
Abstract—Open Source Software (OSS) has obtained wide-

spread popularity  in last  few decades due  to the exceptional

contribution of  some well  established ones  like  Apache,  An-

droid, MySQL, LibreOffice, Linux etc. not only in the field of

information technology but also  in  other sectors  such as  re-

search, business and education. These systems are character-

ized by a huge shift in development pattern they adopt in com-

parison to proprietary software. Reliability modeling for such

systems  therefore  is  a  growing  area  of  research  now  days.

Number of users adopting and working on refinement of such

systems post-release play an indispensible role in their reliabil-

ity growth. In this paper, we have proposed a software reliabil-

ity growth model (SRGM) based on Non-homogeneous Poisson

process (NHPP) based on number of users, under the phenome-

non of Imperfect Debugging. The renowned Bass Model from

Marketing based on the Theory of Diffusion of Innovation is

used to depict the user growth phenomenon. Various fault con-

tent functions are considered in proposed models to represent

imperfect debugging conditions and their performance is evalu-

ated on fault dataset of GNOME 2.0. Four goodness-of-fit crite-

ria namely Coefficient of Determination, Mean Square Error,

Predictive Ratio Risk, and Predictive Power are used to calcu-

late the estimation accuracy of all the proposed models and it

has been observed that prediction capabilities of models based

on imperfect debugging phenomenon is better than model as-

suming perfect debugging situation.

Index  Terms—Software  Reliability  Growth  Model;  Open

Source Software; Imperfect debugging; Fault content function;

Di usion of innovation.ff

I. INTRODUCTION

ITH the advancements in field of technology, a vis-

ual expansion can be seen in the software industry.

Open source software (OSS) has revolutionized the develop-

ment trend of software in past few decades. Ubiquitous ac-

ceptance of OSS has become the sole reason for a huge in-

clination of developers towards these software systems. OSS

can be defined as the software for which the source code is

shared to learn, modify, and extend the software under some

licensing guidelines [1]. Some of the characteristics of OSS

due to which traditional SDLC models cannot be applied to

OSS are described as follows:

W

A. Characteristics of OSS

 Unclear Requirements: OSS development  doesn’t

witness  a  dedicated  requirement  elicitation  phase

where requirements are documented as in case of

closed software. Here, development just starts with

a single developer or a small group with a random

idea.  Requirements  are  not  properly  framed  and

freezed before development.

 Unstable Team Size: On contrary to closed source

software  a  dedicated  team  of  fixed  number  of

people work on a project,  OSS doesn’t  has fixed

number of people working on it. It varies with time

and attractiveness of software.

 Minimal Testing Effort: In OSS development,  the

main focus is  given to implementation of  idea as

opposed  to  closed  source  software  where  sincere

efforts and significant time is spent on testing phase

after development completes.

 No  Deadlines: Since  development  is  totally

dependent on voluntary participation of developers

across the world, no strict deadlines on deliverables

can be imposed. 

As observed in above characteristics, during software de-

velopment life cycle (SDLC) of OSS, it doesn’t undergo an

exhaustive testing phase as opposed to proprietary software

where extensive testing efforts  are spent  before release of

software.  Because OSS cannot  be tested rigorously for  its

functionality in such a limited duration of time, it becomes

significant  to  study  its  reliability  growth  during  its  user

phase. Software Reliability is the probability of software to

perform its operations without any fail for a specified time

interval  in  specified  conditions  [1].  Reliability  growth  of

software  can be  modeled  by  a software  reliability growth

model (SRGM). An SRGM is a mathematical representation

that depicts the software fault detection process as a function

of different factors and parameters e.g. CPU time, Testing

effort  expenditures,  Number  of  test  cases,  Code  coverage

etc. In the process of simulating software fault process with

an SRGM, it is often assumed that each time a fault is en-

countered, the responsible fault is removed with certainty.

Reliability Modeling of OSS Systems based on

Innovation-Diffusion Theory and Imperfect Debugging

Neha Gandhi1, Neha Gondwal2, Abhishek Tandon3

1Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, India
2Department of Operational Research, University of Delhi, India

3Shaheed Sukhdev College of Business Studies, University of Delhi, India
1nehagandhi1990@gmail.com, 2neha28gondwal@gmail.com, 3abhishektandon86@gmail.com 

Proceedings of the First International Conference on Information

Technology and Knowledge Management pp. 53–58

DOI: 10.15439/2018KM48

ISSN 2300-5963 ACSIS, Vol. 14

c© PTI, 2018 53



However this assumption is quite impractical as correction

of  a  fault  involves  modifications  in  original  source  code

which may lead to addition of new faults. In this paper, we

propose an SRGM in which phenomenon of software fault

detection is modeled with respect to user growth function on

real  life failure dataset (GNOME 2.0) under imperfect  de-

bugging conditions.

II. LITERATURE REVIEW 

Numerous studies have been done in past to model relia-

bility  growth  phenomenon  for  OSS  and  various  SRGMs

have  been  proposed.  Goel-Okumoto  model  [3],  Yamada

S-Shaped model [4], Musa-Okumoto model [5] are some of

the traditional NHPP based software reliability growth mod-

els  for  closed  source  software  systems.  Paulson  et  al.  [6]

performed  an  empirical  study  on  open  and  closed  source

software to quantitatively investigate and validate the per-

ceptions about these software. Rossi et al. [7] discussed the

pattern  of  occurrence  of  faults  in  various  OSS  and  thus

make reliability predictions for  future.  Yamada and Yam-

aguchi [8] discussed a statistical process control method for

OSS to determine the stability and thus getting estimation of

development time needed to attain desired level of reliabil-

ity. Li et al. [9] proposed reliability analysis model and used

the  model  to  predict  optimal  version-updating  for  OSS.

Tamura and Yamada [10] combined software growth model-

ing with neural network approaches to estimate the reliabil-

ity of OSS. Yang et al. [11] have given an SRGM for relia-

bility estimation of multi-release OSS. Several other studies

also have performed analysis on reliability of open source

software [12, 13, 15]. Various studies demonstrated the reli-

ability analysis of software under imperfect debugging sce-

narios.  Kapur  et  al.  [16]  proposed  frameworks  to  derive

SRGMs in the presence of some realistic processes like im-

perfect  debugging and error  generation.  Pham [17]  devel-

oped a cost model with imperfect debugging conditions con-

sidering penalty cost due to delays in software delivery and

random length of software development. Chu-Ti Lin [18] in-

vestigated the effects  of imperfect  debugging in modeling

reliability via a simulation based model.  In our paper,  we

model software fault process for OSS in its functional phase

relating the usage factor with reliability modeling and com-

paring  its  performance under  different  fault  content  func-

tions used for imperfect debugging element in model.

III. MODEL FOUNDATIONS

The SDLC followed by OSS is unlike normal commercial

software. For OSS, the testing effort spent is almost negligi-

ble in comparison to commercial software and therefore vol-

untary participation from developers across the world is cru-

cial in refinement of quality of OSS. Studies done in past in

direction of reliability assessment of OSS assumed that fault

detection  rate  for  OSS in operational  phase  will  follow a

hump-shaped curve.  Initially,  it  grows with the growth in

volunteer participation and reaches the highest point. This is

due to the craze in developers for the new product in market.

And then starts decreasing with the decrease in number of

volunteers with time. This may be due their fall in interest

for  same product  over  time or  due  to  the introduction  of

some new product in market.  Similar trend is observed in

user growth pattern of an Innovation. According to Rogers

(1962),  An  Innovation  can  be  characterized  by  following

key features. 

A. Characteristics of Innovation

1. Relative Advantage: It is the measure of improvement
innovation  brings  over  its  competitive  option.  OSS
brings lot of advantages in terms of cost benefit,  vast
resource  knowledge  base;  lack  of  delivery  deadlines
saves the product from quality compromises.

2. Compatibility:  It  is  the  level of  compatibility  the
innovation has with the current lifestyle of people. OSS
doesn’t  need  a  huge  lifestyle  change  over  its  closed
source competitors. A user of commercial software can
seamlessly adopt OSS.

3. Complexity: It refers to the level of difficulty an adopter
of  innovation  will  face  to  learn  or  use  innovation.
Various  communities  are  there  on  internet  for
discussion of  problems and challenges on OSS.  They
serve perfect to carry any discussion on OSS and pass
on the reviews of the product to other potential users. 

4. Trialability: It  refers  to  the  degree  to  which  the
innovation  can  be  explored  and  tested  by  potential
users.  OSS is released in beta versions for the trial of
users.  Moreover  after  the release  source  code  is  also
made  available  so  that  it  can  be  expanded  and
customized as per needs.

5. Observability: It  is  the  extent  to  which  results  of
innovation are accessible to group of potential adopters.
The important features of OSS like cost effectiveness,
easy  access  and  sharing  of  code  etc  are  easily
observable by people using it like educational institute,
employees in corporate sector, freelancers etc.

Due to the presence of above characteristics in OSS, it

can  be  considered  as  an  Innovation.  The  usage  growth

process  for  an innovation  can be best  explicated with the

renowned Innovation Diffusion Model of marketing (Bass,

1969). Since OSS is an Innovation it is justified to apply this

model to describe user growth for an OSS. 

B. Diffusion of Innovation

According to Rogers [19], the process of propagation of

innovation  i.e.  new  idea  or  new  product,  among  the

members of the communication system over a time frame is

known as diffusion. As OSS is an Innovation, This theory

perfectly  applies  to  it.  Among  the  potential  volunteers  of

OSS, initially it is adopted by ones who are opinion leaders

i.e.  people  who  adopt  it  based  on  their  own  interest  in

software. They are also known as Innovators. Another group

of  people  who  later  start  using  OSS  based  on  word-of-

mouth from innovators are known as Imitators. To represent

the usage growth  factor  in  our  proposed  SRGM we have

used The Bass Model [20].

54 PROCEEDINGS OF ICITKM. NEW DELHI, 2017



Bass Model

The  Bass  Model  is  a  mathematical  representation  of

process of diffusion. It depicts the concept of adoption of a

product (OSS) among the potential users i.e. Innovators and

Imitators through a mathematical expression. According to

Bass, the diffusion process is defined by the following equa-

tion,

 (1)

Where,  depicts  cumulative  number  of  adopters  at

time t,   represents those adopters (Innovators)

who are not influenced by number of users already adopted

therefore p  denotes the coefficient of innovation.  The term

 represents  those  users  (Imitators)

who are influenced by number of previous adopters and thus

q depicts the coefficient of imitation.  Solution of equation

(1) under the initial condition of N(0)=0 results in equation

(2) which is given as follows:

(2)

C. Model Development

Notations

t Calendar time

m, m(t) Expected number of faults removed in time 

interval (0, t]

N, N(t) Cumulative number of users in time  interval 

(0,1]

a Constant, the number of initial faults in a 

software

b Constant, fault removal rate

p Constant, coef cient of innovation

q Constant, coef cient of imitation

Constant, total number of potential users of 

the software

Proportion of error generation

 Assumptions

• Software fault process is a NHPP phenomenon.

• The number of failures during operational phase is

dependent upon the number of faults remaining in
the software.

• As soon as any deviation from expected behaviour
is encountered, it is considered as a failure and the
fault that causes that failure is located. There is a
possibility that at the time of fixing of a fault, few
additional faults may get introduced.

• The  number  of  faults  removed  is  a  function  of
number of users working on that software.

• The number of users is assumed to be a function of
time  and  they  are  represented  by  the  diffusion
model given by Bass [20].

Based on above assumptions, the failure phenomenon can

be illustrated as follows:

(3)

The components on the right side of the equation are dis-

cussed as follows:

Component-1 

This component describes the rate of detection of faults

with respect to users.  The rate at which failures occur de-

pends upon the number of faults remaining in the software.

As per this assumption the differential equation for fault re-

moval can be written as,

(4)

where,  α(N) denotes the fault content function with respect
to number of users.

Component-2

The concept  of  user  growth  in  adoption  of  OSS is  the

focus  of  the  paper.  The  Innovation-  Diffusion  Model

proposed  by  Bass  [20]  is  used  to  describe  user  growth

phenomenon in this study. According to Bass, the process of

adoption of innovation in the potential population comprises

of innovators and imitators and is defined by the equation

(1) and is used to represent this component in equation (3).

The solution of this equation for initial condition N(0)=0 is

given by equation (2).

D. Fault Content functions

In this paper, we have assumed fault content function as a

function  of  number  of  users  working  on  OSS  in  its

operational phase and is denoted by a(N). The reason behind

this is as the number of users working on an OSS increase,

the more are the changes and modifications done in original

code and  hence the fault  content  also increases.  Different

fault  content  functions  for  corresponding  to  the  cases  of

perfect and imperfect debugging are discussed as follows,

Perfect  Debugging:  The  process  of  detection  of  faults  and
their  rectification  is  termed  as  Debugging.  Debugging

NEHA GANDHI ET AL.: RELIABILITY MODELING OF OSS SYSTEMS BASED ON INNOVATION-DIFFUSION THEORY 55



process  that  does  not  incorporate  additional  faults  in  the
software is referred to as perfect debugging. 

Case 1: In this case the fault content function represented by
α(N)  is  assumed  to  be  a  constant.  i.e.  no  new  faults  are
introduced during debugging process. Therefore here,

a (N )=a (5)

Imperfect  Debugging: Imperfect  debugging  is  the

phenomenon  where  new  faults  get  introduced  while

correcting the previous ones. Various fault content functions

pertaining to this phenomenon are discussed hereby,

Case 2: In this case, we considered number of faults to be

a linear function of number of users. 

a (N )=a (1+αN ) (6)

Case  3: In  this  case,  we  consider  an  exponential  fault

content function using Yamada et al. [21],  it means faults

are  introduced  exponentially  with  respect  to  number  of

users.

a (N )=a eαN
(7)

Case 4: Here, we have adopted rate of introduction of new

faults as a function of the number of faults already removed

in the software.

a (N )=a+αm(N ) (8)

Case  5: Under  this  case  of  imperfect  debugging,  we

assume that the new faults can be introduced exponentially

per detected fault (Pham & Zhang [22]). Here c  is assumed

as constant.

a (N )=c+a(1−e−αN ) (9)

Here, N=N (t) represents the number of users of OSS up

till time t.

(5) Proposed Models

The proposed models obtained by combining both com-

ponents of Equation (3) are explained as follows:

SRGM  1:  We  obtained  following  model  under  above

stated case 1.

m1 ( t )=a(1−e−bN ) (10)

SRGM  2:  This  model  is  obtained  under  case  2  which

represents imperfect debugging.

m2 ( t )=a(αN+(1−
α
b ) (1−e

−bN )) (11)

SRGM 3: Under case 3, following expression is obtained:

m3 ( t )=
ab

α+b (eαN−e
−bN ) (12)

SRGM 4: For case 4, we got the following model:

m4 (t )=
a

1−α
(1−e

−b (1−α ) N ) (13)

SRGM  5:  The  following  model  is  based  on  above

discussed case 5:

m5 ( t )=(a+c ) (1−e
−bN )− ab

b−α (e−αN−e
−bN) (14)

For SRGM 1- SRGM 5, N (t ) is given by equation (2).

IV. NUMERICAL STUDY

For the purpose of  parameter  estimation,  we have used

the real time failures data set of a very renowned OSS i.e.

GNOME 2.0 provided by Li et al. (2011) as given in Ta-

ble 1. 

Table 1: Detected faults in GNOME 2.0 release

Day Detected

Bugs

Day Detected

Bugs

Day Detected

Bugs

Day Detected

Bugs

1 6 7 8 13 6 19 1

2 5 8 4 14 8 20 1

3 3 9 8 15 6 21 1

4 2 10 3 16 2 22 2

5 5 11 2 17 2 24 3

6 5 12 1 18 1

Estimation  of  proposed  models  is  performed  with  the

Least Squares Principle. The estimation results of the mod-

els proposed in this study as described in Equation 10-14 on

the GNOME 2.0 dataset are presented in Table 2 .

Table 2: Estimated Parameters

Proposed

model

a b N p q α c

SRGM 1 94.445 0.053 50.922 0.014 0.143 - -

SRGM 2 81.349 0.420 37.104 0.003 0.117 0.004 -

SRGM 3 80.736 0.827 58.038 0.01 0.112 0.008 -

SRGM 4 84.537 0.259 57.586 0.003 0.112 0.001 -

SRGM 5 87.243 0.721 30.237 0.002 0.117 0.009 80.068

Also, we have performed the comparison of our proposed

SRGMs  using  four  goodness-of-fit  criteria  namely

Coefficient  of  Determination  (R2),  Mean  Square  Error

(MSE), Predictive Ratio Risk (PRR), and Predictive Power

(PP). The expression and interpretation of these is discussed

may be found in Ref. [23].

The goodness-of-fit values obtained for the above men-

tioned criteria for the five proposed SRGM are summarised

in Table 3.
Table 3: Goodness of fit Comparison Table

Proposed

Model

R
2

MSE PRR PP

SRGM 1 0.994 4.336 4.050 3.395

SRGM 2 0.994 4.081 3.635 3.132

SRGM 3 0.994 4.024 3.543 3.080

SRGM 4 0.994 4.051 3.521 3.072

SRGM 5 0.994 4.077 3.648 3.137

56 PROCEEDINGS OF ICITKM. NEW DELHI, 2017



The  goodness-of-fit  curves  obtained  corresponding  to

SRGM 1, SRGM 2, SRGM 3, SRGM 4, and SRGM 5 are

shown in Figure 1-5. 

V. DISCUSSION ON RESULTS

From Table  2,  It  can  be  observed  that  the  value  of  q
which  represents  the  coefficient  of  imitation  is  always

greater than  p which is the coefficient of innovation. This

observed  relation  between  p  and  q  is  consistent  with  the

Bass Diffusion Model and illustrates the importance of word

of mouth on the decision making of used by the potential

users. From the Table 3, it can also be concluded that the all

the SRGMs based on bass growth function fits  data well.

Moreover,  from  the  values  of  goodness-of-fit  criteria  ob-

tained it can be inferred that models biult over imperfect de-

bugging  assumption  (SRGM  2-SRGM  5)  outperform  the

model  depicting  perfect  debugging  situation  (SRGM  1)

which explains the fact that imperfect debugging models are

close to realistic situation.

Figure 1: goodness-of-fit curve for SRGM 1

Figure 2: goodness-of-fit curve for SRGM 2

Figure 3: goodness-of-fit curve for SRGM 3

Figure 4: goodness-of-fit curve for SRGM 4

Figure 5: goodness-of-fit curve for SRGM 5

VI. CONCLUSION AND FUTURE SCOPE

In this study, we have related user growth with reliability

growth  phenomenon  for  OSS.  Bass  Innovation  Diffusion

model has been used to represent user growth function. Five

SRGMs  have  been  proposed  using  various  fault  content

functions  to  model  perfect  and  imperfect  debugging  phe-

nomenon.  The  mean  value  functions  for  the  proposed

SRGMs are used and parameters’  estimates are calculated

using least square estimation technique. Performance of all

the proposed models is compared using four goodness-of-fit

methods: R2
, MSE, PRR, and PR and it is found that imper-

fect  debugging  models  gave  better  estimation  results  as

compared to model with assumption of perfect debugging.

In future studies the functions to model imperfect debugging

can be extended to include the concept of change point or

randomness in user growth. For user growth we have used

Bass Innovation-Imitation model. In future, we may extend

our work for multi release OSS.

REFERENCES

[1] W. S. Jawadekar, “Software  Engg”, Tata McGraw-Hill  Education,

2004.

[2] P.  Kapur,  H.  Pham,  A.  Gupta,  P.  Jha,   “Software  reliability

assessment with OR applications”, Springer,  2011.

[3] A.  L.  Goel,  K.  Okumoto,   “Time-dependent   error-detection  rate

model  for  software  reliability  and  other   performance   measures”,

IEEE  transactions on Reliability, Vol. 28, Issue 3, 1979, 206–211.

[4] S.  Yamada,  M.  Ohba,   S.  Osaki,   “S-shaped   reliability   growth

modeling   for  software   error   detection”,  IEEE  Transactions  on

reliability  Vol. 32, Issue 5, 1983, 475–484.

[5] J.  D.  Musa,  K.  Okumoto,  “A  logarithmic  Poisson  execution  time

model for software reliability measurement”. In Proceedings of the 7th

international conference on Software engineering, IEEE Press, 1984,

230-238. 

NEHA GANDHI ET AL.: RELIABILITY MODELING OF OSS SYSTEMS BASED ON INNOVATION-DIFFUSION THEORY 57



[6] J.  W. Paulson,  G. Succi,A. Eberlein, “An empirical study of open-

source and closed-source software products”, IEEE Transactions on

Software Engineering, Vol. 30, Issue 4,2004,246-256.

[7] B. Rossi, B. Russo, G. Succi, “Modelling failures occurrences  of open

source software  with  reliability   growth”,   Open  Source  Software:

New  Horizons, 2010, 268–280.

[8] S.   Yamada, M.  Yamaguchi,    “A  method  of  statistical  process

control   for  successful  open  source  software  projects   and  its

application  to  determining  the  development period ,   International

Journal  of  Reliability,  Quality   and  Engineering,  Vol.  23,  Issue  5,

2016. 

[9] X. Li, Y. F. Li, M. Xie, S. H. Ng, “Reliability  analysis  and optimal

version-updating  for  open  source   software”,   Information  and

Software  Technology, Vol. 53, Issue 9, 2011, 929–936.

[10] Y.  Tamura,  S.   Yamada,   “A   component-oriented   reliability

assessment method  for open source software”, International Journal

of Reliability, Quality and Safety Engineering, Vol. 15, Issue 1 ,2008,

33-53.

[11] J.  Yang,  Y.  Liu,  M.  Xie,  M.  Zhao,  “Modeling  and  analysis  of

reliability  of  multi-release  open  source  software  incorporating  both

fault  detection  and  correction  processes”,  Journal  of  Systems  and

Software, Vol. 115, 2016, 102–110.

[12] C. Rahmani, A.H. Azadmanesh, L. Najjar, “A Comparative Analysis

of Open Source Software Reliability”, JSW, Vol. 5, Issue 12, 2010,

1384-1394. 

[13] C. Rahmani, H. Siy, A. Azadmanesh, “An experimental analysis of

open source software reliability”,  Department of  Defense/Air  Force

Office of Scientific Research, 2009.

[14] Y.  Tamura,  S.  Yamada,  “Comparison  of  software  reliability

assessment  methods  for  open  source  software,  in:  Parallel  and

Distributed  Systems”,  2005.  Proceedings.  11th  International

Conference on, Vol. 2, IEEE, 2005, 488–492.

[15] Y.  Zhou,  J.  Davis,  “Open  source  software  reliability  model:  an

empirical  approach”,  ACM SIGSOFT Software  Engineering  Notes,

Vol. 30, 2005, 1–6.

[16] P.  Kapur,  H.  Pham, S.  Anand,  K.  Yadav,  “A unified  approach for

developing  software  reliability  growth  models  in  the  presence  of

imperfect  debugging  and  error  generation”,  IEEE  Transactions  on

Reliability Vol. 60, Issue 1, 2011, 331–340.

[17] H. Pham, “A software cost model with imperfect debugging, random

life cycle and penalty  cost”, International Journal of Systems Science

Vol. 27 , Issue 5, 1996, 455–463.

[18] C. T. Lin, “Analyzing the effect of imperfect debugging on software

fault detection and correction processes via a simulation framework”,

Mathematical  and  Computer  Modeling,  Vol.  54,  Issue  11,  2011,

3046–3064.

[19] E. M. Rogers, “Diffusion of innovations”, Simon and Schuster, 2010.

[20] F. M. Bass, “A new product growth for model consumer durables”,

Management science, Vol. 15, Issue 5, 1969, 215-227.

[21] S. Yamada, K. Tokuno, S. Osaki, “Imperfect debugging models with

fault  introduction  rate  for  software  reliability  assessment”,

International  Journal  of  Systems Science,  Vol.  23,  Issue  12,  1992,

2241-2252.

[22] H. Pham, X. Zhang, X,”NHPP software reliability  and cost  models

with  testing  coverage”,  European  Journal  of  Operational  Research,

Vol. 145, Issue 2, 2003.

[23] N.  Gandhi,  N.  Gondwal,  A.G.  Aggarwal,  A.  Tandon,  “Estimating

Reliability  for  OSS:  An approach  with  change-point  in  operational

phase”, In proceedings of 6th  International Conference on Reliability,

Infocom Technologies and Optimization, IEEE, 2017, 251-255.

58 PROCEEDINGS OF ICITKM. NEW DELHI, 2017


