Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

New Grid for Particle Filtering of Multivariable Nonlinear Objects

, , , , ,

DOI: http://dx.doi.org/10.15439/2018F308

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 10731077 ()

Full text

Abstract. In the paper a new grid (potentially linear, nonlinear and even semi-Markovian jump system) was presented. All transition and measurement functions were proposed. Moreover, the transition functions of two types were considered -- dependent on one and many different state variables. Also 10 types of measurements were proposed for both nodal and branch cases. Based on the obtained results one can see, which measurement functions are ``easy'', and which are ``hard'' for state estimation task.

References

  1. Sutharsan S., Kirubarajan T., Lang T., McDonald M., An Optimization-Based Parallel Particle Filter for Multitarget Tracking, IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 4/2012, pp. 1601-1618. http://dx.doi.org/10.1109/TAES.2012.6178081
  2. Doucet A., Freitas N., Murphy K., Russell S., Rao-Blackwellised particle filtering for dynamic Bayesian networks, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, 2000, pp. 176-183.
  3. Handeby G., Karlsson R., Gustafsson F., The Rao-Blackwellized Particle Filter: A Filter Bank Implementation, EURASIP Journal on Advances in Signal Processing, 2010, Article ID 724087, p. 10.
  4. Šmídl V., Hofman R., Marginalized Particle Filtering Framework for Tuning of Ensemble Filters, Monthly Weather Review, Vol. 139, No. 11, 2011, pp. 3589-3599.
  5. Djurić P. M., Lu T., Bugallo M. F., Multiple particle filtering, In 32nd IEEE ICASSP, April 2007, III pp. 1181-1184.
  6. Kozierski P., Lis M., Horla D., Level of Dispersion in Dispersed Particle Filter, in Methods and Models in Automation and Robotics (MMAR), 20th International Conference on, 2015, pp. 418-423.
  7. Kozierski P., Sadalla T., Owczarkowski A., Drgas S., Particle Filter in Multidimensional Systems, in Methods and Models in Automation and Robotics (MMAR), 21st International Conference on, 2016, pp. 806-810. http://dx.doi.org/10.1109/MMAR.2016.7575240
  8. Candy J. V., Bayesian Signal Processing, WILEY, New Jersey 2009, pp. 36-44. http://dx.doi.org/10.1002/9780470430583
  9. Gordon N. J., Salmond D. J., Smith A. F. M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F, Vol. 140, No. 2, 1993, pp. 107-113. http://dx.doi.org/10.1049/ip-f-2.1993.0015
  10. Li F., Wu L., Shi P., Lim C. C., State Estimation and Sliding Mode Control for Semi-Markovian Jump Systems with Mismatched Uncertainties, Automatica, Vol. 51, 2015, pp. 385-393.
  11. Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Transactions on Signal Processing, Vol. 50, No. 2, 2002, pp. 174-188. http://dx.doi.org/10.1109/78.978374
  12. Doucet A., Johansen A.M., A Tutorial on Particle Filtering and Smoothing: Fifteen years later, handbook of Nonlinear Filtering 2009/12, pp. 656-704.
  13. Imtiaz S. A., Roy K., Huang B., Shah S. L., Jampana P., Estimation of States of Nonlinear Systems using a Particle Filter, In IEEE International Conference on Industrial Technology, ICIT 2006, December, pp. 2432-2437.
  14. Kozierski P., Lis M., Ziętkiewicz J., Resampling in Particle Filtering – Comparison, Studia z Automatyki i Informatyki, Vol. 38, 2013, pp. 35-64.
  15. Doucet A., Freitas N., Gordon N., Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York 2001, pp. 225-246. http://dx.doi.org/10.1007/978-1-4757-3437-9