
 
 

 

Abstract—Integrated Model of Distributed Systems (IMDS) 

is a formalism for specification and verification of distributed 

systems, especially following IoT (Internet of Things) paradigm. 

The formalism emphasizes such features as asynchrony of 

actions and communication, locality of decisions, and autonomy 

in executing actions. In conjunction with model checking, IMDS 

allows to analyze such features of distributed systems as 

deadlocks or distributed termination. However, the nature of 

model checking allows to find one deadlock in a single run of 

the verifier, which produces a counterexample. 

The conversion of IMDS specification to a Petri net is used to 

identify multiple deadlocks in one verification, using siphons. 

Model checking is used to verify if a siphon can become empty, 

which denotes a true deadlock in a purely cyclic system, like 

FMS (Flexible Manufacturing Systems). The extension of the 

verification by temporal checking allows to cover systems with 

any structure: cyclic, terminating, or with a more complex 

scheme. In addition, the proposed procedure allows to easily 

identify processes participating in partial deadlocks. Two types 

of deadlock can be identified: communication deadlocks and 

resource deadlocks. 

I. INTRODUCTION 

MDS (Integrated Model of Distributed Systems [1][2]) is 
a formalism for describing the behavior of distributed 
systems, especially for finding deadlocks. A system is 

modeled as a set of actions, having servers’ states and 
agents’ messages on input and on output. In IMDS, a com-
munication dualism is exploited, since the modeled system is 
represented as server processes that communicate by mes-
sages, or alternatively by travelling processes (agents) that 
communicate by means of servers’ states. A model of a dis-
tributed system is uniform (that is, it has a single form), but it 
can be decomposed (“cut”) to a set of server processes or a 
set of agent processes. System actions are combined in se-
quences to form the processes. An action has a current serv-
er’s state and an agent’s current message on input, and it 
produces a similar pair (a new server’s state and a new 
agent’s message) on output.  

The two views of a system (server view and agent view) 
are obtained by the two possible groupings of a set of all 
actions into sequences. In the server view, actions of an indi-

                                                           
 This work was not supported by any organization 

vidual server are grouped into a process (the definition of 
processes is included in Sect. IIIB). The server’s states are 
the carrier of the server process, and the messages are the 
communication means between server processes. In the agent 
view, actions concerning an individual agent conform a pro-
cess. Messages are internal to a process: they are the carrier 
of the process. The agent processes communicate via serv-
ers’ states.  

The IMDS formalism was used, together with model 
checking technique [3], to develop the Dedan program which 
finds various kinds of deadlock in a verified system [4]. 
These are: communication deadlock (in the server view), 
resource deadlock (in the agent view), partial deadlock (in 
which a subset of system’s processes participate) and total 
deadlock (concerning all processes). A counterexample is 
generated if a deadlock is found. A counterexample is a path 
leading from the start of the system to the deadlock. 

In Dedan, automatic conversion between the server view 
and the agent view is performed. Also, observation of a 
global transition graph and simulation on this graph are pos-
sible.  

Dedan is built in such a way that the specification of tem-
poral formulas and temporal verification are hidden to a user. 
The reason is that model checking techniques are seldom 
known by the engineers. Therefore, the program is con-
structed in such a way that a user specifies a system and 
simply “pushes the button” to check for the existence of a 
deadlock.  

The model checking technique has a disadvantage: the 
evaluation of temporal formula consists in finding a single 
global configuration (will be defined in Section IIIA) which 
causes the false result, which denotes a deadlock. A counter-
example is a sequence leading from initial configuration to 
the deadlock. The designer may repair the erroneous specifi-
cation and run the verification again. The scheme should be 
repeated multiple times, until all deadlocks are found and 
repaired. 

The other technique of deadlock identification is finding 
siphons in a Petri net corresponding to a verified IMDS 
specification. A siphon is a Petri subnet, which cannot re-
store tokens if it is emptied [5][6][7]. If an empty siphon is 

I 

Siphon-based deadlock detection  

in Integrated Model of Distributed Systems (IMDS) 

 Wiktor B. Daszczuk 
Institute of Computer Science,  

Warsaw University of Technology, 
Nowowiejska Str. 15/19, 00-665 Warsaw, Poland 

e-mail wbd@ii.pw.edu.pl 

 

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 425–435

DOI: 10.15439/2018F114

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 425



 
 

 

reachable, it denotes a deadlock. The deadlock concerns the 
processes (server processes and/or agent processes) that take 
part in the siphon. Therefore, it may be total or partial dead-
lock. Siphon analysis can find multiple deadlocks in a sys-
tem, because multiple siphons may exist in a net and the 
algorithms find all siphons in a single run [7]. 

Siphon-based deadlock detection is used in some purely 
cyclic classes of Petri nets, used to model FMS (Flexible 
Manufacturing Systems) [8][9]. However, many systems 
cannot be modeled as a cyclic Petri net. Some examples of 
such systems, for example an IoT (Internet of Things) dis-
tributed systems with multiple terminating processes, are 
mentioned in Section VI. 

The previous paper [10] concerned identification of dead-
locks in IMDS specifications which correspond to purely 
cyclic systems, like a class of FMS systems. The contribution 
of this paper is an application of siphon-based deadlock 
detection to systems of arbitrary schemes: cycling, terminat-
ing or intermediate (some processes are cyclic while other 
ones terminate). For this purpose an IMDS model is convert-
ed to a Petri net. Siphon detection is done in the Petri net, 
while identification of deadlocks and finding processes in-
volved (partial deadlocks and total deadlocks are identified) 
is performed using reachability verification and temporal 
analysis in IMDS specification.  

As a siphon may be emptied in different ways, thus it may 
lead to more than one deadlock. Model checking identifies 
one example of siphon emptying in a single run. Therefore 
our procedure does not guarantee identification of all dead-
locks in a single run, one deadlock is found per reachable 
empty siphon. Still, a possibility of identification of multiple 
deadlocks (one for every emptied siphon) in a single proce-
dure is a benefit. Additionally, the described procedure lib-
erates from constraining siphon-based deadlock detection 
from purely cyclic systems only. 

The described procedure gives a possibility of identifica-
tion of multiple deadlocks in distributed systems specified in 
IMDS formalism, preserving communication duality, locality 
and autonomy of distributed components, and asynchrony of 
actions and communication. 

In this paper, a background of static deadlock detection 
methods is given in Section II. A definition of IMDS is given 
in Section III. The definition is formulated differently from 
the paper [10], where a distributed system was defined using 
four basic sets: servers, state values, services and agents. The 
present definition is much easier for readers, because it uses 
two basic sets: states and messages. The previously used four 
sets are used in IMDS implementation, mentioned in Section 
IV, where an example of a bounded buffer is presented. The 
conversion of IMDS specification to a Petri net, and dead-
lock detection using siphons and reachability is described in 
Section V. Section VI presents the application of proposed 
method to systems with various structures, including acyclic 
and hybrid ones. An example of a not purely cyclic system 
containing deadlock siphons and no-deadlock siphons is 

described in Section VII. A practical example is presented in 
Section VIII. Section IX concludes the paper. 

II.  RELATED WORK ON DEADLOCK DETECTION 

Many deadlock detection techniques are described in the 
literature. Dynamic methods typically use some kind of wait-
for graph [11] to discover a deadlock (ant typically to pre-
vent a deadlock or to escape from it). 

Static methods use a model of a system and explore it to 
find deadlocks. Model checking techniques are based on 
temporal reachability space verification. The activities of the 
system are expressed in terms of local features of its compo-
nents, and the global reachability space of the system is con-
structed. The features of system components are given as 
temporal formulas and verified by the evaluation of them. 
Model checkers are often equipped with automatic deadlock 
detection procedures. Typically, deadlock is identified as “a 
state with no future”, i.e., a strongly connected subgraph 
containing one state only: the deadlock itself [12]. Deadlock 

freeness is checked by a CTL temporal formula AG EX true 
(for any state a next state exists) [13]. Yet, total termination 
seems to be analogous state: no future exists. In cyclic sys-
tem, where termination is not expected, the above formula 
identifies a deadlock. In terminating systems a deadlock 
should be distinguished from termination. 

Temporal formulas can also be used to check partial dead-
locks, in which some processes are involved in a deadlock, 
but other processes continue their run. Generally, in the case 
of partial deadlock detection, temporal formulas are based 
on the structure of verified models to identify deadlocks in 
individual processes [14]. The disadvantage of such an ap-
proach is that temporal formulas need to be developed indi-
vidually for each analyzed system, using its specific features. 

Some other approaches to partial deadlock detection use 
temporal formulas that are not related to the structure of a 
verified model. However, such model-unrelated formulas 
require the system to have specific properties [15][16]. If a 
system is non-terminating (cycling), a discontinuation of a 
process is obviously a deadlock [3]. Conversely, a method 
[17] may be ascribed to terminating processes only. Some 
detection methods are used for specific architectures of sys-
tems. For example, WickedXmas approach uses nodes com-
municating by queues [18]. 

Other set of static methods concern Petri nets. Some of 
them are based on analysis of reachability graph of a Petri 
net [19]. Total deadlock is a leaf in reachability graph – no 
outgoing transition is present. Thus, reachability graph anal-
ysis is similar to model checking techniques, and typically 
they are combined as temporal analysis of the graph. In both 
approaches it is hard to distinguish a deadlock from distrib-
uted termination: these methods are addressed to endlessly 
cycling systems [20]. 

Alternatively, structural analysis of Petri net can be used. 
Structural analysis determines properties of models on the 
basis of their structure, so no exploration of the reachability 

426 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



 
 

 

space is needed. Structural analysis of deadlocks is based on 
subnets called siphons [6][7]. It can be shown that if a model 
is deadlocked, the unmarked places constitute a siphon. 
Structural analysis of deadlocks systematically finds elemen-
tary siphons. Elementary siphons are ones from which other 
siphons are composed. After siphons identification, they are 
checked for unmarking possibility. The advantage of these 
methods is that multiple deadlocks are found in a single veri-
fication and both total and partial deadlocks are identified. 

The deadlock detection procedure presented in this paper, 
based on combining siphon identification with temporal 
analysis, joins the advantages of the two methods and frees 
from their disadvantages: 

 Identification of multiple deadlocks in single verification 
run. 

 Finding both total and partial deadlocks. 
 Distinguishing deadlocks from termination. 
 Distinguishing between communication deadlocks and 

resource deadlocks. 
 Automated verification, as deadlocks are expressed as 

formulas not related to specific features of a verified sys-
tem. 

 Verification of systems having arbitrary shape, without 
limitation to cycling, terminating or other schemes. 

III. INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 

A. Basic definition 

IMDS is defined in [1][2]. In the present paper, the sim-
plified version of IMDS is used, without dynamic process 
creation, which is suitable for static model checking. The 
formalism is founded on a basic observation: nodes on a 
distributed system (which are called severs in IMDS) receive 
messages, execute some actions changing their states upon 
accepted messages and finally send consecutive messages. 
Thus a distributed system may be defined as a relation be-
tween a finite set states of the servers P={p1,p2,…} and a 

finite set of messages M={m1,m2,…}. The relation  defin-
ing the actions is: 

  (M  P)  (M  P) 

For an action , =((m,p),(m’,p’)) the first pair (m,p) is 
its input while the second pair (m’,p’) is its output. 

A configuration T of a distributed system is a set of cur-
rent states and pending messages. The messages in a config-
uration are current as well, but they are called pending to 
emphasize the fact that an action extracts from the configura-
tion exactly one message, replacing it with a next message, 
and all other messages addressed to the action’s server re-
main pending at the server. The system starts from its initial 
configuration T0, containing initial set of states and messag-
es. 

 Every action =((m,p),(m’,p’)) converts a configuration 

Tinp() to a new configuration Tout() by replacing 

{m,p}Tinp() with {m’,p’}Tout(). Behavior of a distribut-

ed system is described by a Labeled Transition System LTS 
[21], containing all executions of the system. Nodes of the 
LTS (not called states for unambiguousness) are configura-
tions and transitions are actions: 

LTS = < Q,q0,W > |  
Q = {T0,T1,...} (nodes);  
q0 = T0 (initial node);  
W = {(T,,T’) |  ∈ , T=Tinp(), T’=Tout() } 
(transitions)  

The interleaving way of executing the action is assumed (one 
action at a time [22]). Since all transitions in the LTS are 
instantaneous, it is assumed that message passing and actions 
take zero time. A timed version of IMDS, in which message 
passing and actions execution takes some periods of time, is 
also developed. This feature goes beyond the scope of this 
paper. 

To differentiate between messages sent in different pur-
poses (in a context of separate distributed computations), the 
autonomous sequential computations in a distributed system 
are extracted. The messages passed in a context of a given 
computation conform an agent. Thus the set of states P is 
split into subsets for the servers 1..n and the set of messages 
M into subsets for the agents 1..k: 

P=i=1..n Pi, M=j=1..k Mj 

The subsets are pairwise disjoint: 

ij Pi Pj=, ij Mi Mj= 
The initial configuration contains initial states of all servers, 
one state for every server, and initial messages of all agents, 
one message for every agent:  

 T0Pi={p0i}, T0Mi={m0i} 
The input and output state of an action concern the same 
server and the input and output message of an action concern 
the same agent: 

=((m,p),(m’,p’)), {m,m’}Mi, {p,p’}Pj 
Agents may terminate in special actions of the form 

=((m,p),(p’)), where an output message is absent.  

B. Processes 

Is it useful to identify processes in a system, especially for 
verification purposes. Two “classical” models of distributed 
processes are used: client-server and RPC [23]. In the former 
model servers communicate by messages while in the latter 
one processes migrate forth and back. IMDS contains both 
models in a single specification, the models are extracted as 
the two perspectives: server view and agent view. A server 
process B in the server view is a sequence of actions con-
nected by states of a server, as input and output states of an 
action concern the same server. Some actions may be un-
reachable and thus they would become “orphaned” (not in-
cluded in any process), so the definition is extended to a set 
of all actions of a given server (rather than a sequence): 

Bi={ | =((m,p),(m’,p’))  =((m,p),(p’)), p,p’Pi} 
In the agent view, an agent process C is a sequence of ac-
tions connected by messages of an individual agent, because 
input and output messages of an action concern the same 

WIKTOR DASZCZUK: SIPHON-BASED DEADLOCK DETECTION IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 427



 
 

 

agent. As for server processes, the definition is extended to a 
set of all actions of a given agent: 

Cj={ | =((m,p),(m’,p’))  =((m,p),(p’)), m,m’Mj} 
As a result, a distributed system may be decomposed to serv-
er processes or to agent processes, giving the server decom-

position B and agent decomposition C: 

 B={Bi | i=1..n} 

 C={Cj | j=1..k} 

C. Locality, Asynchrony and Autonomy 

An important feature of a distributed system is locality. In 
IMDS, locality means that no message may cause actions in 

distinct servers (for a message mM and two actions 

1,2, 1=((m,p1),(m1’,p1’)), 2=((m,p2),(m2’,p2’)), 
p1,p2Pi). Thus, a function target: MS assigns a target 
server for every message. A server component of a message 
and a state in the input pair of an action must match: tar-

get(m)=si, pPj, i=j. A configuration contains exactly one 
state for every server, as this is required for initial configura-
tion, and every action replaces its input state with a next state 
of the same server. Yet, multiple messages may be pending 
at given server in a configuration, which is natural. A set of 
actions in a distributed system determines which messages 
may be accepted in individual states. If a server allows a 
message to be accepted, an action is defined for this message 
together with the current state of the server. If the acceptance 
of a message is prohibited in a given state, no action is de-
fined for this pair.  

Note that every server performs its action autonomously 
(only the current server’s state and the messages pending at 
this server are considered). Also, the communication is asyn-
chronous: a server process sends a message to some other 
server process (or in the agent view, an agent sets the serv-
er’s state for some other agent) regardless of the current 
situation of a process with which it communicates (and every 
other process). As a result, the process may be called auton-
omous and asynchronous.  

D. Deadlocks in IMDS 

A deadlock in IMDS is defined as a discontinuation of a 
process (with an exception of process termination). As there 
are two views of processes, different type of deadlocks con-
cern server processes communicating by messages and agent 
processes communicating by states of servers. There may be 
a communication deadlock that is not a resource deadlock 
[2].  

 a communication deadlock of a server process – when 
there are messages pending at the server, but no matching 
pair of any message with a current server state will occur;  

 a resource deadlock of an agent process – when an 
agent’s message is pending at a server but it will never 
match any current or future state of this server. 

For the identification of deadlocks, universal temporal 
formulas were elaborated [2]. Universality of the formulas 

means that they are independent on a structure of a given 
distributed system – only the two facts are concerned: if an 
action in a process is enabled and if it is executed. Therefore, 
temporal logic is built inside the verification tool and the 
user need not know temporal logic nor model checking tech-
nique. 

The paper [2] presents a terminating distributed system in 
which two servers, every one containing a semaphore, are 
used by two agents (the third agent performs some other 
work to show a detection of a partial deadlock). This shows a 
communication deadlock in the server view and a resource 
deadlock in the agent view. The system is presented briefly 
in Sect VII. Another example [24] is the Automatic Vehicle 
Guidance System: in the server view the cooperation of the 
road segment controllers during the piloting of a vehicle is 
shown, while in the agent view the traffic from the vehicles 
perspective is presented. The deadlocks in both views are 
shown. Similar system is mentioned in Sect. VIII. In the 
IMDS specification of Karlsruhe Production Cell [25], the 
controllers of individual devices are modeled as servers and 
the metal plates traveling through the cell are agents. Addi-
tional agents server for performing some actions without the 
plates, for example return to a rest position. 

IV. EXAMPLE – BOUNDED BUFFER 

An example of IMDS system is a buffer with producer and 
consumer agents (each of them starting at its own server). In 
IMDS notation, sets of servers S, agents A, state values V 
and services R are introduced explicitly. The services are 
used to distinguish between messages sent in given purposes 
to the servers (like operations wait and signal on a sema-

phore). The messages are triples (a,s,r), aA, sS, rR. The 

states of servers are pairs (s,v) , sS, vV, where v is a value 

that represents a given state. Thus an action (m,p)(m’,p’) is 

denoted ((a,s,r),(s,v))((a,s’,r’),(s,v’)). Note that the same 
agent a is used in an input and output message, in such a way 
a computation is continued. Likewise, the same server s is 
used in an input and output state. Also, the same server s is 
in input state and input message, which models an ac-
ceptance of a message on a server with its current state. 

The server view of the system in Dedan notation is pre-
sented below. As in typical programming language, server 
types are introduced (lines 3, 12), with formal parameters 
that specify agents and other servers used in actions. Every 
server has sets of  its states (l.4, 13), services (l.5, 14) and 
actions (l.7-10, 16-19). An action in Dedan is denoted 

{a.s.r, s.v}{a.s’.r’, s.v’}. Servers and 

agents are declared as variables (l.21-22, server types are 
omitted in the declaration because they have names equal to 
variables in this example). Lastly, actual parameters are 
passed to the servers and initial states are assigned to every 
server and initial messages are assigned to every agent (l.24-
26). 

 

428 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



 
 

 

1. #DEFINE N 2 
2. #DEFINE K 1 

 
3. server: buf(agents A[N];servers S[N]),   
4. services {put, get}, 
5. states {elem0,elem[K]},         
6. actions { 
7. <i=1..N>{A[i].buf.put, buf.elem0}   

-> {A[i].S[i].ok_put, buf.elem[1]}, 
8. <i=1..N><j=1..K-1>{A[i].buf.put, buf.elem[j]} 

-> {A[i].S[i].ok_put, buf.elem[j+1]},  
9. <i=1..N><j=2..K>{A[i].buf.get, buf.elem[j]}  

-> {A[i].S[i].ok_get, buf.elem[j-1]},  
10. <i=1..N>{A[i].buf.get, buf.elem[1]}   

-> {A[i].S[i].ok_get, buf.elem0} 
11. }; 

 
12. server: S(agents A;servers buf), 
13. services {doSth,ok_put,ok_get} 
14. states {neutral,prod,cons} 
15. actions {  
16. {A.S.doSth, S.neutral}   

-> {A.buf.put, S.prod}   
17. {A.S.doSth, S.neutral}  

-> {A.buf.get, S.cons} 
18. {A.S.ok_put, S.prod}  

-> {A.S.doSth, S.neutral} 
19. {A.S.ok_get, S.cons}  

-> {A.S.doSth, S.neutral} 
20. }; 

 
21. servers  buf,S[N]; 
22. agents A[N];  

 
23. init -> {  
24. <j=1..N> S[j](A[j],buf).neutral, 
25.     buf(A[1..N],S[1..N]).elem0, 
26. <j=1..N> A[j].S[j].doSth,   
27. }. 
 

Obviously, one can expect two deadlocks in the example: 
two agents both trying to get from an empty buffer and two 
agents trying to put to a full buffer. In model checking, a 
verifier typically shows the former deadlock because it re-
quires two get operations to be reached. However, the latter 
deadlock is reached after three put operations, which 
lengthens a counterexample. A model checker searches for 
first counterexample and then it stops the evaluation. There-
fore the latter deadlock may be reported in a second verifica-
tion run, after a modification of the system to avoid the for-
mer deadlock (if the modification does not repair both dead-
locks).  

V.  DEADLOCK DETECTION IN A PETRI NET EQUIVALENT TO 

IMDS MODEL 

The main task of the Dedan program is identification of 
deadlocks and distributed termination. The Conversion of an 
IMDS system to a Petri net offers the designer new possibili-
ties: 

 identification of some structural properties: structural 
conflicts, dead code, etc., 

 temporal properties expressed in terms of Petri net, 
 observation of the system in a graphical form, 
 graphical simulation of a system run. 

For this purpose a possibility of export of a model to a Petri 
net is included in Dedan. A format of ANDL (Abstract Net 
Description Language [26]) is used, which is the input of 
Charlie Petri net analyzer [27][28]. 

Fig. 1 IMDS actions converted to Petri net transitions:  
regular action (left) and agent-terminating action (right) 

 
Fig. 1 shows a transition of a Petri net, which corresponds to 
an IMDS action. The input message and the input state are 
input places. The output message and the output state are 
output places (or only the output state in the case of a termi-
nating action, Fig. 1b). The initial marking of the Petri net 
has tokens in the initial places of server states and initial 
messages of agents. The graph of reachable markings is 
equivalent to the LTS of the IMDS system, where states and 
messages correspond to the places, actions correspond to the 
transitions and markings correspond to the configurations. 

 

neutral 

prod 

S[1] 

elem[1] elem0

buf 

doSth 

put get 

ok_put 

neutral 

prod cons 

doSth 

ok_put ok_get 

get put 

A[1] 

cons 

ok_get 

S[2] A[2] 

 Fig. 2 Petri net representation of the bounded buffer system: servers 
S[1..2], buf, agents A[1..2] 

 

 

p m 

m’ p’ 
 

p m 

p’ 
 

WIKTOR DASZCZUK: SIPHON-BASED DEADLOCK DETECTION IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 429



 
 

 

The Petri net corresponding to the bounded buffer example 
is illustrated in Fig. 2. The states and messages in individual 
servers are grouped and separated by dashed lines. The states 
of servers are filled red, with patterns individual to every 
server. The messages are filled green, with patterns individu-
al to every agent. Initial states and initial messages are bold. 
The servers and their states are in regular font, while the 
agents and their messages are in italics.  

 

neutral 

prod 

S[1] 

elem[1] elem0

buf 

doSth 

put get 

ok_put 

neutral 

prod cons 

doSth 

ok_put ok_get 

get put 

A[1] 

cons 

ok_get 

S[2] A[2] 

 Fig. 3 One of elementary siphons found in the system 

 
As the system falls into a deadlock, there should be siphons 
that may be emptied. A Petri net may contain a large number 
of siphons, but some of them are elementary, i.e., they do not 
contain other siphons [29]. Therefore, only elementary si-
phons need to be analyzed. The Charlie program reports 49 
elementary siphons in the net. Every siphon should be tested 
for a reachability of its emptying. As an empty state place 
denotes a state which is absent in a configuration, and an 
empty message place denotes an absent message, an IMDS 
configuration should be found in which the siphon’s states 
and messages are absent. A siphon may concern not all of the 
servers (and/or not all of the agents), in such a way partial 
deadlocks are found.  

One of the siphons found in our example is presented in 
Fig. 3. It contains states (S[1],prod), (buf,elem[1]), 
(S[2],prod), (S[2],neutral) and messages (A[1],S[1],ok_get), 

(A[1],S[1],doSth), (A[1],buf,put), (A[2],buf,put), 
(A[2],S[2],ok_get). 

The siphon emptying  is verified by model checking. To 

do this, the CTL formula AG ( ) (it reads: always not ) 

is used, where  is a set of states and messages in a configu-
ration corresponding to a siphon’s complement. Often a 
siphon represents a class of configurations, for example a 
siphon in Fig. 3 represents all configurations in which server 
S[1] is not in a state (S[1],prod), and thus it may be in one of 
a subset of states {(S[1],neutral), (S[1],cons)}. The formula 
for checking if the siphon cannot be emptied has the form 

AG ( (((S[1],neutral)(S[1],cons))  (buf,elem0)  

(S[2],cons)  ((A[1],S[1],ok_put) (A[1],buf,get))  

((A[2],S[2],doSth)(A[2],S[2],ok_put) (A[2],buf,get))). For 
verification, internal Dedan model checker is used for typical 
cases (as it uses explicit state space) and Uppaal [31] for 
large cases. 

 

neutral 

prod 

S[1] 

elem[1] elem0

buf 

doSth 

put get 

ok_put 

neutral 

prod cons 

doSth 

ok_put ok_get 

get put 

A[1] 

cons 

ok_get 

S[2] A[2] 

 Fig. 4 The two deadlocks identified in the example. The dashed one is 
associated with the siphon in Fig. 3 

 
The verification results in false. This means that the empty 
siphon is reachable, which denotes a deadlock. States of all 
three servers S[1],S[2] and buf take part in the siphon, so it is 
a total communication deadlock. Also, both agents A[1] and 
A[2] take part, denoting a total resource deadlock. Model 
checker generates a counterexample, in which both agents 
perform get on empty buffer (state (buf,elem0)). Charlie 

430 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



 
 

 

reports multiple siphons that may be emptied by two get 
operations on the empty buffer. All these situations consti-
tute a single deadlock (but the counterexamples for individu-
al temporal formulas may differ in the order of issuing get by 
the two agents). The configuration finishing all counterex-
amples leading to this deadlock is exactly the same. For a 
partial deadlock, configurations finishing the counterexam-
ples may differ, but only in states/messages of servers/agents 
not taking part in the deadlock. In the example, all tests for 
emptying of the siphons either finish in one of the two dead-
lock configurations, or emptying occurs unreachable (such 
siphons do not denote a deadlock).  

Fig. 4 shows the two possible deadlocks that finish all 
reachable emptying of siphons. The ovals surround places of 
the two identified deadlocks: dashed ovals are associated 
with the siphon in Fig. 3, which it is caused by two gets on 
an empty buffer. The other deadlock (dotted ovals) is caused 
by two puts on a full buffer. Distinguishing between the two 
deadlocks is based on the two configurations finishing the 
counterexamples.  

VI.   VERIFICATION OF SYSTEMS WITH VARIOUS STRUCTURES 

Various systems can be modeled in IMDS, not only those 
having a shape of purely cyclic FMS. Fig. 5 shows some 
examples of shapes of not purely cyclic systems. In the fig-
ure “Ending Strongly Connected Subgraph” is a cycle from 
which no escape is possible. The pictures are schematic, 
showing general shape of a system. In IMDS specification 
every transition has two input places and two output places 
(or one in the case of agent-terminating action), see Fig. 1. 

 “linear” systems (like the example of “two semaphores” 
described in [2]: users issue wait on two semaphores, then 
they issue signal), 

 a system with a “leader” (initial part) and a main loop, 
sometimes called “lasso-shaped” [32], 

 terminating system with a main loop, for example WF-net 
system [33],  

 similar to lasso-shaped, but with an initial loop. 

In some cases, for example in the acyclic system in Fig. 5 
(on the top), the system may be easily converted to a cyclic 
one by connecting initial and terminating places. However in 
the analysis of distributed systems, especially those follow-
ing the IoT paradigm, in which autonomous nodes agree 
their coordinated behavior. Such system may have multiple 
leaders (for every node) and multiple terminating places, 
where the nodes reach their goals. An example is Automatic 
Vehicle Guidance System presented in [24]. In IMDS model, 
servers implement road segment controllers while agents 
implement the vehicles. Such a system may be additionally 
complicated if endlessly-looping nodes are added, for exam-
ple charging stations where serving agents run in cycles. 

It is obvious that most of the leaders contain siphons that 
may be emptied. Yet, emptying of such a siphon does not 

denote a deadlock because the system runs further. This is 
the main difference in deadlock detection between purely 
cyclic and differently shaped systems. 

 

�      
         
    �  �  
         

�      
         
    �  �  
         

         
    �  �  
         

 Fig. 5 Examples of acyclic and not purely cyclic systems containing 
emptyable and reachable siphons which are not deadlocks 

 
A solution of this problem is quite simple: an emptied siphon 
should be verified if it is a real deadlock or not. This is done 
using an additional temporal formula, which uses the same 

subformula  of an emptied siphon. A deadlock prevents a 

process from doing any move. Thus, the evaluation of AG( 

) to false should be followed by application for every pro-

cess (server and agent) the formula AG(  EF 

 /restricted to a process). The formula reads: always  is 

inevitably followed by not . Of course, this procedure may 
be applied to a system of any shape, cycling or not. For the 
example of emptyable siphon in Fig. 3 (we can pretend that 
we do not know that the system is purely cyclic) the verifica-
tion should be performed as follows: 

 =((S[1],neutral)(S[1],cons))  (buf,elem0)  
(S[2],cons)  ((A[1],S[1],ok_put)(A[1],buf,get))  
((A[2],S[2],doSth)(A[2],S[2],ok_put)(A[2],buf,get)), 

 check AG(  EF (S[1],prod)) for server S[1], 

WIKTOR DASZCZUK: SIPHON-BASED DEADLOCK DETECTION IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 431



 
 

 

 check AG(  EF (buf,elem[1])) for server buf, 
 check AG(  EF ((S[2],prod)(S[2],neutral))) for 

server S[2], 
 check AG(  EF ((A[1],S[1],doSth) 

(A[1],S[2],ok_get)(A[1],buf,put))) for agent A[1], 
 check AG(  EF ((A[2],S[2],ok_get)(A[2],buf,put))) 

for agent A[2]. 

The result depends on a value of a formula for every process:  

 true for every involved server – no communication dead-
lock, 

 false for all involved servers, and all servers are involved 
– total communication deadlock, 

 false for some involved servers, or for all servers involved 
but not all servers are involved – partial communication 
deadlock, 

 true for every involved agent – no resource deadlock, 
 false for all involved agents, and all agents are involved – 

total resource deadlock, 
 false for some involved agents, or for all agents involved 

but not all agents are involved – partial resource dead-
lock.  

In the last three cases concerning agents, only non-
terminated agents are taken under consideration, i.e. the 
agents which messages are present in the configuration cor-
responding to the emptied siphon. 

 

down up sem 

proc start 
firstW 

secW 

firstS 

secS 

stop 

res other 

 
Fig. 6 Automata-like model of servers in two-semaphores system, 

agents not shown 

 
The verification procedure uses several well-known and 
widely used algorithms. Computational aspects of finding 
siphons are discussed in [34]: elementary siphons may be 
found in linear time for a large class of Petri nets (and needs 
some preprocessings in general case). Also, parallel solu-
tions exist [35]. 

The complexity of CTL model checking is P-Complete 
[36], which means that the time of temporal formula evalua-

tion is |LTS|||, where |LTS| denotes the number of nodes in 

a Kripke structure (it is the LTS of a verified system) and || 

is the length of a formula . Every formula AG(1  EF 2) 
contains two temporal operators, so this evaluation cost is 
fixed. The verification should be repeated for every siphon, 
and according to each siphon for every server and every 
agent, i.e., the complexity is a number of elementary siphons 

 (n+k)  |LTS|, where n is a number of servers and k is a 
number of agents. 

VII. EXAMPLE SYSTEM WITH LEADERS 

 

start 

firstW 

proc1 

down 

up 

… 

ini 

wait1 

wait2 

sig1 

res 

secW 

firstW 

right 

ok_wX ok_wY 

ok_wX 

wait2 

A1 

up 

wait1 

other A3 

start ini 

proc2 A2 

semX semY 

down 
ok_wY 

secW 

firstS firstS sig1 

… 

left 

Fig. 7 Petri net representation of the two-semaphores system 

 
As an example of system with leaders, we present a two-
semaphores system consisting of two agents A1 and A2, each 
one running on its own server (proc1 and proc2). The agents 
use two semaphores semX and semY. They use the sema-
phores “crosswise”, i.e., A1 issues operation wait to semX 
than to semY, while A2 does it in opposite order. To show a 
partial deadlock (not concerning all the servers/agents), the 
third agent A3 is added, running on its own server other and 

432 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



 
 

 

performing some looping calculations. The automata-like 
view of the system is presented in Fig. 6 (only servers’ states 
and actions are shown, input and output messages in actions 
are omitted). 

The system converted to a Petri net if shown in Fig. 7 (a 
part after second wait in the agents is suppressed). The gen-
eral shape of the system consists in sequences of actions in 
agents A1 and A2, leading from their start to their termina-
tion, and a separated Ending Strongly Connected Subgraph 
of agent A3 (depicted in Fig. 8).  

A verification in Charlie shows a siphon of an obvious 
deadlock, shown as places surrounded with denser dashed 
ovals (violet). This siphon is emptyable and the temporal 
formulas identifying processes involved show: 

 Both agents A1 and A2 fall into resource deadlock. 
 Both servers semX and semY fall into communication 

deadlock. 

There is also a siphon containing the place res (dotted oval, 
dark blue), but it is not emptyable - this does not denote a 
deadlock. There are four such siphons in the system (three of 
them are not indicated in the figure). 
 Four siphons formed by places proc1.start, proc2.start, 
A1.proc1.ini and A2.proc2.ini are emtyable (they are depict-
ed as sparsely dashed ovals on the top of Fig. 7), but the 
temporal formulas show that these siphons do not denote 
deadlocks. They are typical leader siphons. 

 
 

ENDING 

STRONGLY 

CONNECTED 

SUBGRAPH 

 

Fig. 8 General shape of the two-semaphores system. The chain - serv-
ers proc1, proc2, semX, semY and agents A1, A2. The cycle – server 

other and agent A3. 

 
Summing up: 

 A partial communication deadlock of processes semX and 
semY is identified, in which processes proc1, proc2 and 
other are not involved. 

 A partial resource deadlock of processes A1 and A2 is 
identified, in which process A3 is not involved. 

 Four not emptyable siphons are found (no-deadlock si-
phons). 

 Four emptyable leader siphons are found (no-deadlock 
siphons). 

VIII.  EXAMPLE APPLICATION TO AUTOMATIC VEHICLE 

GUIDANCE SYSTEM 

We chose an Automatic Vehicle Guidance System 
(AVGS) verification to illustrate an application of our meth-
od. The AVGS system consists of a set of road segments 
(identifiers are taken from cardinal directions) with their 
controllers modeled as servers, for example on a crossing 
depicted in Fig. 9. The controllers are very simple: they al-
low or deny a vehicle to take up a road segment, depending 
on its freeness or occupation. Vehicles are modeled as 
agents. When more than one vehicle approaches the cross-
ing, routes for all the vehicles are prepared, for instance 
using a genetic algorithm. A route connects an entrance seg-
ment (A…) and a target segment (T…) of vehicle’s travel. 
Obviously, in the model every route terminates. The routes 
are tested for deadlock freeness using siphon detection and 
temporal verification, described in this paper. This can be 
performed automatically, because in our methodology dead-
lock detection formulas are independent on the structure of a 
verified system. Deadlock-free route sets are executed while 
routes exposed to deadlocks are rejected. If a new vehicle 
appears, the whole procedure is repeated from current posi-
tions of all the vehicles on the crossing and approaching 
ones.  

 

TW 

  

QNW 

  

QNE 

  

QSW 

  

QSE 

  

AW 

  

AS 

AE 

  

TN 

  

TE 

  

AN 

  

TS 

  

Fig. 9 Automatic Vehicle Guidance System 

 
The described procedure may find solutions unusual in ordi-
nary vehicle traffic, for example one of the routes shown in 
Fig. 9 causes a vehicle to apply left side traffic for a while. 
Also, safe routes may be fond even if one road segment is 
blocked, for example by a broken vehicle. In verification, 
AVGS is similar to the two-semaphores system, without 
server other and agent A3. 

Other examples of systems that are based on terminating 
processes, which may be modeled using our approach, is taxi 

WIKTOR DASZCZUK: SIPHON-BASED DEADLOCK DETECTION IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 433



service [37], business processes [38] or multi-agent systems

based on Belief-Desire-Intention paradigm [39]

IX. CONCLUSIONS

An approach to deadlock detection is presented which is

based on coupling IMDS formalism with Petri net structural

analysis  and model  checking.  The methodology allows to

find total and partial deadlocks in two perspectives: servers

communicating by messages and agents communicating by

states of servers. As a result, communication deadlocks and

resource  deadlocks  are  identified,  which  highlights

communication  duality  in  distributed  systems.  Also,  the

specification in IMDS clearly identifies processes running in

a system, which is sometimes difficult in ordinary Petri nets.

The  methodology  finds  multiple  deadlocks  in  a

distributed  system,  preserving  locality  of  decisions,

autonomy  of  servers,  and  asynchrony  of  behavior  and

communication. In some rare cases, in which siphons can be

emptied in various ways, not all deadlocks are identified in a

single  run,  but  the  procedure  may  be  repeated  after

correction of found deadlocks. However, we have not found

any  real-life  example  of  a  system  with  such  feature,

typically all deadlocks are found in a single run. 

The  presented  deadlock  detection  procedure  may  be

applied for system of arbitrary shape: cycling like a class of

FMS systems,  terminating  like  WF-nets,  lasso-shaped,  or

IoT systems compound of multiple terminating and looping

autonomous nodes.

A  collection  of  programs  is  used  for  the  described

procedure:  Dedan  for  specification,  Charlie  for  siphon

identification, internal Dedan model checker and Uppaal for

verification.  In  the  future,  the  whole  procedure  will  be

integrated in Dedan. This will allow to check for deadlocks

and  to  perform  other  types  of  structural  analysis  in  a

uniform environment.

In the future, a timed version of the prosed procedure is

planned, with application of UPPAAL timed automata [40].

ACKNOWLEDGMENT

Extensive  discussions  with  Wlodek  Zuberek  helped  to

significantly  improve  the  article,  especially  in  the  new

formulation of IMDS.

REFERENCES

[1] S.  Chrobot  and  W.  B.  Daszczuk,  “Communication  Dualism  in

Distributed  Systems  with  Petri  Net  Interpretation,”  Theor.  Appl.

Informatics, vol. 18, no. 4, pp. 261–278, 2006. arXiv: 1710.07907

[2] W. B. Daszczuk, “Communication and Resource Deadlock Analysis

using IMDS Formalism and Model Checking,”  Comput. J., vol. 60,

no. 5, pp. 729–750, 2017. doi: 10.1093/comjnl/bxw099

[3] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,

MA: MIT Press, 2008. ISBN: 9780262026499

[4] Dedan,  http://staff.ii.pw.edu.pl/dedan/files/DedAn.zip

[5] W. Reisig, Petri Nets - An Introduction. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1985. doi: 10.1007/978-3-642-69968-9

[6] D. C. Craig and W. M. Zuberek, “Two-stage siphon-based deadlock

detection  in  Petri  nets,”  in  Current  Advances  in  Computing,

Engineering  and  Information  Technology,  P.  Petratos  and  P.

Dandapami, Eds. Palermo, Italy: Int. Society for Advanced Research,

2008, pp. 317–330.

[7] F. Chu and X.-L. Xie, “Deadlock analysis of Petri nets using siphons

and mathematical programming,” IEEE Trans. Robot. Autom., vol. 13,

no. 6, pp. 793–804, 1997. doi: 10.1109/70.650158

[8] M.  Uzam,  “An  Optimal  Deadlock  Prevention  Policy  for  Flexible

Manufacturing Systems Using Petri Net Models with Resources and

the Theory of Regions,”  Int. J. Adv. Manuf. Technol., vol. 19, no. 3,

pp. 192–208, Feb. 2002. doi: 10.1007/s001700200014

[9] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock

prevention policy for flexible manufacturing systems,”  IEEE Trans.

Robot.  Autom.,  vol.  11,  no.  2,  pp.  173–184,  Apr.  1995.  doi:

10.1109/70.370500

[10] W.  B.  Daszczuk  and  W.  M.  Zuberek,  “Deadlock  Detection  in

Distributed Systems Using the IMDS Formalism and Petri Nets,” in

12th  International  Conference  on  Dependability  and  Complex

Systems, DepCoS-RELCOMEX 2017, Brunów, Poland, 2-6 July 2017.

AISC vol 582, W. Zamojski et al., Eds, Cham, Switzerland: Springer

International Publishing, 2018, pp. 118–130. doi: 10.1007/978-3-319-

59415-6_12

[11] R.  Agarwal  and  S.  D.  Stoller,  “Run-Time  Detection  of  Potential

Deadlocks  for  Programs  with  Locks,  Semaphores,  and  Condition

Variables,”  in  Proc.  of  the  Workshop  on  Parallel  and  Distributed

Systems:  Testing  and  Debugging  (PADTAD-IV),  ISSTA,  2006,

Portland,  ME,  17-20  July  2006,  2006,  pp.  51–59.  doi:

10.1145/1147403.1147413

[12] N. Kaveh, “Using Model Checking to Detect Deadlocks in Distributed

Object  Systems,”  in  2nd  International  Workshop  on  Distributed

Objects, Davis, CA, 2-3 November 2000, LNCS vol.1999, 2001, pp.

116–128. doi: 10.1007/3-540-45254-0_11

[13] J. Cho, J. Yoo, and S. Cha, “NuEditor – A Tool Suite for Specification

and Verification of NuSCR,” in  Lecture Notes in Computer Science

vol.  3647,  Berlin  Heidelberg:  Springer,  2006,  pp.  19–28.  doi:

10.1007/11668855_2

[14] O. Inverso, T. L. Nguyen, B. Fischer,  S. La Torre,  and G. Parlato,

“Lazy-CSeq:  A Context-Bounded  Model  Checking  Tool  for  Multi-

threaded  C-Programs,”  in  2015  30th  IEEE/ACM  International

Conference on Automated Software Engineering (ASE), Lincoln, NE,

9-13 November 2015, 2015, pp. 807–812. doi: 10.1109/ASE.2015.108

[15] Y.  Yang,  X.  Chen,  and  G.  Gopalakrishnan,  “Inspect:  A  Runtime

Model  Checker  for  Multithreaded  C Programs",  Report  UUCS-08-

004,  University  of  Utah,  Salt  Lake  City,  UT,  2008,

http://www.cs.utah.edu/docs/techreports/2008/pdf/UUCS-08-004.pdf

[16] P. C. Attie,  “Synthesis  of large dynamic concurrent programs from

dynamic specifications,” Form. Methods Syst. Des., vol. 47, no. 131,

pp. 1–54, Jun. 2016. doi: 10.1007/s10703-016-0252-9

[17] D.  Fahland,  C.  Favre,  J.  Koehler,  N.  Lohmann,  H.  Völzer,  and

K. Wolf, “Analysis on demand: Instantaneous soundness checking of

industrial business process models,” Data Knowl. Eng., vol. 70, no. 5,

pp. 448–466, May 2011. doi: 10.1016/j.datak.2011.01.004

[18] S.  J.  C.  Joosten,  F.  V.  Julien,  and  J.  Schmaltz,  “WickedXmas:

Designing  and  Verifying  on-chip  Communication  Fabrics,”  in  3rd

International  Workshop  on  Design  and  Implementation  of  Formal

Tools  and  Systems,  DIFTS’14,  Lausanne,  Switzerland,  October  20,

2014,  2014,  pp.  1–8.  https://pure.tue.nl/ws/files/3916267

/889737443709527.pdf

[19] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz, “Application and

experimental evaluation of state space reduction methods for deadlock

analysis in Ada,” ACM Trans. Softw. Eng. Methodol., vol. 3, no. 4, pp.

340–380, Oct. 1994. doi: 10.1145/201024.201038

[20] X. Guan, Y. Li, J. Xu, C. Wang, and S. Wang, “A Literature Review

of Deadlock Prevention Policy Based on Petri  Nets for  Automated

Manufacturing Systems,” Int. J. Digit. Content Technol. its Appl., vol.

6, no. 21, pp. 426–433, Nov. 2012. doi: 10.4156/jdcta.vol6.issue21.48

[21] M.  A.  Reniers  and  T.  A.  C.  Willemse,  “Folk  Theorems  on  the

Correspondence between State-Based and Event-Based Systems,” in

37th  Conference  on  Current  Trends  in  Theory  and  Practice  of

Computer Science, Nový Smokovec, Slovakia, January 22-28, 2011,

2011, pp. 494–505. doi: 10.1007/978-3-642-18381-2_41

434 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



[22] W. Penczek, M. Szreter, R. Gerth, and R. Kuiper, “Improving Partial

Order Reductions for Universal Branching Time Properties,” Fundam.

Informaticae, vol. 43, no. 1–4, pp. 245–267, 2000. doi: 10.3233/FI-

2000-43123413

[23] W. Jia and W. Zhou, Distributed Network Systems. From Concepts to

Implementations. New York: Springer, 2005. doi: 10.1007/b102545

[24] B.  Czejdo,  S.  Bhattacharya,  M.  Baszun,  and  W.  B.  Daszczuk,

“Improving Resilience of Autonomous Moving Platforms by real-time

analysis  of  their  Cooperation,”  Autobusy-TEST,  vol.  17,  no.  6,  pp.

1294–1301, 2016. arXiv: 1705.04263

[25] W.  B.  Daszczuk,  “Asynchronous  Specification  of  Production  Cell

Benchmark  in  Integrated  Model  of  Distributed  Systems,”  in  23rd

International  Symposium on Methodologies  for  Intelligent  Systems,

ISMIS 2017, Warsaw, Poland, 26-29 June 2017, Studies in Big Data,

vol.  40,  Bembenik,  R.  et  al.,  Eds,  Cham,  Switzerland:  Springer

International Publishing, 2019.  pp. 115-129. doi: 10.1007/978-3-319-

77604-0_9

[26] M. Schwarick, M. Heiner, and C. Rohr, “MARCIE - Model Checking

and  Reachability  Analysis  Done  EffiCIEntly,”  in  2011  Eighth

International  Conference  on  Quantitative  Evaluation  of  SysTems,

Aachen,  Germany,  5-8  Sept.  2011,  2011,  pp.  91–100.  doi:

10.1109/QEST.2011.19

[27] Charlie,

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie

[28] M.  Heiner,  M.  Schwarick,  and  J.-T.  Wegener,  “Charlie  –  An

Extensible  Petri  Net  Analysis  Tool,”  in  36th  International

Conference, PETRI NETS 2015, Brussels, Belgium, 21-26 June 2015,

2015, pp. 200–211. doi: 10.1007/978-3-319-19488-2_10

[29] Z.  Li  and  M.  Zhou,  “Elementary  Siphons  of  Petri  Nets  and  Their

Application  to  Deadlock  Prevention  in  Flexible  Manufacturing

Systems,” IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans, vol.

34, no. 1, pp. 38–51, Jan. 2004. doi: 10.1109/TSMCA.2003.820576

[30] M. H. Abdul-Hussin, "Elementary Siphons of Petri Nets and Deadlock

Control in FMS", J. of Comput. Commun., vol.3, No.7, pp. 1–12, Jul

2015. doi: 10.4236/jcc.2015.37001

[31] G.  Behrmann,  A.  David,  K.  G.  Larsen,  P.  Pettersson,  and  W.  Yi,

“Developing UPPAAL over 15 years,” Softw. Pract. Exp., vol. 41, no.

2, pp. 133–142, Feb. 2011. doi: 10.1002/spe.1006

[32] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple Bounded

LTL  Model  Checking,”  in  International  Conference  on  Formal

Methods  in Computer-Aided Design,  Austin,  TX, 15-17 Nov 2004,

LNCS 3312, 2004, pp. 186–200. doi: 10.1007/978-3-540-30494-4_14

[33] W. M. P.  van der Aalst,  “Workflow Verification:  Finding  Control-

Flow Errors Using Petri-Net-Based Techniques,” in Business Process

Management,  LNCS  vol.1806,  W.  van  der  Aalst,  J.  Desel,  and

A. Oberweis,  Eds. Berlin  Heidelberg:  Springer,  2000,  pp.  161–183.

doi: 10.1007/3-540-45594-9_11

[34] M. Yamauchi and T. Watanabe, “Time Complexity Analysis  of the

Minimal  Siphon  Extraction  Problem of  Petri  Nets,”  IEICE  Trans.

Fundam. Electron. Commun. Comput.  Sci., vol.  E82–A, no. 11, pp.

2558–2565, 1999.

[35] F. Tricas and J. Ezpeleta, “Computing minimal siphons in Petri net

models  of  resource  allocation  systems:  a  parallel  solution,”  IEEE

Trans. Syst. Man, Cybern. - Part A Syst. Humans, vol. 36, no. 3, pp.

532–539, May 2006. doi: 10.1109/TSMCA.2005.855751

[36] P. Schnoebelen, “The complexity of temporal logic model checking,”

in 4th Conference Advances in Modal Logic (AiML’2002), Toulouse,

France, 30 Sept - 2 Oct 2004, Advances in Modal Logic vol. 4, 2003,

pp. 437–459. http://www.aiml.net/volumes/volume4/Schnoebelen.ps

[37] R.  Klimek  and  P.  Szwed,  “Verification  of  ArchiMate  process

specifications based on deductive temporal reasoning,” in FEDCSIS

2013 - Federated Conference on Computer Science and Information

Systems,  Kraków,  Poland,  8-11  Sept  2013,  2013,  pp.  1109–1116.

https://ieeexplore.ieee.org/document/6644153/

[38] P. Szwed, “Efficiency of formal verification of ArchiMate business

processes  with  NuSMV  model  checker,”  in  FEDCSIS  2015  -

Federated Conference on Computer Science and Information Systems,

Łódz,  Poland,  13-16  Sept  2015,  2015,  pp.  1427–1436.  doi:

10.15439/2015F44

[39] A.  T.  E.  Dib  and  Z.  Sahnoun,  “Model  Checking  of  Multi  Agent

System Architectures Using BigMC,” in  FEDCSIS 2015 - Federated

Conference  on  Computer  Science  and  Information  Systems,  Łódź,

Poland,  13-16  Sept  2015,  2015,  pp.  1717–1722.  doi:

10.15439/2015F300

[40] F.  Cicirelli,  A.  Furfaro,  L.  Nigro,  and  F.  Pupo,  “Modelling  Java

Concurrency: An Approach and a UPPAAL Library,” in  FEDCSIS

2013 - Federated Conference on Computer Science and Information

Systems,  Kraków,  Poland,  8-11  Sept  2013,  2013,  pp.  1373–1380,

https://ieeexplore.ieee.org/document/6644196

WIKTOR DASZCZUK: SIPHON-BASED DEADLOCK DETECTION IN INTEGRATED MODEL OF DISTRIBUTED SYSTEMS (IMDS) 435


