Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Multithreaded Parallelization of the Finite Element Method Algorithms for Solving Physically Nonlinear Problems


DOI: http://dx.doi.org/10.15439/2018F40

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 311318 ()

Full text

Abstract. The parallelization of the leading procedures of the finite element method applied to solving physically nonlinear problems of structural mechanics is considered.


  1. O. Schenk, K. Gartner, “Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems,” Parallel Computing, vol. 28, 2002, pp. 187–197, https://doi.org/10.1016/S0167-8191(01)00135-1
  2. Intel Math Kernel Library Reference Manual. URL: https://software.intel.com/en-us/mkl-developer-reference-c-intel-mkl-pardiso-parallel-direct-sparse-solver-interface (Last access: 17.04.2018).
  3. S. Yu. Fialko, “Parallel direct solver for solving systems of linear equations resulting from finite element method on multi-core desktops and workstations”, Computers and Mathematics with Applications, 70, 2015, pp. 2968–2987, http://dx.doi.org/10.1016/j.camwa.2015.10.009
  4. S. Fialko, “PARFES: A method for solving finite element linear equations on multi-core computers”, Advances in Engineering Software, 40, (12), 2010, pp. 1256–1265. https://doi.org/10.1016/j.advengsoft.2010.09.002
  5. K. J. Bathe, Finite Element Procedures, New Jersey: Prentice Hall; 1996.
  6. S. Yu. Fialko, “Quadrilateral finite element for analysis of reinforced concrete floor slabs and foundation plates”, Applied Mechanics and Materials, 725–726, 2015, pp. 820 – 835, http://dx.doi.org/10.4028/www.scientific.net/AMM.725-726.
  7. S. Yu. Fialko, V. S. Karpilowskyi, “Triangular and quadrilateral fat shell fnite elements for nonlinear analysis of thin-walled reinforced concrete structures in SCAD software,” In: Petraszkiewicz and Witkowski (eds). Shell Structures: Theory and Applications, V. 4., Taylor and Francis Group, London, 2018, pp. 367–370.
  8. S. Yu. Fialko, V. S. Karpilowskyi, “Block subspace projection preconditioned conjugate gradient method for structural modal analysis”, in Proceedings of the Federated Conference on Computer Science and Information Systems, ISSN 2300-5963 ACSIS, Vol. 11, pp. 497–506. http://dx.doi.org/10.15439/2017F64 .
  9. S. Yu. Fialko, Application of finite element method to analysis of strength and bearing capacity of thin-walled concrete structures, taking into account the physical nonlinearity, Moscow: Publishing House SCAD SOFT, Publishing House ASV; 2018 (Russian).
  10. A. George, J. Liu, E. Ng, Computer Solution of Sparse Linear Systems, 1994. URL: http://web.engr.illinois.edu/~heath/courses/cs598mh/georgeliu.pdf
  11. Interlocked variable access. URL: https://msdn.microsoft.com/enus/library/windows/desktop/ms684122(v=vs.85).aspx
  12. M. Olczyk, “The procedure of parallel assembling of stiffness matrix in FE analysis for applying to the solution of nonlinear algebraic equation systems”, Master’s degree work, Cracow University of Technology, Cracow, Polish, 2017.
  13. D. Th. Nguyen, Parallel-Vector Equation Solvers for Finite Element Engineering Applications, Springer Science+Business Media, LLC: New Yourk; 2002. DOI 10.1007/978-1-4615-1337-7.
  14. Yu.V. Khalevitsky, N.V. Burmasheva, A.V. Konovalov, “An approach to the parallel assembly of the stiffness matrix in elastoplastic Problems”, Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS-2016), AIP Conf. Proc. 1785, pp. 040023-1–40023-4; Published by AIP Publishing. 978-0-7354-1447-1/$30.00 http://dx.doi.org/10.1063/1.4967080.
  15. M. N. De Rezendea, J. B. de Paiva, “A parallel algorithm for stiffness matrix assembling in a shared memory environment”, Computers & Structures, 76, (5, 15), 2000, pp. 593–602. https://doi.org/10.1016/S0045-7949(99)00181-9.
  16. D. Goudin, J. Roman, A scalable parallel assembly of irregular meshes based on a block distribution for a parallel direct solver, In: Applied Parallel Computing, New paradigms for HPC in industry and academia, 5th International Workshop, PARA 2000, Bergen, Norway, June 2000, Proceedings, Springer, Lecture Notes in Computer Science, V. 1947, pp. 113 – 116. URL: https://link.springer.com/chapter/10.1007/3-540-70734-4_15 (Last access: 13.07.2018)
  17. C. Cecka, A. Lew, E. Darve, “Introduction to Assembly of Finite Element Methods on Graphics Processors”, IOP Conf. Series: Materials Science and Engineering, 10, 012009, 2010, pp. 1 – 10. http://dx.doi.org/10.1088/1757-899X/10/1/012009.