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Abstract—Cloak-and-Dagger attacks targeting Android devices
can completely hijack the UI feedback loop, with one possible
consequence being that of hijacking SMS functionality for
cybercrime purposes. What is of particular concern is that
attackers can decouple stealth activities from SMS hijacking.
Consequently the latter could be pulled off using completely
legitimate apps that normally would allow users to manage text
messages from their personal computers (SMSonPC), but this
time all hidden away under attacker control. This work proposes
a digital investigation process aiming to uncover SMS-hijacked
devices. It uses bytecode instrumentation in order to force the
dumping of volatile memory areas where evidence for the hijack
can be located. Eventually both the malware that conceals the
SMS-hijacking and the compromised or smuggled SMSonPC app
can be identified. Preliminary results are presented using a case
study based on the popular SMSonPC app: Pushbullet.

I. INTRODUCTION

THE Cloak-and-Dagger set of attacks demonstrates how

through the abuse of two permissions, Android malware

can take control of the entire User Interface (UI) feedback

loop [1]. Essentially what this means is that through malicious

crafting an attacker can snoop on or even take full control over

a user’s intentions when interacting with a smart-phone using

touch screen taps and swipes, and conversely of all the device’s

reactions to them. The consequence is a Man-in-the-Middle

(MiTM) posture for an attacker sitting in between users and

their devices. This is a critical game changer in the sense that

up till this point it was generally thought that UI attacks were

more about forcing users to send clicks to marketing referral

web-sites, rather than completely hijacking a device. This role

up till this point was reserved to rooting/jail-braking mal-

ware that takes advantage of memory corruption errors inside

firmware. The two abused permissions relate to accessibility

(a11y) and overlay drawing (draw-on-top) functionality. The

former permits an app to access the UI widgets of a second

app, whilst the latter permits an app to draw overlays on top of

on another app’s UI. Their combined abuse can be disastrous

due to the long-term stealth an attacker can attain.

The threat that we are concerned with in this work leverages

these two permissions to silently install or compromise one

of those apps that let users send/read SMS text messages

from their personal computers (PCs). These apps are gaining

popularity since in the larger context they let users manage all

of their smart devices (phones, tablets, wearables and what

not) from a single machine1. In the specific case of text

messages, typing them on a PC keyboard is of particular

convenience whenever possible, and for the rest of this paper

we will refer to apps that offer this functionality as SMSonPC.

Once Cloak-and-Dagger malware tricks victims into giving

up or stealing their login SMSonPC credentials, it moves on

to activate a11y and conceal SMS-related activity by abusing

draw-on-top permissions. At this point the SMSonPC app pro-

vides an attack vector to hijack the device’s SMS functionality

in a highly stealthy manner. What is of major concern is that

the SMSonPC app in question is totally legitimate, possibly

installed by the user in the first place. Furthermore, the use of

draw-on-top and a11y features have been picked up by popular

apps and at this point it can be very difficult to make amends

from Android’s end.

While Google Play’s screening has been tightened accord-

ingly, it is a well known fact that persistent attackers tend

to succeed in eventually having their malware included in

this trusted app store. Android Oreo also includes tightened

security, yet its fragmented adoption is still expected to stand

in the way23. Moreover, mitigations only address overlay

drawing and which could potentially be replaced by social

engineering tricks nonetheless. Further details with respect

to the hijacking procedure and existing digital investigation

options are provided in section II.

The idea behind the proposed digital investigation process

(section III) is that in the event of a suspected SMS-hijacking,

or else on a routine basis, users will be able to investigate

their devices for possible infection. This approach aims di-

rectly at the core of the issue: long-term stealth. During a

first stage those apps that look suspicious, either because

of the aforementioned requested permissions or else due to

SMS functionality, are extracted from the device in order

to have their bytecode instrumented. The injected bytecode

forces the dumping of those volatile memory areas where

evidence uncovering the hijack could be located, without

necessarily requiring device rooting. During a second stage

1https://www.androidauthority.com/apps-send-text-sms-pc-ways-740669/
2https://www.wired.com/story/cloak-and-Dagger-android-malware/
3https://developer.android.com/about/versions/oreo/android-8.0-changes.
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of the investigation forensic analysis is conducted upon the

collected memory dumps. They are combined with the context

provided by text messages from flash/SIM memory along with

any suspicious destination numbers as obtained from operator

billing logs. In the interim, the device is used normally except

for the additional recording of potential artifacts that can

uncover both the malware that sets up and conceals the SMS-

hijack, as well as the compromised/smuggled SMSonPC app.

Basically any text message flows inferred to originate/end

from/at SMSonPC apps without the device’s owner consent,

and in the presence of a draw-on-top/a11y app, indicate an

ongoing SMS-hijack.

A case study using Pushbullet, a popular SMSonPC app,

is used for initial exploration of this technique in terms of

its effectiveness and practicality (section IV). The proposed

SMS-hijack investigation process along with the preliminary

results from this case study are the primary contributions of

this work.

II. SMSONPC HIJACKING

The essential ingredients for the stealthy SMS-hijack being

considered in our threat model consist of an SMSonPC app

combined with a number of Cloak-and-Dagger attack tech-

niques. In this work we focus on the abuse of Pushbullet to

serve this purpose.

A. The Pushbullet SMS-hijack scenario

In order to make use of Pushbullet users need to install a

controlling application on their PC in the form of a stand-alone

native application or a browser extension. Otherwise they may

simply log into a web interface4. Whichever client option, a

device is instructed to send a text message by means of what is

called an ephemeral message, which is possibly encrypted, and

an example of which is shown in Listing 1. This is a JSON-

formatted object which is sent to the Pushbullet server by the

controlling application. In this case the instruction is to send a

Hello! text message to +1 303 555 1212 on behalf of

user-id ujpah72o0 through her Pushbullet-registered device

with identification ujpah72o0sjAoRtnM0jc. This is an

example of a Pushbullet push event, intended for dispatch to

the identified Android device, and which accesses its SMS ser-

vices as specified by the messaging_extension_reply

type using the com.pushbullet.android package.

Listing 1
A PUSHBULLET EPHEMERAL MESSAGE INSTRUCTING A PHONE TO

SEND AN SMS TEXT MESSAGE.

{
‘ ‘ push ” : {

‘ ‘ c o n v e r s a t i o n i d e n ” : ‘ ‘+1 303 555 1212” ,

‘ ‘ message ” : ‘ ‘ H e l l o ! ” ,

‘ ‘ package name ” : ‘ ‘ com . p u s h b u l l e t . a n d r o i d ” ,

‘ ‘ s o u r c e u s e r i d e n ” : ‘ ‘ u jpah72o0 ” ,

‘ ‘ t a r g e t d e v i c e i d e n ” : ‘ ‘ u jpah72o0s jAoRtnM0jc ” ,

‘ ‘ t y p e ” : ‘ ‘ m e s s a g i n g e x t e n s i o n r e p l y ”

} ,

‘ ‘ t y p e ” : ‘ ‘ push ”

}

4https://www.pushbullet.com

Cloak-and-Dagger is really a collection of attacks

[1] that abuse Android draw(ing)-on-top of opaque

or transparent overlays and a11y system services.

They require the SYSTEM_ALERT_WINDOW and

BIND_ACCESSIBILITY_SERVICE permissions

respectively. Since attacks #3 and #4 (as identified in

[1]) are able to hijack the device’s virtual keyboard,

they could be used to steal Pushbullet credentials during

installation/configuration. The prior attack succeeds by

placing multiple transparent “pass-through-clicks” overlays

per keyboard button and then snoops on keystrokes by

having all the overlays capture clicks outside their region.

Subsequently it identifies the tapped button using a clever

Z-order trick. The latter attack abuses accessibility services

by listening to keyboard button click notifications. Attack

#5 provides an alternate hijacking strategy and combines the

two permissions. It exploits accessibility services to detect

that the user has navigated to the Pushbullet app, and then

proceeds to exploit draw-on-top by displaying a fake but

authentic-looking Pushbullet log-in screen. At that instance it

lures users to send their credentials directly to the attacker.

Through Cloak-and-Dagger an attacker can even move on

from compromising a user-installed Pushbullet installation to

the silent installation of a covert one. Specifically through

attack #8, using the standard Android API an attacker can

initiate an installation of Pushbullet as well as programmat-

ically confirming the same action when prompted, all the

while covering this activity through a draw-on-top overlay.

Subsequently, through a11y services, the malware can proceed

to cover its tracks by accessing the “recent windows” view and

dismissing all of its content. The final step is to launch attack

#9, i.e. navigating to app settings and outright enabling all

the permissions required by Pushbullet. Consequently the user

won’t get prompted to grant permissions when subsequently

Pushbullet is launched remotely by an attacker to disclose

or send SMSes on the device’s owner behalf, and thereby

maintaining stealth. It is noteworthy that both draw-on-top

and a11y features come along with mechanisms to protect

from abuse, yet the Cloak-and-Dagger attacks don’t simply

bypass these protections but also go as far as abusing them. For

example the aforementioned Z-order trick exploits the same

security flag that informs a clicked widget about whether the

click passed through an overlay drawn on top of it.

Having obtained access to draw-on-top and a11y permis-

sions through deceit, along with a compromised or smuggled

SMSonPC app through Cloak-and-Dagger, an attacker can

now proceed with mischief. For example, the device can be

turned into a crime text messaging proxy or even into a spying

device by leaking message content. Maintaining stealth in the

former case can be achieved by deleting all sent messages,

once again possibly through Cloak-and-Dagger means. In the

latter case it is a question of whether the SMSonPC has been

smuggled or compromised. In the first case, it is simply a

question of keeping the SMSonPC app installation concealed

from the device owner, while the second case also requires that

attackers hide their tracks within the SMSonPC controlling
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app. Whatever the scenario the end result is that of a stealthy

SMS-hijack.

B. Android SMSonPC apps

Any SMSonPC app requires the SEND_SMS and

READ_SMS permissions in order to be able to interact

with the device’s SMS features. The INTERNET

permission is also required to provide a communication

link with the SMSonPC server. This also applies to

Pushbullet. In particular, the SEND_SMS permission

provides access to the SMS manager service and through

which app components can send text messages by calling

SmsManger.getDefault().sendTextMessage().

An alternate method forgoes permissions by instead

delegating message sending to a privileged app by

means of a startActivity(intent) call, where

the intent argument would have been associated with

an SMS-related action. Reading of inbox/draft/outbox/sent

messages on the other hand requires access to the SMS

provider (android.provider.Telephony.Sms),

which is populated from an SQLite database file that

persists text messages, and which can be accessed through

getContentResolver.query() calls.

As of Android Kitkat5 only a designated default messaging

app is actually permitted to write to this provider. This app

also has exclusive privileges to handle incoming text messages.

However it is then obliged to inform all interested apps of

a newly delivered message, as well as to be delegated with

message sending duties by unprivileged apps. It is perfectly

possible that an SMSonPC app is also the designated default

messaging app. That would facilitate even further the deletion

of sent messages as part of the crime-proxy’s functionality.

C. Limitations with existing digital investigation options

In the event of an SMS-hijack incident, existing options

for digitally investigating it encompass examining the phone’s

SIM and flash memory for all stored text messages. This

process comprises forensic imaging followed by the decoding

steps concerning the manner with which text messages are

encoded. SIM memory uses GSM-7 or the now obsolete

GSM-8 or UCS2 encodings [2]. Android phones store text

messages inside SQLite database files where UTF-8 or UTF-

16 string encoding can be employed [3]. In this case there

is the added difficulty that Android does not allow flash

memory imaging without prior device rooting. In many cases

this could be problematic due to warranty voiding, as well

as it leaves the device’s protection again future re-infection

weakened. A more practical solution would be to simply install

an SMS backup/recovery app that extracts all tables/columns

individually from the SMS provider’s SQLite database file.

Such apps only require the READ_SMS permission to function,

in addition to permission to copy messages to the some target

destination.

5https://android-developers.googleblog.com/2013/10/
getting-your-sms-apps-ready-for-kitkat.html

In any case the SMS crime-proxy text messages would have

been cleared up using Cloak-and-Dagger steps that interact

with the default messaging app. In the spying device’s case

the context associated with text messages inside the SMS

provider only identifies the creator rather than the reading

apps and is therefore useless. In fact both scenarios could

only be fully reconstructed by tracing and preserving the entire

sequence of events that lead to sending/deletion/reading of spe-

cific messages. Artifacts found inside volatile memory could

potentially serve this purpose, however the ones concerning

text messages are expected to be short-lived and all existing

volatile memory dumping techniques require device rooting

[4], further complicating matters.

III. VOLATILE MEMORY-CENTRIC INVESTIGATION

The proposed SMS-hijack investigation process is based

directly on those components involved in the sequence of

events when sending and reading SMS text messages, as con-

trolled by a Cloak-and-Dagger malware. The volatile memory

of these components is a candidate source for investigation-

relevant artifacts, specifically the text messages themselves.

The interfacing between these components is also of interest

since the relevant code execution presents candidate triggers,

indicating the presence of text messages within the memory

areas of interest at that point in time.

A. Abused SMS components

Event sequence mapping for message sending/reading flows

as abused during an SMS-hijack incident was carried out

directly upon Android’s source code6, with guidance from

literature sources that describe its core inter-process com-

munication [5] and telephony stacks [6]. Figure 1 depicts

the components and interfacing involved when covertly send-

ing text messages. Firstly, the Cloak-and-Dagger malware

itself needs to conceal from the user any activity related

to SMS being conducted by the SMSonPC app. Draw-on-

top overlays require a TYPE_SYSTEM_OVERLAY layout and

which has now been deprecated by the more restrictive

TYPE_APPLICATION_OVERLAY. However the new permis-

sion is only relevant for user-installed apps that do not need

to be compatible with Android versions older than Oreo.

Attackers interact remotely with the SMSonPC app to send

instructions for sending/retrieving text messages, e.g. Listing

1, typically through HTTP(S).

The direct route for sending text messages is through the

SMSManager service and which is hosted by the phone

process com.android.phone. Most inter-process com-

munication in Android happens through Binder, a Re-

mote Procedure Call (RPC) mechanism, in order to trig-

ger SmsManager.sendTextMessage()’s code execu-

tion. Message dispatching includes two important steps.

First, the outgoing message is written to the mmssms.db

SQLite database file by calling into the Linux Virtual

File System (VFS) and eventually writing to the phone’s

6https://source.android.com/
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flash memory. This step is mandatory unless the origina-

tor of the message is the default messaging app. Secondly,

the message is dispatched to the baseband processor. The

RIL.sendMessage() triggers a chain of events that cause

the outgoing message to formatted in a communication

protocol-independent manner (PDU format). It is sent through

a UNIX domain socket to the rild native daemon that

in turn interfaces with a vendor-specific library. When its

ProcessCommandBuffer event loop receives the RIL re-

quest number 25 (RIL_REQUEST_SEND_SMS), this library

initiates message sending by calling into the baseband driver

code via an ioctl. Eventually the baseband processor phys-

ically sends the text message onwards to the operator’s core

network via the closest base transceiver station. The operator

logs the event for billing purposes even though this excludes

message content [2].

An alternate indirect path is possible whenever an un-

privileged SMSonPC app interacts with the default mes-

saging app using intents. Intents are resolved by the

ActivityManagerService, which is hosted by the

System Server daemon and reachable through Binder

RPC. The continuation path is similar to that of the direct path,

except that at this point the persistence of outgoing messages

is at the discretion of the default messaging app.

The primary components involved with the reading of

text messages are shown in Figure 2. The SMS provider

inside the phone process, as populated from mmssms.db

through a call to SQLiteQueryBuilder.query(),

is central to this operation. This provider can also

get populated from the SIM memory through a

SmsManager.getDefault().getAllMessagesfrom

ICC() call, and which in turn sends a RIL request number

28 (RIL_REQUEST_SIM_IO). The task of obtaining a

reference to a ContentResolver instance for calling

query() is mediated by ActivityManagerService.

Ultimately, the retrieved message is covertly leaked to the

attacker via HTTP(S).

B. Observations

Potentially, any text message flow originating from an

SMSonPC app and which after passing through system com-

ponents terminates in flash/SIM memory, coupled with suspi-

cious draw-on-top and a11y activities, should raise an alert

of a possible SMS-hijack. The same argument applies for

the inverse route. The device owner can confirm whether

the observed flows had their consent or otherwise, at which

point the suspicious app is identified as the Cloak-and-Dagger

malware while the SMSonPC app is confirmed to have been

compromised. Given that fully tracing these flows for prompt

SMS-hijack detection is expected to be particularly expensive

in terms of runtime overheads, an alternate practical approach

is to defer detection during memory forensics analysis [7]. The

idea is to keep track just of the key in-memory artifacts related

to these flows, as occurring inside the memory space of apps

and intermediate system components, and from which to infer

their occurrence.

Fig. 1: Android components abused to send SMS text mes-

sages and concealed by Cloak-and-Dagger.

Fig. 2: Android components abused to read SMS text mes-

sages and concealed by Cloak-and-Dagger.

The main challenge however is presented by the brief

permanence in memory of the said artifacts, calling for an

event-driven collection approach. Bytecode instrumentation

is a key enabler, whereby injected bytecode is responsible

for initiating memory dumps at the appropriate SMS-hijack

triggers. The most obvious solution is to focus on SMSonPC

apps, since they can be statically instrumented through app

repackaging and without the need of device rooting. Further-

more, instrumenting system components is still deemed a less

desirable option due to the instability that it might incur.

Yet, on a non-rooted device the injected bytecode would only

have the faculty to dump the Dalvik (Java) heap, and would

therefore miss those artifacts that would rather reside on the

native heap whenever native components are employed. In

cases where device rooting is viable, rather than having to

analyze all native heaps of a myriad of SMSonPC apps it

could suffice to inspect just that of the Android phone process.

This heap is expected to be relatively constant across devices.
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Fig. 3: The volatile memory-centric process for digitally

investigating SMS-hijacking.

As can be observed from Figures 1 and 2 the phone process

is central to both the SMS sending and reading flows. Also,

due to the native Binder RPC mechanism it must process text

message flows on its native heap.

C. The SMS-hijack investigation process

The proposed digital investigation steps carried upon de-

vices with a suspected SMS-hijack, as shown in Figure 3,

are based on the observations just made. They require the

inspected device to be connected to an investigation worksta-

tion over an Android Debug Bridge (adb) session. The first

3 steps are concerned with identifying suspicious apps and

instrumenting the trigger points for dumping volatile memory.

The focus is on those packages (in apk format) that request

relevant permissions. They must either request access to draw-

on-top/a11y services that render them Cloak-and-Dagger sus-

pects, or else they request SMS permissions and therefore are

potentially abused SMSonPC apps. These apps are discernible

from the device’s /data/system/packages.xml.

Once pulled from the device (step 1), the potential SM-

SonPC apps are repackaged (step 2) with memory-dumping

instrumentation and re-installed on the device in place

of the original ones (step 3). Algorithm 1 describes the

instrument() function applied on each SMSonPC.apk,

and which takes into account whether the device will be rooted

in step 3 as indicated by the isRoot flag. Lines 1-4 populate

the filters for SMS or native method call-related trigger points

as per component interfacing described in section III-A. These

are defined using smali syntax7 which is an assembly language

for Dalvik bytecode8. The additional wild cards * are meant

to match any smali statements in a non-greedy manner.

Trigger points are instrumented with Dalvik heap-dumping

bytecode (dalvik_dump_instr on lines 5-12) and pos-

sibly also that of the native heap of the phone pro-

7https://github.com/JesusFreke/smali
8https://source.android.com/devices/tech/dalvik/dalvik-bytecode

Algorithm 1: Step 2: instrument

Input: Potentially abused app: SMSonPC.apk, Root mode:
RootFlag

Output: Repackaged and cracked app: repackaged.apk

1 [sms trigger filters] ← “invoke-direct{*},
Landroid/telephony/SMSManager;

->send(Multipart)TextMessage(*)V”;
2 [sms trigger filters] ← “const-string "sms*

invoke-static{*},
Landroid/net/URI;->parse(*)Landroid/net/URI;*
invoke-direct{*},
Landroid/content/Context;->startActivity(*)V”;

3 [sms trigger filters] ← “(sget-object v*,

Landroid/provider/Telephony/Sms/*CONTENT_URI:|

"content://mms-sms")* invoke-direct{*},
Landroid/content/ContentResolver; ->query(*)V”;

4 [native trigger filters] ← “invoke*{*},

*->nativeMethod(*)”;

5 dalvik dump instr ← “invoke-static{},
Ljava/lang/System;->currentTimeMillis()J

6 move-result-wide vA

7 invoke-direct{vA}, Ljava/lang/long;

->toString()Ljava/lang/String;

8 move-result vC

9 const-string vD, "/sdcard/hdump_hprof_"

10 invoke-direct{vD,vC}, Ljava/lang/String;

->concat(Ljava/lang/String;)Ljava/lang/String;

11 move-result vE

12 invoke-static{vE}, Landroid/os/Debug;

->dumpHprofData(Ljava/lang/String;)V”;
13 systemmem dump instr ← “const-string vA,

"com.inspect.nativeDump"

14 const-string vB ,"com.inspect.nativeDumpSrvc"

15 new-instance vC,

Landroid/content/ComponentName;

16 invoke-direct{vC, vA, vB},
Landroid/content/ComponentName;

-><init>(Ljava/lang/String;

Ljava/lang/String;)V;

17 new-instance vD, Landroid/content/Intent;

18 invoke-direct{vD}, Landroid/content/Intent;

-><init>()V;

19 invoke-direct{vD, vC}, Landroid/content/Intent;

->setComponent(Landroid/content/ComponentName;

)Landroid/content/Intent;

20 invoke-direct{p0, vD},
Landroid/content/Context;

->startService(Landroid/content/Intent;)

Landroid/content/ComponentName;”;

21 [smali class files] ← unpack_apk(SMSonPC.apk);
22 foreach smali class file in [smali class files] do

23 smali class file ←
crack_anti_tamper(smali class file);

24 smali class file ← unpack(smali class file);
25 while trigger point ←

getNextTriggerPoint(smali class file,

[sms trigger filters] ∪ [native trigger filters]) do

26 InstrMethodStart(smali class file, trigger point,
dalvik dump instr);

27 if RootFlag then

28 InstrMethodStart(smali class file,

trigger point, systemmem dump instr);
29 end

30 repackaged.apk ← smali class file;
31 end

32 return apkSign(repackaged.apk);

cess (systemmem_dump_instr on lines 13-20). The
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latter relies on device rooting as well as the the in-

stallation of nativeDump.apk and DumpCmd, as per

step 3 of Figure 3. nativeDump.apk exposes the

nativeDumpSrvc service component reachable through

startService() calls from the instrumented apps. In

turn, nativeDumpSrvc’s implementation calls the su;

/sdcard/DumpCmd shell command sequence. DumpCmd is

a native process responsible for dumping the phone process’s

native heap via /proc/<pid_suspect/phone>/maps

and /proc/<pid_suspect/phone>/mem. All memory

dumps are placed on external (common app) storage area

on the file-system (/sdcard). Within the same location the

sms_extract() component is responsible to extract just

the SMS-related memory areas, saving on space requirements.

This file-system location facilitates later retrieval from the

investigation workstation without requiring device rooting.

For both instrumentation code, the Dalvik VM register

numbers vA-vD have to be adjusted so that no clashes oc-

cur, possibly also requiring an adjustment to the .locals

smali directive. This directive declares the number of

Dalvik VM registers needed to store the local variables

of a class method (excluding method parameters). Further-

more, not shown in the instrumentation bytecode of Algo-

rithm 1 is exception handling code, as well as an addi-

tional snippet that combined with AndroidManifest.xml

permission entries for READ_EXTERNAL_STORAGE and

WRITE_EXTERNAL_STORAGE requests access to the exter-

nal storage. This operation would be required only by those

apps not already including this functionality, with the instru-

mentation bytecode placed inside the onCreate() method

of the app’s main activity.

The trigger filters are applied for each smali representa-

tion of the compiled app classes (smali_class_file),

as obtained through apk unpacking (unpack_apk())

(lines 21-31) by calling getNextTriggerPoint(). The

identified trigger points are then instrumented by calling

InstrMethodStart(). This is a routine that attempts to

inject the instrumentation bytecode at the very start of the

method containing the trigger point. This approach avoids

having to renumber Dalvik registers to address clobbering,

and therefore not running the risk of exceeding the highest

register usable by most Dalvik opcodes (v15). Instrumentation

for native heap dumping is only carried out in case of

device rooting. Each, possibly instrumented, smali class file is

eventually added to the repackaged app repackaged.apk.

Finally, the app is signed (line 32) and is ready to be deployed

back to the investigated device.

The pending explanation concerns lines 23-24. These are

two pre-processing operations that would have to be applied

in case the SMSonPC apk is hardened with anti-tampering

(crack_anti_tamper()) and packed (unpack()) code.

Their implementation is orthogonal to our work, rather the

investigator must seek the assistance of third-party tools in

order to successfully pre-process the said class files, with good

disassembly skills coming in very handy.

Once step 3 (Figure 3) is complete, the device is returned

to its owner for continued usage during step 4. Its duration

is bounded by the space available for memory dumps (the

memfiles). On investigation resumption, steps 5 and 6 take

care of retrieving them from the device. Step 7 retrieves

the available SMS text messages from flash memory using

any SMS backup app, as well as those in SIM memory

using an appropriate card reader. Additionally, on rooted

devices text messages can rather be extracted directly from

the mmssms.db SQLite database files in step 8. Steps 9-10

proceed with extracting and normalizing to UTF-16 the text

message details as well all strings from the memory dumps.

Step 11 on the other hand performs the same operation for

those suspicious destination numbers obtained from the billing

log.

The normalized content is now ready to be used for forensic

analysis. In the case of a text message leakage investigation,

the text messages from step 9 are central to the investigation

starting point. In the case of a crime-proxy attack, where sent

messages are deleted for stealth, the suspicious destination

numbers from step 11 become essential. At this point, the

aim of the investigator is to trace the messages/numbers inside

the dumped strings, and from which to attempt to maximize

the identification of SMS-hijack related artifacts. The non-

comprehensive list includes: sent/leaked message times, crime-

proxy message content, SMSonPC account details in case it

has been smuggled, identification of the implicated SMSonPC

app in case of multiple candidates, and ultimately the Cloak-

and-Dagger malware itself.

IV. CASE STUDY: PUSHBULLET

In order to assess the potential of the proposed SMS-hijack

investigation process we present a case study involving the

widely used Pushbullet SMSonPC app. The chosen scenario

is a simulated crime-proxy attack. Its objectives are to: i)

Report on the instrumentation step (Algorithm 1) as applied

to Pushbullet; ii) Measure the storage requirements needed for

memory dumps, and iii) the overheads imposed by bytecode

instrumentation; and finally iv) Report on the artifacts identi-

fied during the forensic analysis step.

The case study assumes a Cloak-and-Dagger malware to

have stealthily installed Pushbullet and set up the device to act

as an SMS crime-proxy. Eventually a sequence of suspicious

outgoing text message destination numbers show up on a

detailed break-down of the device owner’s phone bill. Step 1 of

the investigation identifies a suspicious app that requests draw-

on-top and a11y permissions, as well as the Pushbullet app as

the possibly abused SMSonPC app. At this stage the investiga-

tor is required to conduct the follow-up investigation steps. The

full setup consists of an Android Virtual Device (Goldfish),

Android Nougat (for Intel Atom), Pushbullet version 17.7.19-

288 and Android Debug Bridge 1.0.39. Apktool 2.3.1 was

used to assist bytecode instrumentation. Bash scripting was

used for prototyping the instrumentation tool as well as native

heap dumping.
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A. Pushbullet instrumentation

The first two trigger filters from Algorithm 1, i.e. those

relevant to SMS crime-proxy, identified two trigger points

both inside com.pushbullet.android.sms.h’s void

a(String, String, String) static method. The result

of InstrMethodStart()’s execution is shown in Listing

2. Line 1 identifies the instrumented method and line 2 shows

that the requested number of Dalvik VM registers has been

increased from 8 to 12. The registers utilized by the instru-

mentation bytecode are in the v2-v9 range, since attempts

to make use of v0 and v1 resulted in compiler (dex2oat)

errors. As compared to the abstracted version presented earlier

in Algorithm 1, the injected instrumentation does not hard-

code the location of the external common storage (line 10),

makes use of the convenient StringBuilder class (line

15), had to resort to using const-string/jumbo (line

21) due to the large number of strings used by Pushbullet,

and makes use of a try/catch block (line 31). On successful

execution, control flow skips the exception handler and goes

straight into the original entry point of the non-instrumented

method (line 43), as indicated by the original .prologue

directive (line 42).

In terms of obscured trigger points Pushbullet shows no

signs of packed code or SMS-related native code. This situa-

tion simplifies matters with respect to trigger point coverage

and avoids the need to dump native heaps. The use of

ProGuard (a code obfuscator that is enabled by default in

Android Studio) is not an obstacle either since since trigger

points are defined over Android API calls. No anti-tamper

protection was encountered either, although the repackaging

of Pushbullet did affect Google sign-in’s functionality. The

case study was eventually conducted using the Facebook sign-

in option since this functionality was not broken. Yet, this

was an eye-opener on the perils of instrumentation. Finally

since Pushbullet already requests access to external storage, no

further bytecode instrumentation was necessary in this respect.

B. Storage requirements

The storage requirements were calculated on the basis of

an estimated average of 33 daily sent text messages9. In

turn this translates to 33 Dalvik heap dumps and a possible

additional 33 native heap dumps per day. Table I shows

the storage requirements for Pushbullet (Dalvik heap) and

Android’s default phone process (native heap) dumps. While

this case study does not strictly require the latter they are

included to present a more complete picture.

In both cases the figures for both full and SMS-related area

dumps are provided. In the case of Pushbullet, the SMS areas

are those containing ephemeral messages as per Listing 1.

In the case of the phone process a more generic approach

was followed by taking into consideration all areas containing

UTF-8/16 strings. This is the main reason why native heap

dump sizes are significantly larger (> ×100). However, dump

size reduction is staggering in both cases. The 0 standard

9https://www.textrequest.com/blog/many-texts-people-send-per-day

TABLE I
EST. DAILY STORAGE REQUIREMENTS FOR MEMORY DUMPS.

Dump mode mean (kB) std. dev. (kB) sum (kB)

Dalvik heap - Full 11,608 244.752 380,000

Dalvik heap - SMS only 5 1.929 163

Native heap - Full 31,457 0 1,000,000

Native heap - SMS only 505 89.298 16,656

TABLE II
RUNTIME OVERHEADS.

Configuration mean (s) std. Mann-Whitney
dev. (s) (p-value=0.93)

pushbullet.apk 0.22 0.02 Sum of ranks - 1099

repackaged.apk 0.72 0.4 Sum of ranks - 1112

Overheads 227% - U - 538

deviation for full native dumps derives from the fact that

their size did not change throughout the entire time-frame of

sending the text messages. On the other hand the garbage-

collected Dalvik heap was more dynamic.

Overall, the 163kB/day required by Dalvik heap dumps

compares well to the approximate 3-5MB typically consumed

by a selfie with default resolution. However this figure rises

sharply to nearly 17MB had the phone to be rooted and native

heap dumping enabled.

C. Runtime overheads

From an end-user’s point-of-view the runtime overheads

incurred by Pushbullet due to bytecode instrumentation are

not noticeable. However, even minimal runtime overheads

could be a factor from an attacker’s point-of-view had they

be exploited to detect an ongoing SMS-hijack investigation.

Therefore, overheads were measured when sending SMS text

messages from Pushbullet’s browser interface. In doing so

we gained access to the SMS event profiling logs created by

pushbullet.js inside the javascript console. The relevant

log entries are those of sms_changed type and examples of

which are shown in Listing 3.

Table II shows statistics for the turn-around times, measured

between when a text message is sent and the point at which a

notification of completion is received asynchronously in a typ-

ical Ajax fashion. When computing overheads incurred by the

combined Dalvik/native heap dumping instrumentation over

an unmodified Pushbullet configuration, the mean overhead

for a daily amount of text messages is a considerable 227%.

However, when comparing ranks of the two configurations

using a Mann-Whitney test the U value is roughly half that of

the sum of ranks for both configurations. This indicates that

the difference in mean turn-around times between the two is

not statistically significant. This outcome indicates that while

the turn-around times for the repackaged configuration were

higher, other external factors also had an impact. Therefore

their difference is not a reliable measure for attackers to detect

an ongoing investigation.
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1 . method p u b l i c s t a t i c a ( L java / l a n g / S t r i n g ; L java / l a n g / S t r i n g ; L java / l a n g / S t r i n g ; ) V

2 . l o c a l s 12

3

4 invoke−s t a t i c {} , L j ava / l a n g / System ; −>c u r r e n t T i m e M i l l i s ( ) J

5 move−r e s u l t −wide v8

6 invoke−s t a t i c {v8 , v9} , L j ava / l a n g / Long;−>va lueOf ( J ) L java / l a n g / Long ;

7 move−r e s u l t −o b j e c t v6

8 invoke−v i r t u a l {v6} , L j ava / l a n g / Long;−> t o S t r i n g ( ) L java / l a n g / S t r i n g ;

9 move−r e s u l t −o b j e c t v5

10 invoke−s t a t i c {} , L a n d r o i d / os / Envi ronment;−>g e t E x t e r n a l S t o r a g e D i r e c t o r y ( ) L java / i o / F i l e ;

11 move−r e s u l t −o b j e c t v4

12

13 : t r y s t a r t 0

14 new−i n s t a n c e v3 , L java / l a n g / S t r i n g ;

15 new−i n s t a n c e v7 , L java / l a n g / S t r i n g B u i l d e r ;

16 invoke−d i r e c t {v7} , L j ava / l a n g / S t r i n g B u i l d e r;−>< i n i t >()V

17 invoke−v i r t u a l {v4} , L j ava / i o / F i l e ;−> t o S t r i n g ( ) L java / l a n g / S t r i n g ;

18 move−r e s u l t −o b j e c t v8

19 invoke−v i r t u a l {v7 , v8} , L j ava / l a n g / S t r i n g B u i l d e r ;−>append ( L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g B u i l d e r ;

20 move−r e s u l t −o b j e c t v7

21 c o n s t−s t r i n g / jumbo v8 , ” / hdump hprof ”

22 invoke−v i r t u a l {v7 , v8} , L j ava / l a n g / S t r i n g B u i l d e r ;−>append ( L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g B u i l d e r ;

23 move−r e s u l t −o b j e c t v7

24 invoke−v i r t u a l {v7 , v5} , L j ava / l a n g / S t r i n g B u i l d e r ;−>append ( L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g B u i l d e r ;

25 move−r e s u l t −o b j e c t v7

26 invoke−v i r t u a l {v7} , L j ava / l a n g / S t r i n g B u i l d e r ;−> t o S t r i n g ( ) L java / l a n g / S t r i n g ;

27 move−r e s u l t −o b j e c t v7

28 invoke−d i r e c t {v3 , v7} , L j ava / l a n g / S t r i n g;−>< i n i t >(L java / l a n g / S t r i n g ; ) V

29 invoke−s t a t i c {v3} , L a n d r o i d / os / Debug;−>dumpHprofData ( L java / l a n g / S t r i n g ; ) V

30 : t r y e n d 0

31 . c a t c h Ljava / l a n g / E x c e p t i o n ; { : t r y s t a r t 0 . . : t r y e n d 0} : c a t c h 0

32

33 go to : go to 0

34

35 : c a t c h 0

36 move−e x c e p t i o n v2

37 c o n s t−s t r i n g / jumbo v7 , ” p a t c h g e n ”

38 invoke−s t a t i c {v2} , L a n d r o i d / u t i l / Log;−>g e t S t a c k T r a c e S t r i n g ( L java / l a n g / Throwable ; ) L java / l a n g / S t r i n g ;

39 move−r e s u l t −o b j e c t v8

40 invoke−s t a t i c {v7 , v8} , L a n d r o i d / u t i l / Log;−>e ( L java / l a n g / S t r i n g ; L java / l a n g / S t r i n g ; ) I

41

42 . p r o l o g u e

43 : go to 0

44 . . . s n i p . . .

Listing 2. A snippet of bytecode instrumentation injected into Pushbullet.

p u s h b u l l e t . j s :8615 message {” t y p e ” : ” push ” , ” t a r g e t s ” : [ ” s t r e a m ” , ” a n d r o i d ” , ” i o s ” ] , ” push ” :{” t y p e ” : ” sms changed ” ,

” s o u r c e d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” n o t i f i c a t i o n s ” : [ ]}} 0 . 042 s

p u s h b u l l e t . j s :8615 message {” t y p e ” : ” push ” , ” t a r g e t s ” : [ ” s t r e a m ” , ” a n d r o i d ” , ” i o s ” ] , ” push ” :{” t y p e ” : ” sms changed ” ,

” s o u r c e d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” n o t i f i c a t i o n s ” : [ ]}} 0 . 117 s

p u s h b u l l e t . j s :8615 message {” t y p e ” : ” push ” , ” t a r g e t s ” : [ ” s t r e a m ” , ” a n d r o i d ” , ” i o s ” ] , ” push ” :{” t y p e ” : ” sms changed ” ,

” s o u r c e d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” n o t i f i c a t i o n s ” : [ ]}} 0 . 094 s

. . . s n i p . . .

Listing 3. pushbullet.js console log entries for SMS event profiling.

” i d ” , ” t h r e a d i d ” , ” a d d r e s s ” , ” p e r s o n ” , ” d a t e ” , ” d a t e s e n t ” , ” p r o t o c o l ” , ” r e a d ” , ” s t a t u s ” , ” t y p e ” , ” r e p l y p a t h p r e s e n t ” ,

” s u b j e c t ” , ” body ” , ” s e r v i c e c e n t e r ” , ” l o c k e d ” , ” s u b i d ” , ” e r r o r c o d e ” , ” c r e a t o r ” , ” seen ”

” 1 ” , ” 3 ” , ” 1 2 3 4 5 6 ” , ” ” , ” 1 5 2 0 8 6 6 3 8 1 9 6 9 ” , ” 0 ” , ” ” , ” 1 ” , ” −1 ” , ” 2 ” , ” ” ,

” ” , ” CrimeProxy sms t e x t message 1 ” , ” ” , ” 0 ” , ” 1 ” , ” 0 ” , ” com . p u s h b u l l e t . a n d r o i d ” , ” 1 ”

” 2 ” , ” 3 ” , ” 1 2 3 4 5 6 ” , ” ” , ” 1 5 2 0 8 6 6 4 0 2 0 4 2 ” , ” 0 ” , ” ” , ” 1 ” , ” −1 ” , ” 2 ” , ” ” ,

” ” , ” CrimeProxy sms t e x t message 2 ” , ” ” , ” 0 ” , ” 1 ” , ” 0 ” , ” com . p u s h b u l l e t . a n d r o i d ” , ” 1 ”

” 3 ” , ” 3 ” , ” 1 2 3 4 5 6 ” , ” ” , ” 1 5 2 0 8 6 6 4 2 0 0 2 9 ” , ” 0 ” , ” ” , ” 1 ” , ” −1 ” , ” 2 ” , ” ” ,

” ” , ” CrimeProxy sms t e x t message 3 ” , ” ” , ” 0 ” , ” 1 ” , ” 0 ” , ” com . p u s h b u l l e t . a n d r o i d ” , ” 1 ”

. . . s n i p . . .

Listing 4. Extract from mmssms.db.
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D. Forensic analysis

Listing 4 shows an extract from an mmssms.db export

produced after all text messages were sent. Each entry clearly

identifies the destination number (123456), message content

(CrimeProxy sms text message n) and the creator

app (com.pushbullet.android). If this content was

present on the device, any SMS backup app with READ_SMS

permission would have been able to extract this information

to solve the SMS-hijack case. However, with a Cloak-and-

Dagger malware that deletes the SMS crime-proxy messages,

an investigator would have to resort to the volatile mem-

ory dumps for evidence. Starting off from the suspicious

123456 destination number extracted from a detailed bill

breakdown (step 11 of the investigation process), the subse-

quent forensic analysis (step 12) retrieved the entries shown

in Listing 5. Each entry provides the missing context from

the deleted mmssms.db entries, namely the message content.

Furthermore given that we are dealing with a Pushbullet

dump automatically implicates the app in this SMS activity.

Moreover the prefix ujBeKPNHgJMs is observed to remain

constant throughout all the iden entries, identifying the

utilized Pushbullet account, and therefore also provides the

necessary evidence for reporting abuse. Finally, the created

and modified fields store the timestamps related to the text

message sending events.

Listing 6 shows the corresponding native heap dump arti-

facts as retrieved from the phone process. In this case the user

account identification is missing, however the message content

and creator app are clearly identifiable. Concluding, in both the

Dalvik and native heap dump cases, all information that could

have gone missing from mmssms.db could be reconstructed.

At this point with the device owner’s assistance the investigator

would be able to confirm whether those outgoing messages

were related to an SMS-hijack by confirming the user’s

consent or otherwise. In the latter case, the suspicious app’s

bytecode from step 1 should be analyzed in order to identify

the Cloak-and-Dagger code.

E. Limitations

An alternative to using message turn-around times in order

to detect an ongoing investigation, the Cloak-and-Dagger

malware could be equipped with checks for the presence of

memory dumps inside external storage, suspending its activi-

ties if found. While in a way this can be seen as beneficial, this

could be problem if the SMS-hijack operation is resumed as

soon as the device returns to normal operation. Furthermore,

while in the case of Pushbullet no anti-tamper or obfuscation

came in the way, the Google sign-in failure is an eye-opener

with respect to the difficulties expected during SMSonPC app

instrumentation.

V. RELATED WORK

Ideally SMS-hijack attacks are thwarted during the app

store upload stage using automated malware analysis. Given

that a significant part of the attack is actually carried out

by a legitimate SMSonPC app, it is rather the identification

of the Cloak-and-Dagger malware that should be targeted.

Yet, a number of challenges abound. Firstly app obfuscation,

e.g. using encryption and runtime class loading, could hide

the malware’s real intention from static analysis. This issue

could be addressed with dynamic analysis [8] where suspicious

apps are executed inside a malware sandbox. However this

alternative is not without its own limitations, with trigger-

based behavior [9], [10] and device emulation detection-based

evasion [11] posing major hurdles. The same limitations are

encountered whenever malware analysis is carried out for

forensics purposes [12], where malware samples are hunted

and extracted from within a mobile device for event recon-

struction purposes.

In contrast, our proposed digital investigation process differs

in scope. It targets those situations where Cloak-and-Dagger

malware succeeds in evading app store scanning. Further-

more, the malware’s behavior is tracked within its intended

runtime environment, with the exception for SMSonPC app

repackaging and the resulting dumps. Our work is more

akin to related work concerning the digital investigation of

mobile devices, for example for SMS text message forensic

purposes [13], [14]. Yet, our proposed technique involves a

prolonged investigation period, where the device is returned

to its owner for continued usage as enhanced with memory

dumping instrumentation. Finally, our proposition can also

pave the way to thwart the ‘Trojan Horse defense’ [15], where

text messages considered as evidence for a crime investigation

are refuted by claims that the device could have actually been

compromised to serve as a communication proxy by the actual

criminals.

VI. CONCLUSIONS

In this paper we considered the problem of Cloak-and-

Dagger malware pulling off stealthy SMS-hijacks by abusing

legitimate SMSonPC apps. We proposed a solution whereby

injected bytecode instrumentation dumps the SMS-relevant

areas of volatile memory from the device under investigation

at the right triggers. A case study was carried out using

Pushbullet as the SMSonPC app abused for setting up an

SMS crime-proxy. Results show that the technique can be

both effective in collecting the evidence required to solve

the SMS-hijack, as well as practical in terms of SMSonPC

app instrumentation and storage costs. The runtime overheads

incurred were shown to be difficult to exploit by attackers to

uncover an ongoing investigation, while at the same time not

impacting the device owner.

This case study provided the right setting for initial explo-

ration of the proposed SMS-hijack investigation process, with

results showing promise. A similar case study for information

leakage is planned. Further experimentation also aims to eval-

uate the technique at a larger scale using an array of physical

smart-phone devices and possibly even involving malware

samples captured in the wild. A primary pre-requisite for such

an undertaking is the engineering of the investigation tool that

also incorporates existing techniques that deal with obfuscated
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{” a c t i v e ” : t r u e , ” i d e n ” : ” ujBeKPNHgJMsjz7aNoLJeK ” , ” c r e a t e d ” :1 .5208663683633862 E9 , ” m o d i f i e d ” :1 .520866368366242 E9 ,

” d a t a ” :{” t a r g e t d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” a d d r e s s e s ” : [ ” 1 2 3 4 5 6 ” ] , ” gu id ” : ” v f h j 9 v 3 t 2 4 o 2 q 9 5 4 4 u 0 f r g ” ,

” message ” : ” CrimeProxy sms t e x t message 1”}}!

. . . s n i p . . .

{” a c t i v e ” : t r u e , ” i d e n ” : ” ujBeKPNHgJMsjAsOdablfg ” , ” c r e a t e d ” :1 .5208664012296782 E9 , ” m o d i f i e d ” :1 .520866401232248 E9 ,

” d a t a ” :{” t a r g e t d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” a d d r e s s e s ” : [ ” 1 2 3 4 5 6 ” ] , ” gu id ” : ” c t q v m a g s v e o d h l l 4 h l d p v ” ,

” message ” : ” CrimeProxy sms t e x t message 2”}}!

. . . s n i p . . .

{” a c t i v e ” : t r u e , ” i d e n ” : ” ujBeKPNHgJMsjz2mR5H8yy ” , ” c r e a t e d ” :1 .520866418990317 E9 , ” m o d i f i e d ” :1 .520866418994791 E9 ,

” d a t a ” :{” t a r g e t d e v i c e i d e n ” : ” ujBeKPNHgJMsjAzp2VNDUW ” , ” a d d r e s s e s ” : [ ” 1 2 3 4 5 6 ” ] , ” gu id ” : ” 9 uv0upvsb1gd jch1qe3 f1g ” ,

” message ” : ” CrimeProxy sms t e x t message 3”}}!

. . . s n i p . . .

Listing 5. Dalvik heap dump extracts.

123456 ’\n ’ CrimeProxy sms t e x t message 1com . p u s h b u l l e t . a n d r o i d

. . . s n i p . . .

123456 ’\n ’ CrimeProxy sms t e x t message 2com . p u s h b u l l e t . andro idV

. . . s n i p . . .

123456 ’\n ’ CrimeProxy sms t e x t message 3com . p u s h b u l l e t . andro idV

. . . s n i p . . .

Listing 6. Native heap dump extracts.

code and anti-tamper checks. Even more importantly, collabo-

ration with SMSonPC app developers is required to deal with

app instrumentation in a cleaner way whenever this breaks

functionality in some way. Collaboration is specifically sought

on the anti-tampering front.
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