Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Experiments with Classification of MMPI Profiles using Fuzzy Decision Trees

, , ,

DOI: http://dx.doi.org/10.15439/2018F111

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 125128 ()

Full text

Abstract. The paper is devoted to classification of MMPI (Minnesota Multiphasic Personality Inventory) profiles using fuzzy decision trees generated by means of the algorithm that uses cumulative information estimations of the initial data proposed by V. Levashenko et al. All of the stages of the classification process (i.e., fuzzification of the input data, generation of the classifier, testing the classifier) are presented and the results are discussed. A special attention is focused on determination of the center points on the MMPI scales for the fuzzification process.

References

  1. K. Pancerz, O. Mich, A. Burda, and J. Gomuła, “A tool for computer-aided diagnosis of psychological disorders based on the MMPI test: An overview,” in Applications of Computational Intelligence in Biomedical Technology, ser. Studies in Computational Intelligence, R. Bris, J. Majernik, K. Pancerz, and E. Zaitseva, Eds. Cham: Springer International Publishing, 2016, vol. 606, pp. 201–213.
  2. V. Levashenko, E. Zaitseva, K. Pancerz, and J. Gomuła, “Fuzzy decision tree based classification of psychometric data,” in Position Papers of FedCSIS’2014, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 3. Warsaw, Poland: PTI, 2014, pp. 37–41.
  3. O. Mich, A. Burda, K. Pancerz, and J. Gomuła, “The knowledge base for computer-aided diagnosis of mental disorders based on psychometric tests,” in Proceedings of DT’2014, Zilina, Slovakia, 2014. http://dx.doi.org/10.1109/DT.2014.6868724 pp. 255–261.
  4. V. Levashenko and E. Zaitseva, “Usage of new information estimations for induction of fuzzy decision trees,” in Proceedings of IDEAL 2002, ser. LNCS, H. Yin, N. Allinson, R. Freeman, J. Keane, and S. Hubbard, Eds., vol. 2412. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45675-9_74 pp. 493–499.
  5. D. Lachar, The MMPI: Clinical assessment and automated interpretations. Fate Angeles: Western Psychological Services, 1974.
  6. M. Choynowski, Wielowymiarowy inwentarz osobowości (in Polish), Psychometry Laboratory, Polish Academy of Sciences, Warsaw, 1964.
  7. Z. Płużek, “Wartość diagnostyczna testu WISKAD-MMPI w zakresie nozologii psychiatrycznej (in Polish),” Roczniki Filozoficzne / Annales de Philosophie / Annals of Philosophy, vol. 17, no. 4, pp. 125–143, 1969.
  8. H.-M. Lee, C.-M. Chen, J.-M. Chen, and Y.-L. Jou, “An efficient fuzzy classifier with feature selection based on fuzzy entropy,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 3, pp. 426–432, 2001. http://dx.doi.org/10.1109/3477.931536
  9. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2005.
  10. U. Fayyad and K. Irani, “Multi-interval discretization of continuous-valued attributes for classification learning,” in Proceedings of IJ-CAI’1993, Chambery, France, 1993, pp. 1022–1029.
  11. I. Kononenko, “On biases in estimating multi-valued attributes,” in Proceedings of IJCAI’1995, Montreal, Quebec, Canada, 1995, pp. 1034–1040.
  12. K. Pancerz, “On selected functionality of the classification and prediction software system (CLAPSS),” in Proceedings of IDT’2015, Zilina, Slovakia, 2015. http://dx.doi.org/10.1109/DT.2015.7222984 pp. 278–285.