

follows:

Algorithm 1:

Step 0: Calculate

1

N

i

i

Y

If

1

N

i

i

Y

 >W then

Available resource W is insufficient to meet reliability

aspiration level of all the modules.

 Stop

 Else

Goto Step 1.

End if

 Step 1: Set S = 0.

Step 2: Calculate , 1,..., ;iX i N S using equation

(3.9) and (3.10)

i

0
i 3i 2i i 2i 4 1i i 2i i i

2

1
X ln C C a b ln C b b Y

b

2 3 2 2 1 2
0 1 1

4

2

1

1/ ln

exp

1/

i

i

N N

i i i i i i i i i i

i i
N

i

b C C a b b b Y W Y

C

b

Step 3: Rearrange index i such that:

X1 X2 X3 ……… XN-S

Step 4: If XN-S > 0 then Stop (the solution is optimal)

Else XN-S =0; set S = S+1,

End if

GURJEET KAUR ET AL.: A STUDY OF OPTIMAL TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE 81

Step 5: For re-allocating testing resources to remaining N-S

modules go to Step 2.

The optimal solution is given by:

i

i

i

0
i 3i 2i i 2i 4 1i i 2i i i

2

N N

2 3i 2i i 2i 1i i 2i i i i
0 i 1 i 1

4 N

2

i 1

0
i

1
X ln C C a b ln C b b Y , i 1,..., N S

b

where

1/ b ln C C a b b b Y W Y

C exp

1/ b

X 0, otherwise

V. NUMERICAL EXAMPLE

Presume that the sum total of testing resource accessible

for modules coded software is 60,000. This modular soft-

ware has six such modules. Further, it is supposed that there

is change in fault detection rate in each module. Further, be-

cause of change point the cost of testing before and after

change point differs. These costs are taken as 1 and 2 units

respectively for each module. The price of debugging a fault

for any module in operational segment is 8 units and charge

of testing up to release time is 0.5 units. The assumed esti-

mated values of all the parameters for modules M1, M2,

M3, M4, M5 and M6 are tabulated in table 5.1. Also, it is as-

pired that the reliability level of each module should be at

least 0.8.

Table 5.1 Parameter Estimates for six modules

Module a b1 b2 W()

M1 1321 0.000213 0.000211 642.85

M2 950 0.000181 0.000129 505.02

M3 1639 0.000112 0.000156 759.18

M4 1450 0.000198 0.000213 580.02

M5 1350 0.000218 0.000229 462.69

M6 987 0.000125 0.000321 315.11

Total 7697

Using algorithm 1 of section 3 the optimal allocation of

the resource for the six modules is shown in table 5.2.

Table 5.2 Optimal Allocation of resources for six modules

From table 5.2 we have that within the available budget of

6000, the total expected cost of testing all the modules such

that the reliability of each module is at least 0.8 is 51141.37.

The number of faults removed from the software is 6623.

The impact of increasing aspired reliability level for all

modules-

For studying the impact of increasing aspiration level for

all modules on the allocation of testing resources, we solved

the above numerical illustration by taking reliability level as

0.85 and 0.9 for each module.

Case 1: When aspired reliability for each module is in-

creased from 0.8 to 0.85

In this case we found, that by raising the aspiration of

reliability to 0.85, there was allocation of resources to

modules (given in table 5.3) but with increase software

development cost as compared to the cost of development

when reliability level of each module is 0.8(refer table 5.2).

Table 5.3 Optimal Allocation of resources for six modules

Figure 5.1 and 5.2 shows the comparison of Reliabilities

and Cost of Modules respectively when Aspiration level is

increased from 0.8 to 0.85.

1 2 3 4 5 6

0,75

0,8

0,85

0,9

Reliability of Modules for Aspiration Level 0.8 v/s 0.85

Reliability of
Modules when
W=60000 and
Aspiration Level
is 0.8

Modules

Relaibility

Figure 5.1 Reliability of Modules for Aspiration Level 0.8 v/s 0.85

1 2 3 4 5 6

0

2000

4000

Testing cost of Modules for Aspiration Level 0.8 v/s 0.85

Modules

Testing Cost

Figure 5.2 Testing Cost of Modules for Aspiration Level 0.8 v/s 0.85

Case 2: When aspired reliability for each module is in-

creased from 0.8 to 0.9

82 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

In this case we observed that

6

1

i

i

Y

 is strictly greater

than W. So using the proposed algorithm we stop with the

conclusion that the given set of constraint inequalities is in-

consistent.

The impact of increasing/decreasing total testing resource

budget on the optimal allocation among modules

For studying the impact of change in total testing resource

budget on the optimal allocation among modules, we in-

crease and decrease the total testing resource W by 20%.

Case 1: W is increased by 20%

In this case we got the allocation as given in table 5.4.

Table 5.4 Distribution of resources for six modules

From table 5.4 we observe that by increasing the budget

there is increase in reliability level of modules but with raise

in total cost. Figure 5.3 depicts the comparison of Relaibility

of Modules when W=60000 and when it is increased by

20%. The total cost comparison with W=60000 and

W=72000 is shown in Figure 5.4.

1

48000

50000

52000

54000

56000

Total Testing Cost When W=60000 and When It is Increased by 20%

Total Testing
Cost When
W=60000Total Cost

Figure 5.3 Reliability of Modules when W=60000 and When It is in-

creased by 20%

Case 2: W is decreased by 20%

In this case we get that

6

1

i

i

Y

 is strictly greater than W.

So using the proposed algorithm we stop with the conclu-

sion that the given set of constraint inequalities is inconsis-

tent.

1

48000

50000

52000

54000

56000

Total Testing Cost When W=60000 and When It is Increased by 20%

Total Testing Cost
When W=60000

Total Cost

Figure 5.4 Total Testing Cost when W=60000 and When It is increased

by 20%

VI. CONCLUSION

Allocation of testing resources during module testing

phase is an important issue for the project managers in de-

veloping a reliable and economical modular software sys-

tem. This research takes into account change point in modu-

lar software development and its associated resource distri-

bution problem. For modeling the failure process of modules

an exponential SRGM with testing resource and change

point is used. The allocation problem is convex program-

ming problem and is solved using Karush Kuhn Tucker

(KKT) optimality conditions. Using the numerical example

some important observations related to allocation problem is

also presented in the paper.

The present study is done under the assumption of inde-

pendence of the failures of different modules. We can also

explore the possibility of including multi dimensional soft-

ware reliability growth modeling so as to take care the ef-

fect of not only testing resource but also other testing factors

like testing coverage, testing time/number of test cases on

the fault removal process simultaneously. This paper takes

into account independent behavior of faults in modules soft

codes. In future interactions among modules and depen-

dence of the failures can also be incorporated in the model

building.

REFERENCES

[1] Bazaraa, S. M. and C. M. Setty, “Nonlinear programming: theory and

algorithm”, John Wiley and Sons,1979, New York.

[2] Camuffo M., Maiocchi M., Morselli M. (1990) “Automatic Software

Test Generation Inform Software Technology”, 32(5), 337-346.

[3] Goel A. L. and Okumoto, K., “Time dependent error detection rate

model for software reliability and other performance measures”, IEEE

Transactions on Reliability, 1979, R-28, 206–211.

[4] Huang C. Y., “Performance analysis of software reliability growth

models with testing-effort and change-point”, Journal of Systems and

Software, 2005, 76, 181–194.

[5] Huang C. Y., Kuo S. K., Lyu M. R., “An assessment of testing-effort

dependent software reliability growth models”, IEEE Transactions on

Reliability, 2007, 56, 198–211.

[6] Huang C. Y., Lo J. H., Kuo S. K. and Lyu M. R., “Optimal allocation

of testing resources considering cost, reliability, and testing –effort”,

Proceedings of the 10th IEEE Pacific International Symposium on

dependable Computing, 2004.

[7] Huo R. H., Kuo S. K., Chang Y. P., “Needed resources for software

module test, using the hyper-geometric software reliability growth

model”, IEEE Trans. on Reliability, 1996, 45(4), 541-549.

GURJEET KAUR ET AL.: A STUDY OF OPTIMAL TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE 83

[8] Kapur P. K., Bardhan A., Yadavalli V., “On allocation of resources

during testing phase of a modular software”, International Journal of

Systems Science, 2007, 38(6), 493-499.

[9] Kapur P. K., Goswami D. N., Bardhan A., Singh O., “Flexible

software reliability growth model with testing effort dependent

learning process”, Appl. Math. Model, 2008, 32, 298–307.

[10] Kapur P. K., Gupta Anu, Shatnawi Omar, Yadavalli V. S. S., “Testing

Effort Control Using Flexible Software Reliability Growth Model

With Change Point” International Journal of Performability

Engineering- Special issue on Dependability of Software/ Computing

Systems, 2006, 2(3,), 245-262.

[11] Kapur P. K., Jha P., Bardhan A., “Dynamic programming approach to

testing resource allocation problem for modular software”, Ratio

Mathematica, Journal of Applied Mathematics, 2003, 14, 27-40.

[12] Kapur P. K., Jha P., Bardhan A., “Optimal allocation of testing

resource for a modular software”, Asia Pacific Journal of Operational

Research, 2004, 21(3), 333-354

[13] Kapur, P. K., Garg, R. B. and Kumar, S., Contributions to Hardware

and Software Reliability, World Scientific: Singapore 1999.

[14] Khan M., Ahmad N., and Rafi L.,” Optimal Testing Resource

Allocation for Modular Software Based on a Software Reliability

Growth Model: A Dynamic Programming Approach”, Proceedings of

the International Conference on Computer Science and Software

Engineering, 2008.

[15] Lin C. T., Huang C. Y., “Enhancing and measuring the predictive

capabilities of testing-effort dependent software reliability models,

Journal of Systems and Software, 2008, 81, 1025–1038.

[16] Lyu M. R., Handbook of Software Reliability Engineering, McGraw-

Hill, New York, 1996.

[17] Musa J. D. “A Theory of Software Reliability and its Application”,

IEEE Transaction Software Engineering, 1975, SE-1, 312-327.

[18] Musa J. D. and Okumoto K. “A Logarithmic Poisson Execution Time

Model for Software Reliability Measurement”, in Proceedings of 7th

International Conference on Software Engineering”, 1984, 230-238.

[19] Musa J. D., Iannino A., Okumoto K., Software Reliability:

Measurement, Prediction, Application, McGraw-Hill, New York,

1987.

[20] Obha, M., “Software reliability analysis models”,IBM Journal of

Research and Development, 1984, 28, 428–443.

[21] Ohetera H. and Yamada S., “Optimal allocation and control problems

for software testing resources”, IEEE Transactions on Reliability,

1990, 39 (2), 171-176.

[22] Pham H., Software Reliability, Springer-Verlag, Singapore, 2000.

[23] Shyur H. J., “A stochastic software reliability model with imperfect-

debugging and change-point, Journal of Systems and Software, 2003,

66, 135–141.

[24] [Trachtenberg M., “A General Theory of Software-Reliability

Modeling”, IEEE Transaction on Reliability, 1990, 39, 92-96.

[25] Wang Z. and Wang J. “Parameter Estimation Of Some NHPP

Software Reliability Models With Change-Point” Communications in

Statistics- Simulation and Computation, 2005, 34, 121-134.

[26] Yamada S., Ohtera H., and Narihisa H., “Software Reliability Growth

Models with Testing-Effort”, IEEE Transactions on Reliability, 1986,

R-35(1), 19-23.

[27] Yamada S. Ichimori T. Nishiwaki M., “Optimal allocation policies for

testing-resource based on a software reliability growth model”,

Mathematical and Computer Modelling, 1995, 22(10-12), 295-301.

[28] Zhao, M., “Change-point problems in software and hardware

reliability” Communications in Statistics––Theory and Methods,

1993, 2 (3), 757–768.

[29] Kapur, P K, Anu G Aggarwal and Gurjeet Kaur, “Optimal Testing

Resource Allocation for Modular Software Considering Cost, Testing

Effort and Reliability using Genetic Algorithm”. International Journal

of Reliability, Quality and Safety Engineering. 2010, 16(6): 495-508..

[30] Sai Sindhuja K., Yuva Krishna A., Four Problem Minimization in

Software Testing Resource Allocation, IOSR Journal of Computer

Engineering, 2016, 18(6), 109-116.

84 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

