
Abstract—Continuous Evaluation and feedback not only

helps in improving learning of a student, but also acts as a con-

stant motivator to put in more efforts. But then, feedback and

assessment are very difficult and time consuming in practice.

Thus, automating the entire system of assessment, evaluation

and feedback will be highly beneficial. But, building such tools

for all courses is yet not feasible. However, e-assessment tools

for programming courses in Computer Science discipline can

be developed. In this paper, we review various grading tech-

niques used by these tools to assess a student’s programming

assignment. Further, this paper discusses various types and fea-

tures of tools according to which an appropriate tool should be

selected. And, in the end, we will be highlighting the extent to

which students and instructors are actually benefited by these

tools.

Index Terms—E-Assessment; Automated Tool; Program-

ming Languages; Static Analysis; Dynamic Analysis; LMS

Based Tools

I. INTRODUCTION

SSESSMENT plays an integral role in any educational
system. It helps in assessing the knowledge acquired

by a learner at any point of time [1, 8]. However, with sub-
stantial increase in number of students getting enrolled at
Universities in either conventional or distance learning en-
vironment, usual ways of assessing a student are becoming
inadequate in terms of both time and effort [5].

A

Thus, the notion of e-Assessment was introduced to
overcome all the inadequacies of traditional pen and paper
assessment modes. The accessibility to automated tools [8,
9] to assist the evaluation of students’ work and providing
students with appropriate and timely feedback can really
help in motivating the student to learn with more focus [1,
24]. The feedback provided by the tool can also be further
enhanced by using some techniques to direct a student to
engage in self learning aiming at improvement

Although, building such tools for evaluating students’
work for all kind of courses is not yet feasible. However,
courses that involve formal language of expression i.e.
where every instruction can be expressed in terms of a lan-
guage can be automated, such as, programming courses
[8, 36] in Computer Sciencediscipline.

Programming is the core of Computer Science discipline.
But, today programming [36] is not restricted to only Com-

puter Science students. It is becoming an important part
even in various other academic disciplines. The best way to
learn a programming language is to practice a large set of
problems. The skills will be improved through practicing
many programming exercises. As a student, enormous satis-
faction is attained if all the practiced problems are evaluated
by some expert highlighting all insights. Getting a detailed
and timely feedback serves as a motivating force for a stu-
dent. This will not only help them to understand their mis-
takes, but also to improve their skills. But as an evaluator,
it’s very difficult to evaluate each and every problem for all
students. Thus, building an E-assessment tool to assess a
student’s program and providing an appropriate feedback is
much needed [1, 3].

The purpose of an e-assessment tool [8, 10] for program-
ming languages is to improve programming skills in the stu-
dents, paying exceptional attention to beginner students [1,
15]. For a student to practice more and more problems, im-
mediate and thorough feedback plays an important role.

Both instructors and students are benefitted by these tools.
As of instructor’s point of sight, assessment tools can be
used to automate mundane tasks that incur a lot oftime and
effort manually [5]. For example, using these tools, an in-
structor can automatically correct assignments, grade stu-
dents and provide a timely feedback [1, 3, 8].Also, the as-
sessment results are trustworthy and much easier to compre-
hend [3].

As of the students’ point of sight, the timely feedback im-
parted by the tools push them to practice more and more
programming problems.Thus, their programming skills are
also improved. Also, students are motivated to constantly
improvise their assignments by re-submissions until an ap-
propriate solution is obtained [4, 9].

In this paper, we focus on reviewing certain e-assessment
tools available for grading a programming assignment. Fur-
ther, we also discuss various grading techniques and classifi-
cation schemes for a tool. Then in the end of this paper, we
discuss the effectiveness of e-assessment tools with respect
to students and instructors.

This paper is structured into five sections. Section II dis-
cusses main approaches used by a tool to assess a program.
Section III reviews categorization of tools according to cer-
tain parameters. Section IV mentions few readily used e-as-

E-Assessment Tools for Programming Languages: A Review

Sugandha Gupta1, Anamika Gupta2

1Sri Guru Gobind Singh College of Commerce, University of Delhi
2Shaheed Sukhdev College of Business Studies, University of Delhi

1sugandhagupta@sggscc.ac.in, 2anamikargupta@sscbsdu.ac.in

Proceedings of the First International Conference on Information

Technology and Knowledge Management pp. 65–70

DOI: 10.15439/2018KM31

ISSN 2300-5963 ACSIS, Vol. 14

c© PTI, 2018 65

sessment tools. Section V discusses research questions that
helps to identify how important are e-assessment tools to
students and instructors.

II. MAIN APPROACHES FOR ASSESSMENT

For automatic assessment of a programming code, two
major approaches have been devised i.e. Static Analysis and
Dynamic Analysis [2, 5].

(1) Static Analysis

It is performed by inspecting the source code of the pro-
gram without executing it. In this method, structure of the
program and content are observed [2, 3]. In the old days,
this was the only means to assess a programming code. Stu-
dents used to submittheir programming assignment code,
and teachers based their assessment on examining the code
without actually executing it.ASSYST [13], CAP [15] and
Expresso [7, 14] are few examples of system that only use
static analysis.Within this approach, following methods have
been characterized [4]:
 Programming-style analysis: According to this, a

quality program is the one which is highly readable. For
this, parameters like expressive variables names, use of
constants, line spacing, indentation, comments, lesser
global data etc are evaluated [3].

 Semantic-errordiscovery: These errors are discovered
when a statement is syntactically correct, but leads to
failure in program execution. Most common semantic
errors for a beginner in programming are division by
zero, infinite loops and terminating a loop header. Some
semantic errors can even result in crashing of the
system [2].

 Software metrics analysis: It is a function that produces a
single output that can be interpreted as the measure of
software quality. Metrics cover the size of program in
terms of number of lines of code, cyclomatic
complexityof the code and quality [2, 7].

 Keyword analysis: Instructor gives a list of keywords
which he/she is looking for in the solution. This
parameter deals with finding these keywords in the
program to be assessed and matching it with those
specified by the instructor [2, 5].

(2) Dynamic Analysis

Under this approach, a program is executed against many
different test cases. And, the output obtained is equated
against the anticipated output. [3, 6] If they are same, then
the program is considered to be correct. TRY [7, 16] is an
example of system that performs only dynamic analysis.
Within dynamic analysis [3, 5, 6], two different methods of
evaluating a program are available:

Black-Box approach: The entire program is executed,
and its output is examined against different test
cases. And, then the program is considered as

“correct” or “incorrect” based upon match or
mismatch [2, 3]. Under this approach, the entire
program is treated as an atomic entity.

Grey-Box approach: Under this approach, a program is
divided into a set of functions. And, then each and
every function is assessed separately. The final
grading of the program is obtained by the
amalgamation of the partial grades of these
functions. Using this approach, a program with
some function with error can also be graded [2].

In dynamic analysis, selection of test case against which a
program will be executed is an important decision. Nor-
mally, the evaluator submits the test cases with the problem
itself.

(3) Static Analysis v/s Dynamic Analysis

A program with syntax errorslike a omitted semi-colon,
mis-match in number of opening and closing parenthesis,
etc. prevents the program to compile. And thus, such a pro-
gram can’t be executed using dynamic analysis. In this case,
a grade of zero is awarded to the program. On the other
hand, a program is assessed even when it fails to execute in
case of static analysis [3, 6].

In case of dynamic analysis, student just gets to know
whether the program executed successfully and anticipated
output is produced or not. So, it is the student’s responsibil-
ity to find out all the errors and fix them. Whereas in static
analysis, student gets to know about all the errors present in
the program [2, 3].

Dynamic analysis approach is not suitable for the set of
programming problems which can have multiple solutions,
because to assess such a code, instructor will have to submit
an exhaustive set of test cases. This limitation is not applica-
ble for static analysis approach.

There are some tools which combine both the strategies to
grade a program. AutoLEP [10] and Auto Grader [19] are
tools which combines static and dynamic analysis approach
to grade a program.

III. TOOLS REVIEW

Three classification schemes [5] have been identified for
the tools: (i) assessment-type, (ii) approach, and (iii) spe-
cialty.
(1) Classif catiin by Assessment-iType:Under this, the

assessments tools are categorized in three types based

upon how the assessment process is carried:

1. Manual Assessment: Assessment of the programming
assignment is done “manually by the instructor
with assistance of the tool”[3].

2. Automatic Assessment: Assessment of a programming
assignment is done automatically by the tool.But,
the instructor will have to clearly state the
parameters on which the program code should be
assessed before the assessment process[3, 5].

3. Semi-Automatic Assessment: Assessment is performed
automatically by the tool, but manual inspection of

66 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

the programming code is required by the inst-
ructor [3].

(2) Classif catiin by Appriach:Under this, three

approaches were identified based on howthe assessment

process is commenced.

1. Instructor Centered Approach: After the
submissions of programming code by student,
assessment process is initiated by the
instructor. The code is assessed by the tool and
results are forwarded to the instructor for
review. After review, final results are
formulated by the instructor and given to
students.

 Student Centered Approach: The assessment process is
started by the student. Programming code submitted by
the student should abide certain specifications stated by
the instructor, which will be used by the tool for
assessment.After the completion of the assessment
process, assessment results are forwarded to both the
instructor and students [5].

 Hybrid Approach: These tools incorporatestrong points
of both the abovementioned approaches. Under this
approach, three different strategies were identified:
–Preliminary validation [5]: Instructor starts the
assessment process, but a preliminary evaluation of the
solution is carried out by the tool.BOSS [9], OTO [30]
and PASS [7] are few tools that implement this strategy.
–Partial feedback [5]: Tool assesses the code partially.
Instructor manually evaluates the final code. WebCAT
[8] uses this strategy for assessment of programming
codes.
-Instructor review [5]: A feedback is provided to the
student after evaluation of the code by the tool. But, that
feedback is not final, as the result of tool’s assessment
is accessible and updatable by the instructor. The
instructor’s decision would be final and would be
intimated to the student. MOOSHAK [11] implements
this approach.

(3) Classif catiin by Specializatiin:Under this, the

assessment tools are classified based on their ability to

perform extra functions other than assessment of a

programming code.

 Tools Specialized in Competitions [5]: The assessment
tool is used to evaluate codes of all students using
specific test cases. As a result of the evaluation process,
it specifies out of all the codes, which all codes are
acceptable. ONLINE JUDGE [22, 23]implements this
strategy.

 Tools Specialized in Quizzes [5]: A set of questions are
formulated which should be answered by the students.
And based on the result of evaluation of theses answers,
winners are selected. This strategy is also used in
recruitments.AutoLEP [10]uses this approach for
assessment.

 Tools Specialized in Software-Testing [5]: These tools
are used to automate the testing process, thus reducing
the dependence on manual testing. Prog Test [17] is
used for software testing purposes.

A fourth classification is also possible, i.e. classification
on the basis of usage. An e-assessment tool can either be
used as a standalone tool, or in integration with some IDE or
Learning Management System (LMS). A standalone e-as-
sessment tool can be deployed on either instructor’s or stu-
dent’s system and can be used for grading. Examples of
tools that fall in this category are AutoLEP [10] and INGIn-
ious [20]. An IDE integrated e-assessment tool can be used
with an IDE specific to a programming language. WebCAT
[8] and Petcha [18] are integrated with IDE to grade pro-
gramming assignments in java. A LMS integrated e-assess-
ment tool is used in integration with a LMS (majorly edX,
Audacity, Coursera) to grade programming assignments.

IV. DESCRIPTION OF TOOLS

Based on the specifications and characteristics discussed
in the previous two sections, below are few readily used E-
assessment tools:

(1) WebCAT:Edwards and Perez-Quinones developed
Web-CAT to assess student’s code and test cases [8]. The
students need to submit their own test cases with their codes,
enabling them to demonstrate the correctness and validity of
their own programs. It uses dynamic analysis and partial
Feedback [5].

(2) BOSS:It is a tool developed by Luck & Joy to assist
the online submission and successive processing of pro-
gramming assignments. This tool can be used by in two in-
dividuals: first, by students to obtain the feedback for their
submitted programs. Second, tool can be used by instructors
in order to grade student submissions [9]. It uses static anal-
ysis and preliminary validation [5] (Hybrid Approach).

(3) AutiLEP: AutoLEP [10] is a standalone tool that uses
a combination of static and dynamic analysis approach to
grade the programming assignments. That is, it not only
evaluates the output of the program but also deals with the
construct of the program.

(4) Miishak:It is a “web-based learning system” initially
designed to conduct programming contests over the Internet.
It provides specific interface to every user according to its
profile, i.e. it will be different for student administrator,
user, guest user, instructor and student [11].

(5) CiurseMarker: CourseMarker was developed at the
University of Nottingham as a successor to the Ceilidh in
2003. Students use CourseMarker client on their system and
login into their account. They select the course, topic and
exercise they want to complete. Students write the program
in response to the problem description provided to them and
submit it. Program’s output is matchedagainstthe expected
output of the program and results are shown to students.
Students can re-solve the problem if it is not satisfactory,
upon teacher’s permission [12].

(6) ASSYST: It practices two user views: one correspond-
ing to student and other corresponding to the instructor. Us-
ing the student view, a student submits a programming code

SUGANDHA GUPTA, ANAMIKA GUPTA: E-ASSESSMENT TOOLS FOR PROGRAMMING LANGUAGES: 67

for subsequent grading; and using the instructor view, in-
structor guides the assessment process [13].

(7) Expressi: This tool is used for an introductory Java
programming courseand it processes a program in multiple
passes. The first pass accepts programmer’s codeas an input
and removes comments and stores the resulting characters in
a vector. In the second pass, white spaces are removed and
the file is tokenized, and the result is stored as a vector of
words. Punctuation and white space are used as delimiters to
identify words. Mistakes are detected (if any) and the appro-
priate error messages are printed in the final pass. These
messages can be used to fix the program[14].

(8)CAP: The “Code Analyzer for Pascal (CAP)” [15] ana-
lyzes syntactical, style and logical errors of a program and
gives a feedback to the student stating the same. The feed-
back indicates the problem with the code and a measure to
correct that.

(9) TRY: TRY [16] system was developed for Unix oper-
ating system which test student program with a set of hidden
test data.

(10) Prig Test: It is a web-based environment for impart-
ing a feedback to the student after successful assessment of
the programming assignment submitted by the student. Prog
Test evaluates a student’s submission on basis of: Instruc-
tor’s code and test cases, Student’s code and test cases. A
student has to submit program as well as test cases used by
him to test his own program. The instructor’s program is
asignificant parameter used for assessing the student’s pro-
gram. [17].

(11) Petcha: It acts as an “automated Teaching Assistant
in computer programming courses”, helping students to learn
programming more efficiently.Also, it imparts feedback to
the student for the solutions of programming assignments
submitted by the student [18].

(12) Auti Grader: It is a new tool designed at MIT to re-
view faulty code and automatically provide feedback on how
to fix it. It uses Error Models and Constraint-based synthesis
to perform this [19].

(13)INGIniius: INGInious [20] is a tool designed to auto-
matically grade programming code submitted by the user. It
can virtually cater a large set of programming languages

(14) Curatir: It grades a program by a strict textual com-
parison of the solution provided by the instructor and the so-
lution submitted by the student[21].

(15) Online Judge: It also textually compares the code
submitted by the student and the instructor. It is used to
grade programs in various languages (C, C++, Java). It is
also for conducting quizzes.

(16) HackerEarth Recruit: It is an online skill assessment
tool for conducting programming tests to assess developers.
It saves the pain of going through hundreds of resumes, by
automating the process of evaluating technical skills, which
helps to quickly filter the competent candidates.

(17) LMS Based Tiils: This category of tools can be used
to assess a student in the course enrolled on the basis of
his/her submissions during the course. Further, it can be
used to detect plagiarisms, generate and evaluate test cases
for a program.

V. ARE E-ASSESSMENT TOOLS USEFUL IN PROGRAMMING COURSES

Four research questions were formulated to measure the
degree to which e-assessment tools have helped to students
and instructors [25]:

RQ1. Have e-assessment tools laid a positive impact on
student learning?
RQ2.According to students, have e-assessment tools
improved their performance?
RQ3According to instructors, have e-assessment tools
improved their teaching experience?
RQ4. Is the result obtained by e-assessment tools precise and
useful?

RQ1. Have e-iassessment Tiils laid a pisitive impact in

student learning?

In 2003, Edwards [26] presented fascinating results when
he changed the e-assessment tool in a junior level course on
comparative languages, i.e. Curator was replaced by Web-
CAT, demonstrating more timely submission of assignments
along with test cases by the students. In 2003, Woit [27] col-
lected data of students for “five consecutive years” compar-
ing their performance on online tests with and without e-as-
sessment tools. He concluded that online assessment gave a
more precise indication of student knowledge. In 2005, Hig-
gins [28] conducted an experiment in which “CourseMarker
substituted Ceilidh at the University of Nottingham”, thus
increasing the passing percentage of students. Also in 2005,
“Malmi [30] showed results from students using TRAKLA
and TRAKLA2”, in which final exam grades improved
when students were allowed to resubmit their work. In 2011,
Wang [31] showed that final grades of students using Au-
toLEP for grading were way better than grades produced
without using any tool.

Considering all these facts, a positive impact was inferred
with use of e-assessment tools on student performance. End-
of-grades or final exam scores were major measures used to
measure this.

RQ2. Accirding ti students, have e-iassessment tiils

imprived their perfirmance?

In 2003, Edwards [26] proved that using WebCAT laid a
positive impact using a 20-question survey for students. In
2005, Higgins [27] proved that over 75% of students’ loved
the flexibility to re-submit a programming assignment due
to use of an e-assessment tool by carrying a survey to test
the tool CourseMarker and indicated that. In 2009, Garcia-
Mateos [32] presented Mooshak, and handed over the stu-
dents a survey asking agreement or disagreement with re-

68 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

spect to the tool. 77% of the students specified that “they
learn better with the new methodology than with the old
one,” while 91% said that “if they could choose, they would
follow the continuous evaluation methodology again.” Also
in 2012, Brown [33] presented a surveyon student’s opinion
about the impact of using JUG automated assessment tool.
Given the question “Did the automatically graded tests
match your beliefs of the requirements?” the major chunk of
students opted for the answer, “Sometimes.” But the ques-
tion “did the reports from the automatic grader clarify how
your code shouldbehave?” urged to students answering “Of-
ten.”

Unconvincing results concerning student perceptions of e-
assessment tools were observed. Students had a mixed reac-
tion on this question; but a significant number of stu-
dentsindicatedtheir dissatisfaction with the tools.

RQ3 Accirding ti instructirs, have e-iassessment tiils

imprived their teaching experience?

In 1995, Schorsch [35] stated that “6 out of 12 instructors
who used CAP” for grading assignments indicated that the
tool helped them saving around ten hours effort incurred in
grading a section earlier.In 2003, Venables [35] used SUB-
MIT (e-assessment tool) and stated that the feedback im-
parted by the tool was successful to provide answers to
doubts of students which they had while solving the assign-
ment. This feature of the tool helped by saving onto the
class time that otherwise would have been spent in respond-
ing to students’ questions. In 2012, Queirós [36] claimed
that “automated grading is better than manual grading in
terms of efficiency, accuracy, and objectivity” as e-assess-
ment tools eradicatefavoritisms and other biased factors
from the grading process, and submissions are noticeableat a
greater pace.

Majority of the instructors have reported that initially a
substantial amount of their time is incurred in learning the
tool and making the students familiar with the tool, but once
this has been done the tool saves a lot of their time which
was earlier used for grading student’s code and giving them
feedback.

RQ4. Is the result ibtained by e-iassessment tiils precise

and useful?

In 2005, Higgins [37] stated that grading performed by
CourseMarker tool in one section of a course was at par with
the assessment done by a teaching assistant in some other
section of same course. Also in 2012, Taherkhani [38] re-
vealed that AARI (e-assessment tool) was successful at rec-
ognizing the algorithms used by the students to perform
sorting on integers for about 75% of the submissions.Further
in 2014, Gaudencio [39] stated that instructors who manu-
ally graded the assignments also tend to agree more with the
feedback provided by the tool in comparison to assessment
provided by other instructors.

Thus, it can be inferred that e-assessment tools assist the
instructors in conducting the assessment process in a posi-
tive manner.

REFERENCES

[1] Matthíasdóttir, Ásrún & Arnalds, Hallgrímur. (2016). e-assessment:
students' point of view. 369-374

[2] S. M. Arifi, I. N. Abdellah, A. Zahi and R. Benabbou, "Automatic
program assessment using static and dynamic analysis," 2015 Third
World Conference on Complex Systems (WCCS), Marrakech, 2015,
pp. 1-6.

[3] Kirsti M Ala-Mutka (2005),’ A Survey of Automated
Assessment’,Approaches for Programming Assignments, Computer
Science Education, 15:2, 83-102

[4] Rahman, Khirulnizam Abd, and Md Jan Nordin. "A review on the
static analysis approach in the automated programming assessment
systems." In Proceedings of the national conference on programming,
vol. 7. 2007.

[5] D. M. Souza, K. R. Felizardo and E. F. Barbosa, "A Systematic
Literature Review of Assessment Tools for Programming
Assignments," 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), Dallas, TX, 2016, pp.
147-156.

[6] Fonte, Daniela, Daniela da Cruz, Alda Lopes Gançarski, and Pedro
Rangel Henriques. "A Flexible Dynamic System for Automatic
Grading of Programming Exercises." In OASIcs-OpenAccess Series
in Informatics, vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[7] Truong, Roe, Bancroft, “Static Analysis of Students’ Java Programs”,
Sixth Australian Computing Education, Conference (ACE2004),
Dunedin, New Zealand, Vol. 30.

[8] S. H. Edwards and M. A. Perez-Quinones. Web-CAT: automatically
grading programming assignments. In Proc. Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE),
pages 328–328, 2008.

[9] Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The boss online
submission and assessment system. J. Educ. Resour. Comput. 5, 3,
Article 2 (September 2005).

[10] W. Tiantian, S. Xiaohong, M. Peijun, W. Yuying and W. Kuanquan,
"AutoLEP: An Automated Learning and Examination System for
Programming and its Application in Programming Course," 2009 First
International Workshop on Education Technology and Computer
Science, Wuhan, Hubei, 2009, pp. 43-46.

[11] José Luis Fernández Alemán, ‘Automated Assessment in a
Programming Tools Course IEEE TRANSACTIONS ON
EDUCATION, VOL. 54, NO. 4, NOVEMBER 2011

[12] Higgins, C., Hergazy, T., Symeonidis, P., and Tsinsifas, A. The
CourseMarker CBA System: Improvements over Ceilidh, Education
and Information Technologies, 8(3), 2003, pp. 287– 30.

[13] David Jackson and Michelle Usher. 1997. Grading student programs
using ASSYST. In Proceedings of the twenty-eighth SIGCSE
technical symposium on Computer science education (SIGCSE '97),
James E. Miller (Ed.). ACM, New York, NY, USA, 335-339.

[14] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri.
2003. Identifying and correcting Java programming errors for
introductory computer science students. In Proceedings of the 34th
SIGCSE technical symposium on Computer science
education (SIGCSE '03). ACM, New York, NY, USA, 153-156.

[15] Tom Schorsch. 1995. CAP: an automated self-assessment tool to
check Pascal programs for syntax, logic and style errors.
In Proceedings of the twenty-sixth SIGCSE technical symposium on
Computer science education (SIGCSE '95), Curt M. White, James E.
Miller, and Judy Gersting (Eds.). ACM, New York, NY, USA, 168-
172.

[16] Yusofa,, Zinb , Adnana, ‘Java Programming Assessment Tool for
Assignment Module in Moodle E-learning System’, International
Conference on Teaching and Learning in Higher Education
(ICTLHE2012) in conjunction with RCEE & RHED 2012, 1877-0428
© 2012 Published by Elsevier Ltd. Selection and/or peer-review under

SUGANDHA GUPTA, ANAMIKA GUPTA: E-ASSESSMENT TOOLS FOR PROGRAMMING LANGUAGES: 69

responsibility of Centre of Engineering Education, Universiti
Teknologi Malaysia.

[17] D. M. de Souza,J. C. Maldonado and E. F. Barbosa PROGTEST: An
Environment for the Submission and Evaluation of Programming
Assignments based on Testing Activities. Software Engineering
Education and Training (CSEET), 2011 24th IEEE-CS Conference.

[18] Ricardo Alexandre Peixoto Queirós and José Paulo Leal. 2012.
PETCHA: a programming exercises teaching assistant. In Proceedings
of the 17th ACM annual conference on Innovation and technology in
computer science education (ITiCSE '12). ACM, New York, NY,
USA, 192-197

[19] Auto Grader: http://www.csail.mit.edu/node/1886
[20] Guillaume Derval, Anthony Gego, Pierre Reinbold, Benjamin

Frantzen and Peter Van Roy. Automatic grading of programming
exercises in a MOOC using the INGInious platform. Proceedings of
the European MOOC Stakeholder Summit 2015.

[21] Virginia Polytechnic Institute and State University. Curator: an
electronic submission management environment.
http://ei.cs.vt.edu/~eags/Curator.html.

[22] A. Kurnia, A. Lim, and B. Cheang. OnLine Judge. Computers &
Education, 36(4):299–315, May 2001.

[23] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon. On automated grading
of programming assignments in an academic institution. Computers &
Education, 41(2):121–131, September 2003

[24] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based
assessment of programming: A review,” J. Educ. Resources Comput.,
vol. 5, no. 3, pp. 1–13, 2005.

[25] Pettit, R. S., & Homer, J. D., & Holcomb, K. M., & Simone, N., &
Mengel, S. A. (2015, June), Are Automated Assessment Tools Helpful
in Programming Courses? Paper presented at 2015 ASEE Annual
Conference & Exposition, Seattle, Washington. 10.18260/p.23569

[26] Stephen H. Edwards. 2003. Improving student performance by
evaluating how well students test their own programs. J. Educ.
Resour. Comput. 3, 3, Article 1 (September 2003).

[27] Denise Woit and David Mason. 2003. Effectiveness of online
assessment. In Proceedings of the 34th SIGCSE technical symposium
on Computer science education (SIGCSE '03). ACM, New York, NY,
USA, 137-141.

[28] Colin A. Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios
Tsintsifas. 2005. Automated assessment and experiences of teaching

programming. J. Educ. Resour. Comput. 5, 3, Article 5 (September
2005).

[29] Amruth N. Kumar. 2005. Generation of problems, answers, grade, and
feedback---case study of a fully automated tutor. J. Educ. Resour.
Comput. 5, 3, Article 3 (September 2005).

[30] Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikander.
2005. Experiences on automatically assessed algorithm simulation
exercises with different resubmission policies. J. Educ. Resour.
Comput. 5, 3, Article 7 (September 2005).

[31] Tiantian Wang, Xiaohong Su, Peijun Ma, Yuying Wang, and
Kuanquan Wang. 2011. Ability-training-oriented automated
assessment in introductory programming course. Comput. Educ. 56, 1
(January 2011), 220-226.

[32] García-Mateos, Ginés & Fernández-Alemán, José. (2009). A Course
on Algorithms and Data Structures Using On-line Judging
ABSTRACT. ACM SIGCSE Bulletin. 41. 45-49.

[33] Christopher Brown, Robert Pastel, Bill Siever, and John Earnest.,
JUG: a JUnit generation, time complexity analysis and reporting tool
to streamline grading, 17th ACM annual conference on Innovation
and technology in computer science education (ITiCSE '12).

[34] Tom Schorsch, Cap: An Automated Self-Assessment Tool To Check
Pascal Programs For Syntax, Logic And Style Errors, SIGSCE 1995.

[35] Anne Venables and Liz Haywood. 2003. Programming students
NEED instant feedback, Fifth Australasian conference on Computing
education - Volume 20 (ACE '03), Tony Greening and Raymond
Lister (Eds.), Vol. 20

[36] Queirós, R., & Leal, J. P., “Programming exercises evaluation
systems: An interoperability survey”, 4th international conference on
computer supported education, 2012, (pp. 83–90).

[37] Colin A. Higgins, Geoffery Gray, Pavlos Symeonidis, and Athanasios
Tsintsifas., Automated assessment and experiences of teaching
programming. Journal on Educational Resources in Computing
(JERIC), 2005.

[38] Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. 2012. Automatic
recognition of students' sorting algorithm implementations in a data
structures and algorithms course, 12th Koli Calling International
Conference on Computing Education Research.

[39] Matheus Gaudencio, Ayla Dantas, and Dalton D. S. Guerrero. Can
Computers Compare Student Code Solutions as Well as
Teachers,SIGCSE.

70 PROCEEDINGS OF ICITKM. NEW DELHI, 2017

