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Abstract—Fundus images are one of the main methods for
diagnosing eye diseases in modern medicine. The vascular seg-
mentation of fundus images is an essential step in quantitative
disease analysis. Based on the previous studies, we found that
the category imbalance is one of the main reasons that restrict
the improvement of segmentation accuracy. This paper presents
a new method for supervised retinal vessel segmentation that
can effectively solve the above problems. In recent years, it
is a popular method that using deep learning to solve retinal
vessel segmentation. We have improved the loss function for deep
learning in order to better handle category imbalances. By using
a multi-scale convolutional neural network structure and label
processing approach, our results have reached the most advanced
level. Our approach is a meaningful attempt to improve blood
vessel segmentation and further improve the diagnostic level of
eye diseases.

I. INTRODUCTION

R
ETINAL fundus images have been widely used for
diagnosis, screening and treatment of cardiovascular and

ophthalmologic diseases[1], including age-related macular de-
generation(AMD), diabetic retinopathy(DR), glaucoma, hy-
pertension, arteriosclerosis and choroidal neovascularization,
among which AMD and DR have been considered as two
leading causes of blindness[2]. Vessel segmentation is a basic
step for the quantitative analysis of retinal fundus images[3].
The segmented vascular tree can be used to extract the mor-
phological attributes of blood vessels, such as length, width,
branching and angles.

Moreover, the vascular tree has been adopted in multimodal
retinal image registration [4]and retinal mosaic [5]as the most
stable feature in the images. In [6], the vascular tree is also
used for biometric identification due to its uniqueness. Manual
segmentation of the vascular tree in retinal images is a tedious
task that requires experience and skill. In the development of a
computer-assisted diagnostic system for ophthalmic disorders,
automatic segmentation of retinal vessels has been accepted
as a vital and challenging step. The size, shape and intensity
level of retinal vessels can vary hugely in different local areas.
The width of a vessel often ranges from 1 to 20 pixels,
depending on both the anatomical width of the vessel and the
image resolution. The existence of vessel crossing, branching
and centerline re?ex makes it difficult to segment the vessels
accurately using artificially designed features. Pathologies in

the form of lesions and exudates can further complicate the
automatic segmentation. In the past decades, several methods
have been proposed for the segmentation of vessels in retinal
images, and they can be divided into two categories: unsuper-
vised and supervised methods.

Both classic one-stage object detection methods, like boost-
ed detectors [5]and DPMs(Deformable Parts Model) , and
more recent methods, like SSD(Single Shot Multi-Box Detec-
tor) , face a large problem of class imbalance during training.
These detectors evaluate huge candidate locations per image
but only a few locations contain objects. This imbalance causes
two problems: (1) training is inef?cient as most locations are
easy negatives that contribute no useful learning signal; (2)
Simultaneously, the negatives can overwhelm training and lead
to degenerate models. A common solution is to perform some
form of hard negative mining [6] that samples hard exam-
ples during training or more complex sampling/reweighing
schemes[7]. In contrast, we show that our proposed focal loss
naturally handles the class imbalance faced by a one-stage
detector and allows us to ef?ciently train on all examples
without sampling and without easy negatives overwhelming
the loss and computed gradients.

This paper presents a segmentation method that is suitable
for class imbalance. This paper proposes a multi-scale con-
volutional neural network and improves the traditional loss
function, and improves the class labels. Our method outweighs
the most advanced methods reported in terms of sensitivity,
specificity and accuracy. (1) The proposed method solves the
problem of class imbalance in the traditional segmentation
method, so that deep learning can better handle the task of
image segmentation of the fundus. (2) A series of procedures
proposed in the article can be used not only in segmentation
tasks but also in various task types such as packet classification
detection, and have a wide range of versatility.

II. THE PROPOSED METHOD

A. Motivation

We carefully combed the work of related work and found
that most of the previous methods used to perform the two-
class task were not evenly sampled. We have found that class
imbalances lead to submerged samples, which is usually not
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what we want. We explore a solution to the problem from three
parts: loss function, network structure and category labels.

The others have done much work in designing robust loss
functions (e.g., Huber loss) that reduce the contribution of
outliers by down-weighting the loss of examples with large
errors (hard examples). So our focal loss functions is designed
to address class imbalance by down-weighting inliers (easy
examples) such that their contribution to the total loss is small
even if their number is large, rather than outliers. In other
words, the focal loss performs the opposite role of a robust
loss: it just trains on a sparse set of hard examples.

The multi-scale network structure is mainly composed of
two deep convolutional network stacks, according to Jarrett .
Thus a good multi-level network model to achieve effective
target recognition is an important part in our work. The
network model in this paper is shown in Figure 1. However,
the traditional multi-scale method scales the image segments to
different scales and cannot express the boundary of the target
region accurately. Thus the method in this paper is based on the
selection of each pixel in the image as the center. We can see
in Figure 1 two different scale image segments generate input
of two deep convolutional networks. The low-level feature
extraction network structure first extracts low-level feature
information of large-scale image segments, and then uses
local refined network structure to capture local region feature
information from small-scale image segments. To compare
with the traditional multi-scale method, the difference is not
that multiple scales separately extract features of different size
images. In this paper, the low-level features are combined with
the image features extracted from the first layer of the local
refinement network. After subsequent network operations, a
dense and complete feature vector is obtained, which greatly
improves the accuracy of image pixel category prediction.

B. Loss function improvement

The usual method in the objective function of network
optimization is the cross-entropy loss function, as followed:

E = −
∑

x

p(x)log(q(x)) (1)

Where p(x) is the true distribution of the sample and q(x) is
the estimated probability obtained through training. When the
cross-entropy loss function is used for a two-category task, its
form is:

E =

{

−loh(p), if y = 1

−log(1− p), otherwise
(2)

The terrestrial truth category is specified in y ∈ {±1} above
and p ∈ [0, 1] is the estimated probability of the model for the
category of label y = 1 For symbol convenience, we define p

:

p =

{

p, if y = 1

1− p, otherwise
(3)

However, in the category imbalance problem, sometimes the
difference between positive and negative sample ratios is
very different. Taking a fundus image as an example, blood

vessel pixels in a single image are only one-fifth that of
non-vascular pixels. This imbalance leads to two kinds of
situations: (1) Excessive samples of negative examples cause
the information of positive examples to be difficult to be
effectively learned and even concealed. (2) Simple negative
factors lead to training shifts and make the model degenerate.
Therefore, we propose an improvement to the cross-entropy
loss function that can solve this kind imbalance problem. More
crucially, this improvement can make the loss function able to
calculate the difficulty in judging every sample, then we can
give higher weight to those samples that are more difficult
to distinguish. We call the new loss function LCE (Le Cross
Entropy), LCE is defined as:

E = −α ∗ cos(β ∗ p) ∗ log(p) (4)

α =
α∗

β
(5)

Among them, the value ofβ is
π

2
. The reason for the value

of β is that the range of p is (0, 1) , so that β ∗ pcan have
the same mapping range as p . The weight α is the balance
coefficient, usually α ∈ [0, 1] . This means that the real balance
coefficient is actually α∗ , but for the sake of clearly, we
uses α to describe it. When using LCE as a loss function,
we noticed that it has the following two characteristics: (1)
When an example is misclassified and p is small, the loss will
not be affected. When p is larger, then α goes to zero, and the
loss of well-classified examples is reduced. (2) The balance
factor ęÁ effectively adjusts the weight of the instance. With
the change of ęÁ, LCE can adapt to different degrees of class
imbalance. In our experiment, the best results are obtained
when ęÁ is taken as 0.25. About the first feature, we take a
specific example to illustrate. In the case of α = 0.2 , and
p = 0.9 , the results of LCE is 33.3 times lower than CE, and
the value of loss function when p ≃ 0.2 is 50 times lower.
From the data shown in the above examples, we can find that
correcting misclassification examples is necessary.

C. The Proposed Architecture

In this study, we designed a multi-scale convolutional neu-
ral network structure to segment blood vessels from fundus
images. In the figure 1, we will show the details of this
network in this work. The network consists of two consecutive
convolution structures with input sizes of 13 * 13 and 17 * 17
respectively. The convolution kernel we have chosen on each
convolutional layer is 5*5 in size and each time we move
kernel one pixel. Networks of different scales have a similar
convolutional layer structure. The first convolutional layer has
64 feature plots and the second convolutional layer has 128
feature plots, and the third convolutional layer has 256 feature
plots. After each convolutional layer, we use a rectifying linear
unit (ReLU) excitation as an activation function. As shown in
this article[8], using ReLU as an activation function for the
convolutional layer can speed up the training of the network.
After the features are extracted from the convolution layer,
we add the feature maps and connect them with the fully
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Fig. 1. The Structure of Multi-Scale Convolutional Neural Network

connected layer. It should be noted that the full-connected
layer is not only one layer. Only one layer is drawn on the
graph for the sake of simplicity of the view. In fact, there
are three full-connected layers. We used dropout learn more
powerful skills and reduce overfitting. The technique sets the
output of each neuron to zero with a probability of 0.5. Finally,
we use the softmax function to classify and use our improved
cross-entropy function as an energy function.

D. Label Processing

In deep learning, the handling of sample tags is a part that
is easily overlooked, especially in binary tasks. The tag y−
is simply designed as y− ∈ {±1} or y− ∈ (0, 1) .However,
in the traditional machine method, the processing of the label
has been proved to be an effective method to improve the
accuracy of the classifier, and this method does not have any
additional requirements for the computing power. Therefore,
we try to introduce sparse variables into the label design of
deep convolutional neural networks. The new tag y∗ is defined
as:

y∗ = α ∗ y− + ε (6)

Where ęÁ is called the proportional coefficient, and its size
depends on the proportion of the positive and negative samples
in the training set. This coefficient was specially designed to
solve the imbalance problem. ęÅ is called a sparse variable.
It is to bias the same kind of sample. We usually convert
segmentation tasks into classification tasks, and convolutional
neural networks as a classifier, its role can be simplified to
find the optimal classification plane between different types
of samples. By adding sparse variables to the category labels,
increasing the distance between the classes’ classification

TABLE I
PERFORMANCE OF ε-DRAGGING ON DATA POINT IN TWO CLASSES

class y y after ε-Dragging

x1 1 [1,0] [1 + ε11,−ε12] ε11, ε12 > 0

x2 1 [1,0] [1 + ε21,−ε22] ε21, ε22 > 0

x3 2 [0,1] [−ε31, 1 + ε32] ε31, ε32 > 0

x4 2 [0.1] [−ε41, 1 + ε42] ε41, ε42 > 0

planes has been used in traditional machine learning. We refer
to this approach to deep convolutional neural networks.

Table 1 further explains our method, which reports the four
data points in the two categories. Their class label vector is
listed in the third column. Now, if we group together the
first element of the class labeling vector, we get "1,1,0,0". In
this way, a binary class partition can be obtained in which
the first two is divided into one class, and the latter two
classified data points are classified into another class. After
label processing is performed, their image will change from
"1,1,0,0" to"1 + ε11,1 + ε12,ε13,ε14" science all are non-
negative, this processing can help expand the distance between
classes after data point mapping.

E. Model training

Our method does not require image preprocessing including
image enhancement, which greatly simplifies the difficulty of
segmentation tasks and improves the versatility of the method.
According to the mask image, the fundus image part of the
original image is centered on each pixel, and we can get the
classification of the preset scale, and after we delete the sample
of the edge part sample beyond the mask range, remain about
150 samples. Millions of sample drawings. One million of
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them are training sets and 500,000 are test sets. However, our
method does not use all the training set samples for training.
We used a special selection method to obtain samples that was
only one-tenth of the original training set. This greatly speeds
up the training time without losing too much classification
accuracy.

We trained and tested the network on an Intel core com-
puter and implemented it using Anconda+TensorFlow. The
processor we used was the Intel Xeon(R) CPU E5-2680V3.
The training on these lasted 18 hours. Between the limits
of our experimental equipment, we chose a batch size of
64.During training, the weights were updated by stochastic
gradient descent algorithm with a momentum of 0.9 and a
weight decay of .The biases in convolutional layers and fully-
connected layer were initialized to 1. The number of epochs
was tuned on a validation set consisting of patches from one
randomly selected subject in the training set. The learning rate
was set to initially.

III. RESULT

A. Implementation Details

We have evaluated the nature of our proposed method on
a very popular DRIVE dataset, which consists of 40 retinal
images. The dataset is divided into two subsets, training sets
and test sets, each set contains 20 images. The image is 565 x
584 pixels,8 bits per color channel. Only the images of training
set can be used for the training of the network. First, we clip
the training image into 23x23 tiles and mark each tile by the
label image. Then add a slack variable to the tag based on
the method above and use the mask contained in the DRIVE
database to identify the FOV. All pixels of each patch should
be in the FOV area, and a total of 100000 patches are obtained
for 20 training images. But not all small pieces will be trained.
In fact, we only used 50,000 small pieces, which accounted
for only about 2

Test the performance of the segmentation algorithm in
the test set. In 20 images of the test set, four images are
pathological and the other are normal images. During the
testing phase, we also use the first expert’s tag as a basic fact.
The images in all test sets are used for testing to evaluate the
performance of the algorithm.

B. Evaluation Criterion

In vessel segmentation, there are two class labels: vessel
and non-vessel. By comparing the segmentation results with
the manual ground truth, we obtain four measures: the vessel
pixels that are predicted as vessels are denoted as true positives
(TP), the vessel pixels that are predicted as non-vessels are
denoted as false negatives(FN), the non-vessel pixels that are
predicted as non-vessels are denoted as true negatives (TN),
and the non-vessel pixels that are predicted as vessels are
denoted as false positives (FP).

Usually we use three criteria to compare the performance
of the proposed method with other state-of-the-art methods:
sensitivity (Se), specificity (Sp) and accuracy (Acc). Evalua-
tion indicators are only calculated for pixels within the FOV.

Fig. 2. Results of different segmentation methods

These metrics are defined as

Se =
TP

TP + FN
(7)

Sp =
TN

TN + FP
(8)

Acc =
TP + TN

TP + FN + TN + FP
(9)

Because true positive score (Se) and false positive score (Sp)
are sensitive to the number of sample categories. That is, when
the number of samples of the binary classification problem
is not balanced, these indicators cannot accurately reflect the
performance of the classifier, so we also use the performance
of the area under the ROC curve (AUC) evaluation method.
The AUC is equal to 1 when the classifier can perfectly classify
the sample. In addition, we have additionally introduced the
concept of interclass accuracy.

This indicator better reflects the performance of the classi-
fier when dealing with unbalanced categories.

C. Performance of the proposed method

Figure 2 is a comparison of our segmentation results with
the traditional CNN segmentation results. Among them are (a)
the original image, (b) the ground truth, (c) the segmentation
result of the traditional CNN, and (d) the segmentation result
of the proposed method. It can be clearly seen that our
segmentation method is more delicate, and the segmentation
accuracy of blood vessel details is higher and closer to the
truth on the ground. The reason why our performance better
is our method considers the effect of category imbalance
on the segmentation of blood vessels. After modify the loss
function and use multi-scale convolutional neural networks, we
obviously reduce the impact of this problem on the results. In
this method, the importance of the loss function is highlighted.
Table III shows the comparison between the traditional CE
and our proposed LCE. When using our structure at the same
time, the accuracy of LCE is significantly higher than that of
CE. Figure 3 shows the influence of different parameters ęÁ
on the results. And through the experiments, we can get the
best results when ęÁ=0.2. The proposed method is evaluated
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Fig. 3. The Effect of Different ęÁ Values on Loss in LCE Functions

TABLE II
COMPARISON OF CORRECT RATIOS OBTAINED BY DIFFERENT SAMPLE

RATIOS ON DRIVE DATA SETS

Num 1:1 1:2 1:3 1:4

Acc 0.917 0.932 0.944 0.956

on DRIVE and STARE database images with available real
ground images. The performance results are shown in TablesII
and III. The performance index is calculated based on the
first human observer. The accuracy, sensitivity, specificity, and
AUC of the DRIVE database were 0.8347, 0.9796, 0.951, and
0.9792, respectively. The accuracy of the segmentation results
of the STARE database is 0.956; the sensitivity, specificity, and
AUC are 0.94471, 0.99432, and 0.988388, respectively. Figure
4 shows the performance of ROC curves on the DRIVE and
STARE datasets. The average AUC of the ROC curves on the
two datasets is 0.9792, 0.9743. As we know, the closer the
AUC value is to 1, the better the performance of the classifier.
So our retinal vessel segmentation results are excellent.

Then, we compare the proposed method with several ad-
vanced retinal vessel segmentation methods. In general, super-
vised learning methods have better classification accuracy than
unsupervised learning methods. The methods in the reference
document achieve better results than other methods because of

TABLE III
COMPARISON OF CORRECT RATE OF CE AND LCE ON DIFFERENT DATA

SETS

DRIVE STARE

CE 0.937 0.932

LCE 0.951 0.956

Fig. 4. ROC curve of proposed method

the use of ensemble learning methods. In a single classifier,
our method has better average accuracy than other methods.

IV. DISCUSSIONS

Table II shows the accuracy of the classifier at different
sample rates. On the DRIVE data set, we use the same
network structure and evaluation indicators, different positive
and negative sample ratios. From the above figure, we can
clearly see that as the proportion of the sample much closer to
the true proportion of the data set, the segmentation accuracy
of our network becomes more accurate. Although it is not
pursuit the unbalanced proportion on purpose, when randomly
selecting small blocks from the sample set, it is actually
obtained an imbalanced sample. This method can quickly
classify the network, but it has no practical meaning. Because
the network learning is the distribution state of the sample set
itself, rather than the real characteristics of the sample.

After realizing that the above approach is not rigorous, we
consider how to solve this problem. The modification of the
loss function and network structure is the method that first
enters our mind. Table III shows the performance of different
loss functions on two data sets. After we used the improved
loss function, the performance of the network has improved
significantly. It is worth noting that our proposed improvement
of the loss function not only has a broad prospect in this
network but also in the broader field of deep learning. We are
conducting experiments in this area and will soon have results.
According to the definition of LCE, ęÁ is a very important
hyper parameter, which determines the performance of this
loss function on a specific problem. Figure 3 shows the impact
of different ęÁ on network performance when we use LCE.
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TABLE IV
PERFORMANCE COMPARISON OF VESSEL SEGMENTATION METHODS ON DRIVE IMAGES

No Methods Se Sp Acc Auc

1 Fraz[1] 0.7302 0.9472 0.9422 N.A

2 Fraz[9] 0.7406 0.9807 0.9480 0.9747

3 Soares[10] 0.7283 0.9788 0.9466 0.9616

4 George[3] 0.7655 0.9704 0.9442 0.9614

5 Nicola[11] 0.7731 0.9724 0.9467 0.9588

6 Aslani[12] 0.7545 0.9801 0.9513 0.9682

7 Maji[13] N.A N.A 0.9470 0.9283

8 Lahiri[14] 0.7500 0.9800 0.9480 0.9500

9 Martina[15] 0.7276 0.9785 0.9466 0.9749

10 Avijit[16] 0.7691 0.9801 0.9533 0.9744

11 Fu[17] 0.7294 N.A 0.9470 N.A

12 Proposed method 0.8347 0.9796 0.9510 0.9792

TABLE V
PERFORMANCE COMPARISON OF VESSEL SEGMENTATION METHODS ON STARE IMAGES

No Methods Se Sp Acc Auc

1 Hoover[18] 0.6747 0.9384 0.9348 N.A

2 Jiang[19] N.A N.A 0.9009 N.A

3 Mendonca[20] 0.6996 0.9730 0.9440 N.A

4 Lam[21] N.A N.A 0.9567 0.9739

5 You[22] 0.7260 0.9756 0.9479 N.A

6 Marin[15] 0.6944 0.9819 0.9526 0.9769

7 Fraz[1] 0.7548 9763 0.9534 0.9768

8 Proposed method 0.8231 0.9782 0.9560 0.9743

After our experiments, we found that when ęÁ=0.2, the best
effect was obtained.

After using the method, we mentioned above, we have
achieved very good results on the two data sets. The accuracy,
sensitivity, specificity, and AUC of the DRIVE database were
0.8347, 0.9796, 0.951, and 0.9792, respectively. The accuracy
of the segmentation results of the STARE database was 0.956;
the sensitivity, specificity, and AUC were 0.94471, 0.99432,
and 0.988388, respectively. In particular, except that our
experiment is based on the results of a balanced sample size,
other experimental results can be obtained when the sample is
not balanced.

For blood vessel segmentation tasks, we are more likely to
get blood vessel pixels than non-vascular pixels because blood
vessel pixels are very rare and their value is much higher
than non-vascular pixels. Therefore, in TableIV and Table V,
our results showed a significantly higher specificity than other
results. That means, in the case of a balanced sample, we only
lost a little bit of accuracy, but we improved our specificity
significantly. This is what we are happy to get. Our experiment
has embarked on a new direction for the next study, which is
not to regard accuracy as the first criterion, but rather to focus
on specificity.

V. CONCLUSION

By comparing the differences of the experimental results,
we found that there are unbalanced samples in the fundus

image segmentation task, and we hope to improve the seg-
mentation accuracy of blood vessels. Further we propose three
solutions. By using these three methods together, we can get a
better result. The deep neural network can learn hierarchically
preprocessed images from it. It has a great potential in
medical image processing and can help doctors easily diagnose
accurately. In this paper, firstly, we use the slack variable
method to increase the distance among different categories,
thereby improving the performance of the classifier. Secondly,
we propose a multi-scale convolutional neural network to
extract the difference in information among different views,
so that we can make accurate judgments. Finally, we solve
the problem of unbalanced quantity among different types of
samples by modifying the loss function. Our proposed method
has performed well on two common data sets.

As we said above, we are conducting more tests and
improvements on LCE so that it can perform well when
dealing with unbalanced tasks for example target detection.
The other limitation of our method is that it requires more
training time than the previous method. Obviously, multi-
scale networks have more parameters and the introduction of
slack variables, which slows down the training speed of the
network. Although the loss of time seems unavoidable, it can
be acceptable to improve the accuracy. In the future, we hope
to continue to improve the network structure so that it can be
trained and tested more quickly.
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