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Abstract—Juxtapositioning manually created business process
models with diagrams generated using process discovery algo-
rithms exposes high complexity of the latter. As a consequence,
their formal verification requires significant computational re-
sources due to a large state space. Nevertheless, an analysis of the
generated model is needed to assure its correctness and the ability
to represent source data. As a solution to this problem, we present
an approach for constraint-based generation of a complete
workflow log for a given BPMN model. In this paper, we propose
a method to extract directed subgraphs representing token flows
in the process together with a set of predefined constraints.
Likewise, in the case of process simulation, these constraints
ensure the correctness of the generated traces. Ultimately, the
obtained results can be compared to the original workflow log
used for process discovery in order to verify the obtained model.

Index Terms—business process management, process verifica-
tion, workflow logs, constraint programming

I. INTRODUCTION

B
USINESS process models aim to represent knowledge

about workflows which take place in an organization.

Such chains of different activities are represented by graphical

diagrams that hold information about their dependencies,

execution conditions, alternative flows and other properties

included in the used modeling notation. Creation of a process

model may be performed manually by a process designer who

builds the diagram in a graphical editor or prepares other

representations such as UML activity diagram [1], structured

text [2], natural text description [3] or a spreadsheet represen-

tation [4]. Another way to design a model is to discover it

from event logs generated by existing IT systems [5], [6].

Although process mining appears to be a convenient tech-

nique which does not require much effort in the phase of

process modeling, the discovered workflow models can suffer

from various defects. Such flaws can be caused either by the

imperfection of the selected algorithm [7] or by corrupted logs

[8]. Raw data recorded from real system may be characterized

by missing events, imprecise or incorrect data, as well as

irrelevant artifacts.

Several methods were developed to evaluate discovered

models. They include simulations performed on a generated

Petri Net which represents the workflow [9], application of

evaluation metrics [10], as well as validating models against

temporal logic formulae [11]. In order to improve data an-

alyzed by a process miner, the technique of real-time log

monitoring can be applied [12]. Another related approach

consists in generating synthetic traces based on a structured

declarative model [13].

The existing methods can be used to improve quality of

process mining from various perspectives, however they tend

to operate on different workflow representations, such as raw

event data or Petri Nets, without considering the output model.

The purpose of the proposed method is to evaluate the created

business process model and verify its behavior by generating

its admissible execution traces. The synthetic log can be then

compared to the set of real execution sequences obtained from

a computer system in order to indicate areas of imperfection

and take corrective actions, such as changing the mining

algorithm or refining log data. A schematic illustration of our

approach is presented in Figure 1.

BPMN Model

Subgraph
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Synthetic Log
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Figure 1. Overview of the proposed approach.

This paper is organized as follows: Section II provides an

overview of Business Process Management which includes its

definition and phases. Section III describes the concept of

a BPM lifecycle and its aspects. A definition of workflow

log was presented in Section IV and followed by a brief

description of process mining, where logs are used to extract

process knowledge, which was provided in Section V. Our

main contribution is included in Sections VI and VII where

we proposed methods to determine the number of traces in

a process log, as well as presented a constraint-based model

to generate a synthetic set of traces. Concluding remarks and

plans for future works were summarized in Section IX.
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II. BUSINESS PROCESS MANAGEMENT

Business Process Management (BPM) [14] is a modern

approach to improving organization’s workflow, which focuses

on reengineering of processes to obtain optimization of proce-

dures, increase efficiency and effectiveness by constant process

improvement.

The key aspect of BPM is a Business Process (BP). Al-

though there is no single definition of a Business Process, the

existing definitions have many things in common [15], [16],

[17], [18]. A BP is usually described as a collection of related

activities which transform different kinds of clearly specified

inputs to produce a customer value, mainly considered as

products or services and organizational goals, as output.

Different definitions emphasize various aspects of such

defined processes. Davenport described a process highlighting

the importance of producing an output for a customer –

how work is done [15]. Definition of Eriksson and Penker

emphasizes how work is performed rather than describing

products or services, results of a process [19]. Jacobson, in

turn, underlined that a process should be customer-oriented

and meet an individual customer’s needs [20]. A wider concep-

tualization of process was presented by Melao and Pidd [21].

They gave four perspectives on business process to understand

BPs more fully. In their approach, BPs can be seen as either

deterministic machines, complex dynamic systems, interacting

feedback loops or social constructs.

Thus, Business Process Management requires a specification

of many aspects, such as goals, inputs, outputs, used resources,

activities and their order, impact to other organizational units,

customers and owners for each of managed processes to enable

real benefits. It unifies the previously distinct disciplines such

as Process Modeling, Simulation, Workflow, Enterprise Ap-

plication Integration (EAI), and Business-to-Business (B2B)

integration into a single standard [22].

Figure 2. Comparison of Workflow Management and Business Process
Management (based on [23]).

Therefore, BPM is often considered as either a legacy or the

next step after workflows. Workflow Management Coalition

(WfMC) [24] defines a workflow [25] in terms of automation

of a business process during which documents, information or

tasks are passed from one participant to another for action,

according to a defined set of procedural rules. According to

van der Aalst et al. [23], BPM is a broader term than Workflow

Management (WFM). BPM supports business processes using

methods, techniques, and software in designing, enacting,

controlling, and analyzing processes involving humans, or-

ganizations, applications, documents and other information

sources. It is restricted to operational processes, thus it ex-

cludes processes that cannot be made explicit.

A simple approach to process management distinguishes

four phases of supporting processes [23]:

1) process design, in which the process is designed or

redesigned,

2) system configuration, in which the design is imple-

mented by configuring process management system,

3) process enactment, in which the operational business

process is executed using the configured system,

4) diagnosis, in which the process is analyzed or verified

to identify things that can be improved.

The relationship between WFM and BPM is presented in

Figure 2. As one can observe, BPM extends the traditional

WFM approach. In the case of the WFM systems, they do

not support diagnosis phase, and such features as simulation,

verification or validation of process designs.

III. BPM LIFECYCLE

Although many aspects of BPM have been debated in

literature, one of the fundamental BPM issues is a repeating

sequence of steps, the so-called Business Process Management

Lifecycle (see Figure 3). The main idea behind the BPM

lifecycle is to manage and improve BPs over business changes.

Due to the use of clearly defined phases, BPM enables the

continuous maintenance and the evolution of processes. During

iterations, such parameters of business processes as cost, time,

quality of output or customer satisfaction can be improved

causing an improvement of the whole process.

Thus, BPM is in fact the application of the management

cycle to organization’s business processes [26]. The BPM

lifecycle starts with specification of organizational and process

goals as well as an assessment of environmental factors

having an effect on the organization BPs. In the next process

design phase, the organization processes are to be identified or

redesigned. In this phase, the particular process details should

be specified, and the proper variables that will influence the

process design should be identified as well. During the next

phase the previously specified process models are implemented

in the environment, usually manually via procedure handbooks

or using BPM or workflow software. Finally, the implemented

process can be instantiated and executed. During execution, the

performance is monitored in order to control and improve the

process. Data produced during the process enactment and mon-

itoring phases, aggregated from multiple process instances, can

be used in the evaluation phase, whose purpose is to formulate

the results suitable for process improvement.

Our area of research focuses on analyzing process models

discovered from event logs and verifying them in terms

of admissible execution sequences. Therefore it covers the

evaluation phase and its side activities such as auditing event

logs as well as providing measures of improvement for the

whole process.
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Figure 3. Business Process Management Lifecycle with the indication of our area of research (based on [26]).

IV. WORKFLOW LOG

In every business process, regardless whether it is executed

manually or by an IT system, completion of each activity

should be recorded with a proper timestamp. Such a record

is often referred to as a log event [27] and may include

information about a person or unit performing the task, as well

as its cost and used resources. A set of log events ordered by

their completion timestamps is called a workflow trace:

σ = {α(1), α(2), ...α(K)}, (1)

where α is a log event and K represents the length of the

trace.

One of the most important features of an event trace is that

all recorded activities are ordered chronologically. In other

words, even if two different activities are executed in parallel,

their accomplishment time differs and it is always possible

to distinguish the one which was completed first. However,

as business processes are repeated many times, the order of

their completion may differ depending on the instance of

the process. In addition, processes may contain alternative

gateways that, based on a logical condition, determine which

task should be executed and which should remain unused.

Therefore, in order to gather the information about the whole

process, one should record a workflow trace for a number of

times to ensure, that all or nearly all the possible execution

sequences were collected. A set of workflow traces is called

a workflow log:

W = {σ1, σ2, ...σL}, (2)

where σi are separate workflow traces, also referred to as cases

or workflow instances and L is the number of recorded traces.

A workflow log can be considered complete if it covers

all the possible execution sequences of the process. In the

case when activities are executed in loops, the number of

possible traces may be infinite. Therefore, we weaken this

requirement to a notion of sufficient completeness explained

in Definition 1. It limits the required number of traces to those

where the number of repetitions for each log event is equal to

the number of cycles which include the corresponding activity.

Definition 1. (Sufficiently complete workflow log) Let GP

be a business process graph [28] representing the analyzed

process and SC be a set of all simple cycles in GP . Function

CC(τ) determines the number of occurrences of the vertex

representing activity τ in SC . Workflow log W is sufficiently

complete if it contains all the possible execution sequences

where the number of occurrences for each activity τ is lower

than or equal to CC(τ) + 1.

V. PROCESS MINING

Process mining is an area of research which focuses on ex-

tracting knowledge from event logs [29] which were described

in details in Section IV. One of the challenging tasks within

process mining is process discovery [30] which includes algo-

rithms able to generate process models in a flexible way, and in

some cases without the need of any human actions. Although

process discovery methods can produce syntactically correct

workflow nets, the result is a general process model which is

not directly applicable for execution in a runtime BPMN envi-

ronment. BPMN diagrams can be obtained directly from event

logs [31]. However, they require significant enhancements to

be suitable for execution. Such modifications can be based

on decision mining [32] which extends the process model

by providing conditions for alternative or exclusive gateways.
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Figure 4. Result of applying a process mining algorithm to a workflow log of 36 traces.

Regarding process execution, the generated model still needs

to be validated in terms of structural anomalies which may

result in wrong dynamic behavior of a process [33].

Figure 4 presents a BPMN model discovered using ILP

Miner [34] based on 36 different execution traces. In this

example, the number of parallel and exclusive gateways (11)

is higher than the number of activities (8). This implies

a large number of routings and may possibly result in various

exceptions during execution. Several complexity metrics exist

which evaluate the complication level of business process

models [35]. From a runtime point of view, the control-flow

perspective should be considered. Cardoso et al. [36] propose

a set of such metrics of which two can be applied in this case:

• Control Flow Complexity (CFC) which can be calculated

as a sum of states induced by all the split gateways.

Given nout as the number of outputs of a gateway, each

exclusive (XOR) split induces nout states while a parallel

split corresponds only to one state, as all the output

branches are always used.

• Coefficient of Network Complexity (CNC) which is a

quotient of the number of arcs (sequence flows) and the

number of all activities, joins and splits in the process.

In the example presented in Figure 4, the Control Flow

Complexity is equal to 12 and the Coefficient of Network

Complexity has a value of 1.47. It is worth noting that values

of these metrics for a simple workflow without any branching

elements are equal to 0 and (na + 1)/na, where na is the

number of activities, respectively.

VI. DETERMINING THE NUMBER OF TRACES IN A PROCESS

The first step towards the estimation of the number of dis-

tinct traces is based on a business process model. A sequential

workflow consisting of one start event, one end event and

no gateways produces only one trace. A trivial example of

such a process model is shown in Figure 5. However, models

representing a simple workflow are rarely used in practice.

According to the survey [37], in 90% of BPMN models the

number of gateways varies between 5 and 15.

A CB

Figure 5. Simple sequential workflow.

In order to analyze business process model from an exe-

cution perspective, its token flow must be considered. It is

assumed that the start event of a process generates a token

which runs through the whole workflow to be consumed by

an end event [38]. Although business processes can contain

multiple start events, it is not regarded as a good practice as

it remains unclear in the BPMN specification whether all the

start events should occur before the process execution [39].

When determining a sufficiently complete log we refer to best

practices of process modeling [40] following the statement that

a well designed process model should contain only one start

event which creates exactly one token.

On the other hand, multiple end events are a common

practice in business process models, as they may represent

different final states (e.g. goal and error states). However, only

one of the end events is triggered in a single process instance.

It may consume one or more tokens, depending on the number

of incoming sequence flows.

Token flow in a business process is managed by logical

gateways which determine branching flows. A single token

created at the beginning of each process instance can be

processed differently depending on the type of a gateway. The

following actions are possible for a split gateway with n output

branches:

• An exclusive (XOR) gateway places the token in one

of the output sequence flows where the corresponding

condition is met. As a result n different actions are

possible.

• An inclusive (OR) gateway multiplies the incoming token

by the number of conditions met. This action is followed

by placing the created tokens on the corresponding se-

quence flows. As at least one output branch must be

active, 2n−1 actions are possible.

• A parallel (AND) gateway multiplies the incoming token

by the number of output branches. This result in only one

possible action.

Since a single sequence flow should not transfer more than

one token at a time, join gateways are responsible for merging

multiple sequence flows into one output branch. An exclusive

merge gateway only receives a token from one of its incoming

branches and passes it to its output. A more complex situation

occurs in case of a synchronization of multiple sequence flows

which may be done in the following way:
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• an inclusive merge consumes all the tokens created by its

corresponding split gateways,

• a parallel merge consumes the tokens for all its input

branches.

Each of the synchronizations result in creation of a token and

passing it to the outgoing sequence flow except the situation

when a parallel merge is declared implicitly by multiple

sequence flows leading to an end event.

Since according to the best practices OR gateways should

be avoided in BPMN modeling [40] and regarding the fact that

in most cases they can be replaced by a sequence of exclusive

and parallel gateways [41], this type of routing object was not

taken into further analysis. As a consequence, the only flow

objects in a well modeled process where token creation or

consumption occurs are parallel gateways.

Figure 6 represents a simple BPMN model with one parallel

and one exclusive gateway. As stated before in this section,

an XOR split gateway generates as many possible states as

is the number of its outgoing sequence flows. Thus, in this

case there will be two possible execution sequences of the

SESE (Single Entry Single Exit) block determined by two

exclusive gateways: one sub-trace consisting of task D and

one empty sequence. Although the presence of a single AND

gateway induces one state, the generated tokens represent

separate sequences of activities. As a result they can be

executed independently until they reach a synchronization

element represented by a parallel merge. Therefore, the first

SESE block which follows the start event may also be executed

in two ways, namely {A,B} and {B,A}. Besides these two

process fragments the remaining activity, denoted as C is

executed in every process instance. This analysis leads to

a conclusion that the number of execution traces in such

a process is a multiplication of the corresponding values

calculated for its SESE blocks.

A

C

B

yes

no

Condition met?

D

Figure 6. Example process with two basic types of gateways.

As stated before in this section, sequence flows followed

by parallel gateways are executed independently. Therefore, if

each branch within a SESE block delimited by AND gateways

contains exactly one activity, these activities can be executed

in any order. The example presented in Figure 6 illustrates

a general rule for determining the number of admissible traces

in a BPMN model which is expressed in Theorem 1.

Theorem 1. Let P be a BPMN process model containing a set

of exclusive split gateways GXOR = {gX1, gX2, ...gXk}, a set

of parallel split gateways GAND = {gA1, gA2, ...gAl} and two

corresponding sets of merge gateways, namely MXOR and

MAND. If P consists of k SESE blocks determined by XOR

gateways and l SESE blocks determined by AND gateways

where each of l sequence flows contains exactly one activity,

then the number of sequence flows in sufficiently complete

workflow log WSC can be expressed by Formula 3.

|WSC | =
k
∏

i=1

n(gXi) ·
l

∏

i=1

n(gAi)! (3)

where n(g) determines the number of outgoing sequence flows

of a split gateway.

Proof. Let us assume that each of k exclusive gateways in

P has exactly n outgoing flows. Knowing that every SESE

element in a process model can be reduced to a subprocess

which is a single BPMN activity [28] and that every XOR

gateway allows for n actions, there are n possible states of

every k subprocess in P. This implies that the number of

all admissible states is equal to nk. Since the number of

outgoing flows may vary for different gateways, n(gXi) has

to be multiplied k times.

VII. CONSTRAINT-BASED LOG GENERATION

The method presented in Section VI refers to these BPMN

diagrams where SESE gateway structures are easily distin-

guishable. However, in automatically generated process mod-

els, as shown in Figure 4, gateways can be nested and the

number of merge gateways does not have to match the number

of splits. As a result, the number of traces is hardly calculable

using analytical methods. Figure 7 shows a simple process

model with nested gateways where Formula 3 cannot be

applied.

D

A

E

B

C

F

Figure 7. Example process with nested gateway structures.

The BPMN model presented in Figure 7 consist of six

tasks formed in a parallel block with three branches. In

business process models without loops, the upper limit of the

number of traces is equal to the factorial of the number of

activities. This would occur if all the tasks in the process

were executed independently. In this case, however, there are

following constraints which limit the set of possible sequences:

1) A must occur before B or C.

2) B is executed if and only if C is not.

3) E must occur before F .

In the analyzed example such constraints are easily iden-

tifiable and they can be expressed in a temporal logic [42].

However, dynamic generation of constraints for a complex
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process model requires checking of all the dependencies

between each pair of tasks which is an exponential problem.

As a solution to this issue, we propose to extract process

subgraphs from the model in a such manner that each of the

graphs will represent the flow of a single token. It was stated

in Section VI that each process instance ends with a single

end event. As a consequence, all the generated tokens have

to be consumed either by one of the parallel join gateways

or by an event. Thus, the method can be applied to those

SESE blocks in the process which start with a parallel split

and whose last flow object is either a parallel join or an end

event with multiple incoming sequence flows.

Let us denote the set of subgraphs as SG = {s1, s2, ...sq}.

In the model presented in Figure 7, there are three tokens

generated at a parallel split gateway and all of them are

synchronized by a parallel merge before the end event. As

a result, the extraction will provide three subgraphs, each

representing tasks on a single branch (see Figure 8).

E

C

B

DA

F

s1 s2

s3

Figure 8. Token flow subgraphs extracted from a business process model.

In order to determine admissible workflow traces, a path

should be calculated in every subgraph. The beginning of such

a path is a vertex with no incoming edges. A path should end

if a vertex with an outdegree equal to zero is reached. In the

next step, all these paths are merged to vector β of length p ·q
where p is the overall number of tasks in the analyzed SESE

block and q is the number of extracted subgraphs.

In Constraint Satisfaction Problems (CSP), a state which

represents a set of elements must satisfy a collection of finite

constraints over variables [43], [44]. CSPs can be solved

using the constraint programming technique whose applica-

tions include design and modeling [45], as well as planning

and scheduling [46]. If the problem is not over-constrained,

a CSP algorithm always finds all the admissible solutions for

finite domains [44]. Solving a Constraint Satisfaction Problem

consists in general of four following steps:

1) Ordering the decision variables according to preference

criteria.

2) Assigning values to each of the variables with respect

to their domains.

3) Verifying if any of the constraints is violated at any step

of the solving process.

4) If a complete or partial constraint-violating assignment

is found, backtracking is enforced, and a succeeding set

of values is assigned.

In this case, to calculate a process trace, we developed

a constraint-based model in MiniZinc environment which

consists of the following core elements:

1) Input data:

• a list of tasks in the analyzed block,

• vector ex of maximum numbers of executions for

each task (1 by default),

• adjacency matrices A1, ...Aq for each subgraph.

2) Decision variables:

• a subgraph trace matrix St of size q × p,

• a vector of merged traces β,

• a vector γ of size p representing a workflow trace.

In order to improve the understandability of the code, we

define two custom predicates which are further used in the

predefined constraints:

• connected – returns true if two tasks are connected in the

subgraph represented by its adjacency matrix,

predicate connected(src, dest, adj)

= (adj[src, dest] == 1);

• same_block – returns true if a pair of indices of vector

β is in the same subgraph trace.

predicate same_block(idx1, idx2)

= (idx1 > 0 /\ idx2 > 0

/\ idx1 div p == idx2 div p

);

Constraints included in the model can be divided into three

main groups, depending on a decision variable to which they

are related. Let us briefly present these constraints along

with their simplified representations in the MiniZinc language:

1) Subgraph traces:

• the count of occurrences for each task should be

lower then or equal to the input value,

forall(i in 1..p, j in 1..q)(

count_geq(row(S_t,j), i, e_x[i])

);

• the value 0 in the event log represents an idle task,

idle_task = 0;

• the last log event should not be preceded by an idle

task,

forall(i in 1..q)(

count_neq(row(S_t,i), idle_task,

last_process_index+1)

);
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• all tasks after the last log event should be idle,

forall(i in 1..p, j in 1..q)(

if i > last_task_index[j]

then S_t[j,i] == idle_task

else S_t[j,i] != idle_task

endif

);

• the first element of a trace should be represented by

a subgraph vertex without any incoming edges,

forall(i in 1..p, j in 1..q)(

if S_t[j,1] == i

then count(row(A_j, i),-1,0)

endif

);

• the last log event should be represented as a vertex

without outgoing edges,

forall(i in 1..p, j in 1..q)(

if s_t[j,1] == i

then count(row(A_j, i),1,0)

endif

);

• if one task directly follows another in a trace, then it

is connected by a directed edge in the corresponding

subgraph.

forall(i in 1..q, j in

1..last_process_index) (

connected(S_t[i,j],S_t[i,j+1], A_i)

\/ (S_t[i,j] == 0

/\ S_t[i,j+1] == 0)

\/ (j == last_task_index[1]

/\ S_t[i,j+1] == 0)

);

2) Merged vector β:

• the vector β is a concatenation of trace matrix rows.

forall(i in 1..last_process_index, j

in 1..q)(

if i < last_task_index[j]

then beta[(j-1)*last_process_index

+ i] = S_t[j,i]

else beta[(j-1)*last_process_index

+ i] = 0

endif

);

3) Final trace vector:

• the vector γ holds non-zero indices of β,

forall(i in gamma_indices)(

if gamma[i] > 0 then

beta[gamma[i]] != 0

else beta[gamma[i]] == 0

endif

);

• all the elements of γ are different except zero,

alldifferent_except_0(gamma);

• all the elements following the last non-zero element

of γ are equal to zero,

forall(i in gamma_indices)(

if i > last_gamma_index then

gamma[i] == 0

else gamma[i] != 0

endif

);

• for each pair of tasks in γ if the pair is in the same

row of matrix St then these task should be ordered

in the same way as in St.

forall(i in gamma_indices, j in

gamma_indices)(

if i != j /\ gamma[i] != 0 /\

gamma[j] != 0 /\

same_block(gamma[i], gamma[j])

then

if i > j then

gamma[i] > gamma[j]

else

gamma[i] < gamma[j]

endif

endif

);

In order to run the MiniZinc solver two files are needed:

• the model file trace_id.mzn which contains definitions of

decision variables, predicates and constraints,

• the data file subgraphs.dzn where activity names, their

maximum number of executions and subgraph adjacency

matrices are defined.

For the workflow trace generation the search goal should be

set for constraint satisfaction by using the statement solve

satisfy.

The analyzed example model contains 6 tasks and 3 sub-

graphs, then p = 6 and q = 3. Formula 4 presents an example

subgraph trace matrix St for subgraphs shown in Figure 8.

Creation of vector β consists in merging all the subgraph traces

(see Formula 5). Indices of β are used to generate trace vector

γ (see Formula 6).

St =





A B 0 0 0 0
D 0 0 0 0 0
E F 0 0 0 0



 (4)

β = [A B 0 0 0 0 D 0 0 0 0 0 E F 0 0 0 0] (5)

γ = [13 7 1 2 14 0] (6)
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The resulting trace is an ordered set (see Formula 1)

determined by non-zero elements of β whose indices are

ordered by values of γ. Its value for the running example

represented by the BPMN model in Figure 7 and trace matrix

St defined by Formula 4 is shown in Formula 7.

σ = {E,D,A,B, F} (7)

In order to generate all the admissible task sequences the

solver should be set to print all solutions. Execution of the

model results in a sufficiently complete log of a SESE process

block. If a process contains multiple token split blocks then

all of them should be handled separately.

VIII. LOG-BASED VERIFICATION OF PROCESS MODELS

Several metrics were proposed to analyze results of pro-

cess discovery algorithms, namely: replay fitness, simplicity,

precision, and generalization [47]. Since we tend to compare

two sufficiently complete workflow logs without analyzing the

graphical layout of the generated model, the following quality

measures have been considered and adopted for the purpose

of log comparison:

• model fitness – the percentage of traces from the original

log which were generated based on the discovered model,

• execution precision – the percentage of generated work-

flow traces that are allowed in the original log.

It is worth noting that values for both metrics should be

calculated in order to validate the resulting model. To illustrate

this problem, let us analyze the example shown in Figure 6. Its

original complete log can be easily determined analytically:

WC = {{A,B,C}, {B,A,C},
{A,B,C,D}, {B,A,C,D}}.

(8)

Now let us assume that this log was used to discover

a BPMN model whose traces were then generated using

the constraint-based approach. The synthetic log WS was

determined as follows:

WS = {{A,B,C,D}, {B,A,C,D}, {A,C,B,D}}. (9)

Traces where activity D does not occur were not present in

WS . Thus, only half of the original traces are reproduced by

the model which results in a model fitness equal to 50%. On

the other hand, trace {A,C,B,D} is not an element of WC .

In this case the execution precision will be equal to 66,67%,

as only two synthetic traces out of three can be found in the

original workflow log.

The application of the proposed method to the example

process model presented in Figure 4 resulted in generation

of 11820 distinct workflow traces. Table I presents results

of a log-based verification performed for the example BPMN

model.

Table I
EVALUATION OF THE EXAMPLE BPMN MODEL.

Parameter Value

Number of original traces 36
Number of synthetic traces 11820
Traces not generated 0
Model fitness 100%
Synthetic traces not included in the log 11784
Execution precision 0.03%

The results show that the discovered process model is

characterized by low execution precision (0.03%). It means

that the selected process mining algorithm has a tendency to

generalize, i.e. it allows for much more behavior than included

in the original workflow log. Therefore, the next step of the

verification process should be to check if the synthetic traces

not included in the original log can be allowed in the real

process. If not, then the choice of the process mining algorithm

should be reconsidered in order to provide more accurate

process representations.

IX. CONCLUSIONS

In the paper, we presented a novel constraint-based algo-

rithm which results in generation of a sufficiently complete

workflow log for a given business process model. The pro-

posed approach may serve as an additional tool to verify

BPMN diagrams generated using process mining techniques.

Comparison of the real execution log with a synthetic one

helps to choose the most suitable discovery algorithm for the

analyzed process or gives clues to the user how the model can

be enhanced manually.

As future works, we plan to develop an automated tool for

a comparison of two workflow logs which will be able to

identify flaws occurring as a result of process discovery. Such

a solution could be also used as a decision support system that,

based on a re-created log, provides advice to process designers

which mining algorithm to use.
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