Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

MCDA-based Approach to Sustainable Supplier Selection

, , ,

DOI: http://dx.doi.org/10.15439/2018F336

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 769778 ()

Full text

Abstract. The process of sustainable supplier selection is crucial to a company's business continuity. Distortions in poorly chosen suppliers can lead to an impediment or even complete downtime of the company's operations. The paper proposes a new unique approach in which classical MCDA paradigm is extended with aspects of temporal evaluation and various temporal aggregation strategies are provided. The partial MCDA evaluations are performed with three MCDA methods -- AHP, TOPSIS and COMET -- to allow for hierarchical structuring of the decision problem, creation of a reference model and avoiding rank reversal. The proposed approach is verified on a case study with an actual company and its supplier selection from a group of 30 potential suppliers.


  1. R. R. Colton, Industrial Purchasing: Principles and Practices. CE Merrill, 1962.
  2. J. Rezaei, T. Nispeling, J. Sarkis, and L. Tavasszy, “A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method,” Journal of Cleaner Production, vol. 135, pp. 577–588, Nov. 2016. http://dx.doi.org/10.1016/j.jclepro.2016.06.125. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652616308022
  3. R. Khodaverdi and L. Olfat, “A fuzzy mcdm approach for supplier selection and evaluation: a case study in an automobile manufacturing company,” in 2011 IEEE International Conference on Industrial Engineering and Engineering Management, 2011, pp. 25–27.
  4. A. Świerczek, “The impact of supply chain integration on the "snowball effect" in the transmission of disruptions: An empirical evaluation of the model,” International Journal of Production Economics, vol. 157, pp. 89–104, Nov. 2014. http://dx.doi.org/10.1016/j.ijpe.2013.08.010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925527313003654
  5. L. Meade and J. Sarkis, “Strategic analysis of logistics and supply chain management systems using the analytical network process1this work was partially supported by NSF Grants 9320949 and 9505967, and Texas Higher Education Coordinating Board ATP Grant Number 003656-036.1,” Transportation Research Part E: Logistics and Transportation Review, vol. 34, no. 3, pp. 201–215, Sep. 1998. http://dx.doi.org/10.1016/S1366-5545(98)00012-X. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S136655459800012X
  6. F. T. S. Chan and N. Kumar, “Global supplier development considering risk factors using fuzzy extended AHP-based approach,” Omega, vol. 35, no. 4, pp. 417–431, Aug. 2007. http://dx.doi.org/10.1016/j.omega.2005.08.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S030504830500112X
  7. T. Grant, “10 Ways to Drive E-Commerce Sales During Slow Online Shopping Months.” [Online]. Available: https://www.infusionsoft.com/business-success-blog/sales/ e-commerce/10-ways-to-drive-e-commerce-sales-during-slow-months
  8. “Broadwater Farm - Summer Fruit Picking - The Job and Pay.” [Online]. Available: https://www.broadwaterfarm.biz/summer-fruit-picking-uk/
  9. G. Akman, “Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods,” Computers & Industrial Engineering, vol. 86, pp. 69–82, Aug. 2015. http://dx.doi.org/10.1016/j.cie.2014.10.013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360835214003441
  10. D. Kannan, A. B. L. d. S. Jabbour, and C. J. C. Jabbour, “Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company,” European Journal of Operational Research, vol. 233, no. 2, pp. 432–447, Mar. 2014. http://dx.doi.org/10.1016/j.ejor.2013.07.023. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0377221713006048
  11. A. K. Uppala, R. Ranka, J. J. Thakkar, M. V. Kumar, and S. Agrawal, “Selection of Green Suppliers Based on GSCM Practices: Using Fuzzy MCDM Approach in an Electronics Company,” Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making, pp. 355–375, 2017. http://dx.doi.org/10.4018/978-1-5225-1008-6.ch016. [Online]. Available: https://www.igi-global.com/chapter/ selection-of-green-suppliers-based-on-gscm-practices/169495
  12. K. Chatterjee, D. Pamucar, and E. K. Zavadskas, “Evaluating the performance of suppliers based on using the R’AMATEL- MAIRCA method for green supply chain implementation in electronics industry,” Journal of Cleaner Production, vol. 184, pp. 101–129, May 2018. http://dx.doi.org/10.1016/j.jclepro.2018.02.186. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652618305055
  13. J. W atróbski, ̨ W. Sałabun, and G. Ladorucki, “The Temporal Supplier Evaluation Model Based on Multicriteria Decision Analysis Methods,” in Intelligent Information and Database Systems, N. T. Nguyen, S. Tojo, L. M. Nguyen, and B. TrawiÅĎski, Eds. Cham: Springer International Publishing, 2017, vol. 10191, pp. 432–442. ISBN 978-3-319-54471-7 978-3-319-54472-4. [Online]. Available: http://link.springer.com/10.1007/978-3-319-54472-4_41
  14. S. H. Hashemi, A. Karimi, and M. Tavana, “An integrated green supplier selection approach with analytic network process and improved Grey relational analysis,” International Journal of Production Economics, vol. 159, pp. 178–191, Jan. 2015. http://dx.doi.org/10.1016/j.ijpe.2014.09.027. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925527314003053
  15. S. Zailani, K. Govindan, M. Iranmanesh, M. R. Shaharudin, and Y. Sia Chong, “Green innovation adoption in automotive supply chain: the Malaysian case,” Journal of Cleaner Production, vol. 108, pp. 1115– 1122, Dec. 2015. http://dx.doi.org/10.1016/j.jclepro.2015.06.039. [Online]. Avail- able: http://linkinghub.elsevier.com/retrieve/pii/S0959652615007684
  16. F. Dweiri, S. Kumar, S. A. Khan, and V. Jain, “Designing an integrated AHP based decision support system for supplier selection in automotive industry,” Expert Systems with Applications, vol. 62, pp. 273–283, Nov. 2016. http://dx.doi.org/10.1016/j.eswa.2016.06.030. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417416303104
  17. N. Banaeian, H. Mobli, B. Fahimnia, I. E. Nielsen, and M. Omid, “Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry,” Computers & Operations Research, vol. 89, pp. 337–347, Jan. 2018. http://dx.doi.org/10.1016/j.cor.2016.02.015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0305054816300399
  18. S. Gold and A. Awasthi, “Sustainable global supplier selection extended towards sustainability risks from (1+n)th tier suppliers using fuzzy AHP based approach,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 966– 971, Jan. 2015. http://dx.doi.org/10.1016/j.ifacol.2015.06.208. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2405896315004474
  19. H. Kaur, S. P. Singh, and R. Glardon, “An Integer Linear Program for Integrated Supplier Selection: A Sustainable Flexible Framework,” Global Journal of Flexible Systems Management, vol. 17, no. 2, pp. 113–134, Jun. 2016. http://dx.doi.org/10.1007/s40171-015-0105-1. [Online]. Available: https://link.springer.com/article/10.1007/s40171-015-0105-1
  20. K. Govindan and R. Sivakumar, “Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches,” Annals of Operations Research, vol. 238, no. 1-2, pp. 243–276, Mar. 2016. http://dx.doi.org/10.1007/s10479-015-2004-4. [Online]. Available: https://link.springer.com/article/10.1007/s10479-015-2004-4
  21. C.-H. Wang, “Using quality function deployment to conduct vendor assessment and supplier recommendation for business-intelligence systems,” Computers & Industrial Engineering, vol. 84, pp. 24– 31, Jun. 2015. http://dx.doi.org/10.1016/j.cie.2014.10.005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360835214003362
  22. K. Govindan, S. Rajendran, J. Sarkis, and P. Murugesan, “Multi criteria decision making approaches for green supplier evaluation and selection: a literature review,” Journal of Cleaner Production, vol. 98, pp. 66–83, Jul. 2015. http://dx.doi.org/10.1016/j.jclepro.2013.06.046. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095965261300437X
  23. J. W atróbski, ̨ “Outline of Multicriteria Decision-making in Green Logistics,” Transportation Research Procedia, vol. 16, pp. 537– 552, Jan. 2016. http://dx.doi.org/10.1016/j.trpro.2016.11.051. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2352146516306652
  24. I. Banamar and Y. De Smet, “An extension of promethee ii to temporal evaluations code-smg–technical report series,” 2016.
  25. O. Sahin and S. Mohamed, “A spatial temporal decision framework for adaptation to sea level rise,” Environmental Modelling & Software, vol. 46, pp. 129–141, Aug. 2013. http://dx.doi.org/10.1016/j.envsoft.2013.03.004. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1364815213000558
  26. J. Zhu and K. W. Hipel, “Multiple stages grey target decision making method with incomplete weight based on multi-granularity linguistic label,” Information Sciences, vol. 212, pp. 15–32, Dec. 2012. http://dx.doi.org/10.1016/j.ins.2012.05.011. [Online]. Available: http://linkinghub. elsevier.com/retrieve/pii/S0020025512003556
  27. A. Arasteh, A. Aliahmadi, and M. M. Omran, “A Multi-stage Multi Criteria Model for Portfolio Management,” Arabian Journal for Science and Engineering, vol. 39, no. 5, pp. 4269–4283, May 2014. http://dx.doi.org/10.1007/s13369-014-0987-9. [Online]. Available: http://link.springer.com/10.1007/s13369-014-0987-9
  28. J. Wątróbski and W. Sałabun, “Green Supplier Selection Framework Based on Multi-Criteria Decision-Analysis Approach,” in Sustainable Design and Manufacturing 2016, R. Setchi, R. J. Howlett, Y. Liu, and P. Theobald, Eds. Cham: Springer International Publishing, 2016, vol. 52, pp. 361–371. ISBN 978-3-319-32096-0 978-3-319-32098-4. [Online]. Available: http://link.springer.com/10.1007/978-3-319-32098-4_31
  29. D. Kannan, K. Govindan, and S. Rajendran, “Fuzzy Axiomatic Design approach based green supplier selection: acase study from Singapore,” Journal of Cleaner Production, vol. 96, pp. 194–208, Jun. 2015. http://dx.doi.org/10.1016/j.jclepro.2013.12.076. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095965261300930X
  30. T. L. Saaty, “Decision making with the analytic hierarchy process,” International Journal of Services Sciences, vol. 1, no. 1, pp. 83– 98, Jan. 2008. http://dx.doi.org/10.1504/IJSSci.2008.01759. [Online]. Available: https://www.inderscienceonline.com/doi/abs/10.1504/IJSSci.2008.01759
  31. C. Macharis, J. Springael, K. De Brucker, and A. Verbeke, “PROMETHEE and AHP: The design of operational synergies in multicriteria analysis.: Strengthening PROMETHEE with ideas of AHP,” European Journal of Operational Research, vol. 153, no. 2, pp. 307–317, Mar. 2004. http://dx.doi.org/10.1016/S0377-2217(03)00153-X. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S037722170300153X
  32. C.-L. Hwang, Y.-J. Lai, and T.-Y. Liu, “A new approach for multiple objective decision making,” Computers & Operations Research, vol. 20, no. 8, pp. 889–899, Oct. 1993. http://dx.doi.org/10.1016/0305-0548(93)90109-V. [Online]. Available: http://www.sciencedirect.com/science/article/pii/030505489390109V
  33. W. Sałabun, “The characteristic objects method: A new distance-based approach to multicriteria decision-making problems,” Journal of Multi-Criteria Decision Analysis, vol. 22, no. 1-2, pp. 37–50, 2015.
  34. A. Guitouni and J.-M. Martel, “Tentative guidelines to help choosing an appropriate MCDA method,” European Journal of Operational Research, vol. 109, no. 2, pp. 501–521, Sep. 1998. http://dx.doi.org/10.1016/S0377-2217(98)00073-3. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0377221798000733
  35. B. Roy and D. Vanderpooten, “The European school of MCDA: Emergence, basic features and current works,” Journal of Multi-Criteria Decision Analysis, vol. 5, no. 1, pp. 22–38, Mar. 1996. http://dx.doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1360%28199603%295%3A1%3C22%3A%3AAID-MCDA93%3E3.0.CO%3B2-F