Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Collective clustering of marketing data—recommendation system Upsaily


DOI: http://dx.doi.org/10.15439/2018F217

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 801810 ()

Full text

Abstract. The article discusses the importance of the recommendation systems based on data mining mechanisms targeting the e-commerce industry. The article focuses on the use of clustering algorithms to conduct customer segmentation. Results of the operation of many clustering algorithms in segmentation inspired by the RFM method are presented, and the method of collective clustering using the positive effects of each algorithm is separately presented.


  1. Balabanovic, M., Shoham, Y., Content-based, collaborative recommendation. Com. of ACM 40(3), pp. 66–72, 1997.
  2. Goldberg, D., Nichols, D., Oki, B.M., Terry, D., Using collaborative filtering to weave an information tapestry. Com. of ACM 35(12), pp. 61–70, 1992.
  3. Resnick, P., Varian, H.R., Recommender systems. Com. of the ACM, 40(3), pp. 56–58, 1997.
  4. Konstan, J.A., Adomavicius, G., Toward identification and adoption of best practices in algorithmic recommender systems research. In: Proceedings of the international workshop on Reproducibility and replication in recommender systems evaluation, pp. 23–28, 2013.
  5. Beel, J., Towards effective research-paper recommender systems and user modeling based on mind maps. PhD Thesis. Otto-von-Guericke Universität Magdeburg, 2015.
  6. Jannach, D., Zanker, M., Ge, M., Gröning, M., Recommender systems in computer science and information systems–a landscape of research. In: Proc. of the 13th International conference, EC-Web, pp. 76–87, 2012.
  7. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds): Recommender Systems Handbook, Springer, pp. 1–35., 2011.
  8. Jannach D., Zanker M., Felfernig A., Friedrich G., Recommender systems – an introduction, Cambridge University Press, 2010.
  9. Lu J., Wu, D., Mao M., Wang W., Zhang W.G.,, Recommender system application developments: a survey, Decision Support Systems, 74, pp. 12-32, 2015.
  10. Said, A., Tikk, D., Shi, Y., Larson, M., Stumpf, K., Cremonesi, P., Recommender systems evaluation: a 3d benchmark. In: ACM RecSys 2012 Workshop on Recommendation Utility Evaluation: Beyond RMSE, pp. 21–23, 2012.
  11. Acilar A.M., Arslan A., A collaborative filtering method based on Artificial Immune Network, Exp Syst Appl, 36 (4), pp. 8324-8332, 2009.
  12. Cornuejols A., Wemmert C., Gançarski P., and Bennani Y.. Collaborative Clustering : Why, When, What and How. Information Fusion, 39, pp. 81–95, 2017.
  13. Kashef R., Kamel M.S., Cooperative clustering, Pattern Recognition 43, 6, pp. 2315–2329, 2010.
  14. Konstan J.A., Riedl J., Recommender systems: from algorithms to user experience User Model User-Adapt Interact, 22, pp. 101-123, 2012.
  15. Carmagnola, F., Cena, F., Gena, C., User model interoperability: a survey. User Model. User-Adapt. Interact. 21(3), pp.285–331, 2011.
  16. Burke, R., Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), pp.331–370, 2002
  17. Lu J., Wu D., Mao M., Wang W., Zhang G., Recommender system application developments: a survey, Decision Support Systems, 74 , pp. 12-32, 2015.
  18. Kobiela E., Intelligent recommendation systems (pol. Inteligentne systemy rekomendacyjne), Network Magazyn, http://www.networkmagazyn.pl/inteligentne-systemy-rekomendacji, 2011
  19. Gemius 2017, The latest data on Polish e-commerce is now available (pol. Najnowsze dane o polskim e-commerce już dostępne), https://www.gemius.pl/wszystkie-artykuly-aktualnosci/najnowsze- dane- Polish-of-ecommerce-already-dostepne.html.
  20. Nazemoff V., Customer Intelligence. In: The Four Intelligences of the Business Mind. Apress, Berkeley, CA, 2014
  21. Chorianopoulos A., Effective CRM using predictive analytics. John Wiley & Sons, 2016.
  22. Gordon S. Linoff,M., Berry J.A., Data Mining Techniques: for Marketing, Sales, and Customer Relationship, Wiley 2011.
  23. Witten, I. H., et al. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016.
  24. Jordan, M. I., MITCHELL, Tom M. Machine learning: Trends, perspectives, and prospects. Science, 349.6245, pp. 255-260, 2015.
  25. Pondel, M., Korczak, J., A view on the methodology of analysis and exploration of marketing data. In Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, pp. 1135-1143, 2017.
  26. Aggarval C.C., Reddy C.K, Data Clustering: Algorithms and Applications, Chapman & Hall / CRC 2013
  27. Gan G., Ma C., Wu J., Data Clustering: Theory, Algorithms, and Applications, SIAM Series, 2007.
  28. Quinlan J., Improved use of continuous attributes in {C4.5}. Journal of Artificial Intelligence Research, 4, pp.77–90, 1996.
  29. Wemmert C., Gancarski P., Korczak J., A collaborative approach to combine multiple learning methods. International Journal on Artificial Intelligence Tools (World Scientific), 9(1), pp.59–78, 2000.
  30. Strehl A., Ghosh J., Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research, 3, pp.583–617, 2002.
  31. Ayad H., Kamel M. S., Cumulative voting consensus method for partitions with variable number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), pp.160–173, 2008.
  32. Nguyen N., Caruana R., Consensus clusterings. In International Conference on Data Mining, IEEE Computer Society, pp. 607–612, 2007.
  33. Pedrycz W., Collaborative and knowledge-based fuzzy clustering. International Journal of Innovative, Computing, Information and Control, 1(3), pp.1–12, 2007.
  34. Faceli K., Ferreira de Carvalho A.C., Pereira de Souto M.G., Multiobjective clustering ensemble with prior knowledge. volume 4643, Springer, pp. 34– 45, 2007.
  35. Law M.H., Topchy A., Jain A.K., Multiobjective data clustering. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pp. 424–430, 2004.
  36. Wagstaff K., Cardie C., Rogers S., Schroedl S., Constrained k-means clustering with background knowledge. In International Conference on Machine Learning, pp. 557–584, 2001.
  37. Belarte, B., Wemmert, C., Forestier, G., Grizonnet, M., Weber, C.. Learning fuzzy rules to characterize objects of interest from remote sensing images. In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE , pp. 2986-2989, 2006.
  38. Guo, H. X., Zhu, K. J., Gao, S. W., & Liu, T., An improved genetic k-means algorithm for optimal clustering. In Conference on Data Mining Workshops, 2006. ICDM Workshops. IEEE, pp. 793-797, 2006.
  39. Grira N., Crucianu M., Boujemaa N., Active semi-supervised fuzzy clustering. Pattern Recognition, 41(5), pp.1851–1861, 2008.
  40. Bilenko, M., Basu, S., & Mooney, R. J., Integrating constraints and metric learning in semi-supervised clustering. In Proceedings of the twenty-first international conference on Machine learning, ACM, p. 11, 2004.
  41. Gancarski P., Cornueejols A., Wemmert C.,Bennani Y., Clustering collaboratif : Principes et mise en oeuvre, Proc. BDA’17, Nancy, 2017
  42. Linoff, G. S., Data analysis using SQL and Excel. John Wiley & Sons, 2015.
  43. Ghodsi, A., Dimensionality reduction a short tutorial, Department of Statistics and Actuarial Science, Univ. of Waterloo, 37, pp. 38, 2006.
  44. McLeland I., Healy J., UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." arXiv preprint https://arxiv.org/abs/1802.03426, 2018.