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Abstract—Applying the cardinality of finite sets, interval num-
bers can be assigned to rough sets represented by nested sets.
Borrowing two different comparison methods from Multiple
Attribute Decision Making analysis, rough sets are compared and
ranked on the model of interval numbers. Some special cases are
investigated. Illustrative examples are presented relying on both
methods. The calculated results are compared and interpreted.

Index Terms—Rough sets, interval arithmetic, Possibility
Degree Method, Midpoints Comparison Method.

I. INTRODUCTION

ROUGH set theory (RST) was proposed by Pawlak in

the early 1980’s [1]. Information system in the Pawlak’s

sense can be viewed to some extent as a Multiple Attribute

Decision Making (MADM) scheme (see, e.g., [2]).

In RST, rough sets represented by nested sets can be

considered as an interval set structure to represent nonnumeric

uncertainty on the model of interval numbers [3]. In our

approach, however, by the cardinality of finite sets, interval

numbers are assigned to rough sets represented by nested sets.

Then, borrowing Possibility Degree Method and Midpoints

Comparison Methods from MADM, rough sets can be com-

pared and ranked numerically based on these interval numbers.

Section II presents some elementary notations for reasons

of clarity. Section III and IV state fundamental knowledge

about rough sets and interval arithmetic, respectively. Sec-

tion V shows two comparison methods of interval numbers,

namely, Possibility Degree Method and Midpoints Comparison

Method. Then, it deals with the comparison and ranking

of rough sets applying these two methods. It also contains

simplified illustrative examples.

II. BASIC NOTATIONS

Let U be a nonempty set, and P(U) denote the power

set of U . Set operations union, intersection, difference, and

complementation are denoted by ∪, ∩, \, and c, respectively.

Let S ∈ P (U), and S ⊆ P(U) be a nonempty family of sets.

|S| denotes the cardinality of S. ∪S and ∩S are defined by:

∪S = {u | ∃S ∈ S(u ∈ S)}, ∩ S = {u | ∀S ∈ S(u ∈ S)}.

If S is empty, the conventions ∪∅ = ∅ and ∩∅ = X are used.

The shorthand expression “iff” is used for “if and only if”.

From now on, throughout the paper let U be a finite

nonempty set of objects called the universe.

III. ROUGH SETS

Notions of rough set theory can be represented in many

forms. For our purposes, their constructive granule based

definitions [4] are formulated as follows.

Let E be an equivalence relation on U . The partition of U
generated by E is denoted by U/E. The subset [u]E ∈ P(U)
is an equivalence class from U/E containing u ∈ U . The

members of U/E are called elementary sets or simply base

sets. Any union of base sets is referred to as definable set.

By definition, ∅ is definable for any equivalence relation on U .

Their collection is denoted by DU/E(⊆ P(U)).
The principal notions of RST are defined by:

l : P(U) → DU/E , S 7→ ∪{[u]E ∈ U/E | [u]E ⊆ S},

u : P(U) → DU/E , S 7→ ∪{[u]E ∈ U/E | [u]E ∩ S 6= ∅}.

Values l(S) and u(S) are commonly called the lower and

upper approximations of S. With the above notations, the

ordered quintuple PAS = 〈U,U/E,DU/E , l, u〉 is called a

finite Pawlak approximation space.

Having given an approximation pair, to identify and charac-

terize the features of set approximations in RST, the following

fundamental notions are defined:

• boundary of S is bnd(S) = u(S) \ l(S);
• S is exact (crisp), if l(S) = u(S), i.e., bnd(S) = ∅;

• S is rough (inexact), if it is not exact, i.e., bnd(S) 6= ∅.

In RST the notions of exactness and definability coincide.

For any set S, an approximation pair divides the universe U
into three mutual disjoint regions:

• POS(S) = l(S) — positive region of S;

• NEG(S) = U \ u(S) = uc(S) — negative region of S;

• BN(S) = bnd(S) — borderline region of S.

There are (at least) four equivalent definitions of rough sets,

see, e.g., [5], [6]. In the following, the nested pair of sets

〈l(S), u(S)〉 will be used to represent rough sets. It is a family

of inexact sets in such a way that for any T ∈ 〈l(S), u(S)〉,
l(S) = l(T ), u(S) = u(T ) and l(S) ⊆ T ⊆ u(S) hold.

Proposition III.1 ( [7], Proposition 3.2) Let S1 ⊆ S2. The

pair 〈S1, S2〉 is a rough set of the form 〈l(S), u(S)〉 for a set

S (S1 ⊆ S ⊆ S2) if and only if S1 and S2 are definable and

S2 \ S1 does not contain any singleton base set.
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IV. BASICS OF INTERVAL ARITHMETIC

An interval number or interval [2], [8] is a closed real

interval of the form a = [al, au] = {x ∈ R | al ≤ x ≤ au}. If

al = au, [al, au] contains a single real number a = al = au.

Two intervals a = [al, au] and b = [bl, bu] are said to be

equal, in notation a = b, if al = bl and au = bu.

The most common special terms for an interval a are:

• m(a) = 1

2
(al + au) is the midpoint or center of a;

• w(a) = au − al is the width or diameter of a.

Binary operations +,−, ·, / , addition, subtraction, multipli-

cation, and division, respectively, can be defined on the set of

intervals. Their endpoint formulae are the following [8]:

a+ b = [al + bl, au + bu];

a− b = a+ (−b) = [al − bu, au − bl],−b = [−bu,−bl];

a · b = [min{albl, albu, aubl, aubu},

max{albl, albu, aubl, aubu}];

a/b = a · (1/b), where 1/b = [1/bu, 1/bl] (0 /∈ b).

For nonnegative intervals a, b (0 ≤ al, bl), multiplication and

division formulae are simplified to:

• a · b = [albl, aubu];
• a/b = [al/bu, au/bl], provided in addition that 0 < bl.

V. COMPARING AND RANKING ROUGH SETS

A. Possibility Degree Method

Many different equivalent methods have been proposed to

compare two interval numbers [2], [9].

Definition V.1 ([2], Definition 4.5) Let a=[al,au], b=[bl,bu]
be two nonnegative intervals with w(a) > 0 or w(b) > 0. The

possibility degree of a ≥ b is defined by

p(a ≥ b) = max

{

1−max

{

bu − al

w(a) + w(b)
, 0

}

, 0

}

.

It is also said that p(a≥b) is the possibility degree of a over b.

Theorem V.2 ([2], Theorem 4.1) Let a= [al, au], b= [bl, bu]
and c = [cl, cu] be three nonnegative intervals. For their

possibility degrees, the following properties hold:

1) 0 ≤ p(a ≥ b) ≤ 1.

2) p(a ≥ b) + p(b ≥ a) = 1. Especially, p(a ≥ a) = 1

2
.

3) p(a ≥ b) = 1 iff bu ≤ al.
4) p(a ≥ b) = 0 iff au ≤ bl.
5) p(a ≥ b) ≥ 1

2
iff au + al ≥ bu + bl.

Especially, p(a ≥ b) = 1

2
iff au + al = bu + bl.

6) If p(a ≥ b) ≥ 1

2
and p(b ≥ c) ≥ 1

2
, then p(a ≥ c) ≥ 1

2
.

It is said that

• a superior to b in the degree p(a ≥ b), in notation a ≻ b,
if p(a ≥ b) > p(b ≥ a);

• a is indifferent to b, in notation a ∼ b, if p(a ≥ b) =
p(b ≥ a) = 1

2
;

• a is inferior to b in the degree p(b≥a), in notation a ≺ b,
if p(b ≥ a) > p(a ≥ b).

Let {S1, . . . , Sn} ⊆ P(U) be a family of sets. Let us form

the rough sets relating to them by their nested pair represen-

tations: RSi = 〈l(Si), u(Si)〉 (i = 1, 2, . . . , n).
The cardinality of finite sets, as some sort of “size” of them,

plays a key role in the rough set theory. Applying it, interval

numbers can be assigned to the above rough sets:

RSi 7→ [RSi] = [|l(Si)|, |u(Si)|] (i = 1, 2, . . . , n).

To avoid heavy notations, the following simplified notations

are introduced: |l(Si)|, |u(Si)|, |bnd(Si)| are denoted by

Sli, S
u
i , Sbndi , respectively.

By applying the method described by Xu in [2], ranking of

rough sets can be carried out in the following steps:

Step 1. Provided that w([RSi]) > 0 (i = 1, . . . , n), compar-

ing each rough set with all rough sets as (i, j = 1, 2, . . . , n):

pij = p([RSi] ≥ [RSj ])

= max

{

1−max

{

Suj − Sli

w([RSi]) + w([RSj ])
, 0

}

, 0

}

;

arranging the numbers pij’s in a possibility degree matrix:

P =











p11 p12 . . . p1n
p21 p22 . . . p2n

...

pn1 pn2 . . . pnn











.

Of course, pij ≥ 0, pij + pji = 1, pii =
1

2
for i, j = 1, . . . , n.

Step 2. Summing the numbers line by line:

pi =

n
∑

j=1

pij (i = 1, 2, . . . , n).

Step 3. Ranking rough sets RSi in descending (increasing)

order in accordance with the values pi’s (i = 1, 2, . . . , n). The

ith rough set is ranked higher (lower) than the jth rough set,

if pi > pj (pi < pj).

B. Possibility Degree Method — A Special Case

The sets S1, S2∈P(U) form an orthopair, if S1∩S2 = ∅. An

orthopair is a reasonable means to represent bipolar informa-

tion. Bipolarity arises in a natural way in RST as positive and

negative regions. According to the Dubois and Prade typology

[10], [11], orthopair models usually belong under the “Type

II: Symmetric bivariate unipolarity”. This bipolarity type well

fits the nature of bipolarity representation in RST [12].

Let 〈S1, S2〉 be an orthopair. S1 and S2 are called the

positive and negative reference set, respectively. Here, the

positive and negative adjectives claim nothing else, only the

sets S1 and S2 are well separated.

Let us form the rough sets relating to S1, S2 by their nested

pair rough set representations:

RS1 = 〈l(S1), u(S1)〉 and RS2 = 〈l(S2), u(S2)〉.

By the above Steps 1–3, the following entities can be obtained

with which the constituents of an orthopair can be ranked:

p1 = p11 + p12 = p([RS1] ≥ [RS1]) + p([RS1] ≥ [RS2]),

p2 = p21 + p22 = p([RS2] ≥ [RS1]) + p([RS2] ≥ [RS2]).
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Several interpretations of the obtained results can be stated:

• p1 > p2 (p1 < p2) means that the positive (negative)

reference set is ranked higher than the negative (positive)

reference set.

• p([RS1] ≥ [RS2]) = 1 iff Su
2
≤ Sl

1
.

It means that the positive reference set is certainly supe-

rior to the negative reference iff the number of elements

of U which can possibly be classified as belonging to the

negative reference set is less than or equal to the number

of elements of U which can certainly be classified as

belonging to the positive reference set.

• p([RS1]≥ [RS2])=0 iff p([RS2]≥ [RS1])=1 iff Su
1
≤Sl

2
.

It means that the negative reference set is certainly

superior to the positive reference set iff the number

of elements of U which can possibly be classified as

belonging to the positive reference set is less than or equal

to the number of elements of U which can certainly be

classified as belonging to the negative reference set.

• p([RS1] ≥ [RS2]) = 1

2
iff Su

1
+ Sl

1
= Su

2
+ Sl

2
iff

Su
1
− Su

2
= Sl

2
− Sl

1
. Let Su

1
− Su

2
= Sl

2
− Sl

1
= K.

K = 0 means that the possibility degree of the positive

reference set over the negative reference set is equal to 1

2
,

iff the number of elements of U which can possibly

be classified as belonging to the positive and negative

reference sets, respectively, are equal, and, at the same

time, the number of elements of U which can certainly

be classified as belonging to the positive and negative

reference sets, respectively, are also equal.

Similar interpretations can be made for K>0 and K<0.

C. Possibility Degree Method — Illustrative Examples

These examples deal with studying the symptoms of thyroid

dysfunctions. Although the problem emerged in Csajbók et al.

[13], a substantially different solution is presented here.

Thyroid dysfunction diagnosis via clinical symptoms is an

important problem [14]. We deal with only hypothyroidism

and hyperthyroidism thyroid disorders [15]. The thyroid gland

produces thyroid hormone. Hyperthyroidism occurs when the

thyroid gland is “overactive”, i.e., releases too much hormone,

whereas hypothyroidism takes place when the thyroid gland

is “underactive”, i.e., does not produce enough hormone.

Let us consider a data table given in Table I, taken from [13].

It contains clinical symptoms which may indicate that some-

one, a patient, develops hypothyroidism or hyperthyroidism,

perhaps neither of them. There are, of course, more symptoms

of hypothyroidism and hyperthyroidism, but the example has

been simplified here for illustrative purposes.

Clinical symptoms which are taken into account are the

following: Weight change, Edema, Tachycardia, Increased

sweating, Mood. Hypothyroidism and hyperthyroidism can

accurately be diagnosed with laboratory tests. The last two

columns in Table I are based on these results.

In the example, the universe U is a set of clinically observed

patients: U = {P1, P2, P3, P4, P5}. Let S1 = {P2, P3} and

S2 = {P4, P5} be the sets of patients who demonstrably suffer

from hypothyroidism and hyperthyroidism, respectively.

Example V.3 If the column “Weight change” is chosen,

the universe U can be partitioned into {P1, P5}, {P2, P3},

and {P4}, reflecting the weight change being “no change”,

“gain”, “loss”, respectively. Then, based on this partition,

l(S1) = {P2, P3}, u(S1) = {P2, P3}, i.e., [RS1] = [2, 2];

l(S2) = {P4}, u(S2) = {P1, P4, P5}, i.e., [RS2] = [1, 3].

Since 2+2 = 1+3, p([RS1] ≥ [RS1]) =
1

2
, by Theorem V.2,

(5). That is [RS1] is indifferent to [RS2]. It can be interpreted

as follows: with respect to our knowledge represented in Table

I and partitioning U by “Weight change”, weight change does

not contribute specifically to developing any of hypothyroidism

and hyperthyroidism.

Example V.4 If the columns “Edema” and “Mood” are

chosen, the universe U can be partitioned into {P5}
and {P1, P2, P3, P4}, reflecting the edema and mood being

“Edema = yes”, “Mood = nervousness” and “Edema = no”,

“Mood = no”, respectively. Then, based on this new partition,

l(S1)=∅, u(S1)={P1,P2,P3,P4}, i.e., [RS1]=[0, 4];

l(S2)={P5}, u(S2)={P1,P2,P3,P4,P5}, i.e., [RS2]=[1, 5].

With a simple calculation, we have

p([RS1] ≥ [RS2]) =

= max

{

1−max

{

Su
2
− Sl

1

w([RS1]) + w([RS2])
, 0

}

, 0

}

=
3

8
,

and p([RS2] ≥ [RS1]) = 1− p([RS1] ≥ [RS2]) =
5

8
.

These results can be interpreted as follows: with respect to

our knowledge represented in Table I and partitioning U by

“Edema” and “Mood”, the overall contribution of the clinical

symptoms edema and mood to the presence of

• hypothyroidism has the possibility degree 3

8
,

• hyperthyroidism has the possibility degree 5

8
.

D. Midpoints Comparison Method

In Theorem V.2, properties (3) and (4) mean that the possi-

bility degree of a over b is equal to 0 or 1 iff they do not have

a common area regardless of the distance between a and b.
To overcome this problem, Dymova et al. [16] proposed a

method to measure the distance between intervals which, in

addition, also indicates which interval is greater/lesser.

Let a = [al, au], b = [bl, bu] be two intervals and form their

subtraction: c = a− b = [cl, cu] = [al − bu, au − bl]. Clearly,

cl ≤ 0 and cu ≥ 0, if a and b overlap each other.

Then, the proposed distance measure between a and b is:

∆(a, b) =
1

2

((

al − bu
)

+
(

au − bl
))

= m(a)−m(b).

That is, ∆(a, b) is simply the difference of the midpoints of

a and b. This immediately implies that for intervals a and b
with common midpoints, ∆(a, b) = 0 holds.

Remark V.5 It may seem that the measure ∆(a, b) is too sim-

ple. For its discussion, see [16]. In addition, on the important

role of midpoints in comparison of intervals, see [17].
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TABLE I
CLINICAL SYMPTOMS OF THYROID DYSFUNCTION AND DIAGNOSIS BASED ON TEST RESULTS

E. Comparing the Two Methods

In [16], experimental observations show that the sign of

∆(a, b) is positive (negative), if a ≻ b (a ≺ b). In addition,

abs(∆(a, b)) is close to the Hamilton distance dH and Eu-

clidean distance dE of the intervals a and b, where

dH =
1

2

(

abs
(

al − bl
)

+ abs (au − bu)
)

,

dE =
1

2

√

(al − bl)
2
+ (au − bu)

2
.

In regard to these experimental observations, let us compare

our numerical results which were calculated with the help

of the possibility degree method and midpoints comparison

method.

S1, S2 are the sets of patients who demonstrably suffer from

hypothyroidism and hyperthyroidism, respectively.

According to Example V.3, [RS1] = [2, 2]; [RS2] = [1, 3],
where RS1, RS2 are the rough sets concerning S1, S2 and

based on the partition of U formed by “Weight change”.

By applying the possibility degree method, p([RS1] ≥
[RS2]) =

1

2
, i.e., [RS1] is indifferent to [RS2].

By applying the midpoints comparison method, the intervals

[RS1], [RS2] are equal, i.e, ∆([RS1],[RS2]) = 0, since their

midpoints are equal. Of course, the sign rule does not work here.

The one interpretation is in accordance with the other.

According to Example V.4 [RS1] = [0, 4]; RS2] = [1, 5],
where RS1, RS2 are the rough sets concerning S1, S2 and

relying on the partition of U formed by “Edema” and “Mood”.

By applying the possibility degree method, p([RS2] ≥
[RS1]) = 5

8
, i.e., [RS1] is inferior to [RS2], [RS1] ≺ [RS2],

in the degree 5

8
.

By applying the midpoints comparison method,

∆([RS1], [RS2]) = m([RS1])−m([RS2]) = 2− 3 = −1.

According to the sign rule of the midpoint comparison

method, since the sign of ∆([RS1], [RS2]) is negative, [RS1]
is lesser than [RS2]. This result coincides with the result

[RS1] ≺ [RS2] obtained by the possibility degree method.

If the midpoints of two intervals are the same, there is no

sense in comparing abs(∆([RS1], [RS2])) with the Hamilton

and Euclidean distances. This is the case in Example V.3.

In Example V.4, abs(∆([RS1], [RS2])) = 1. In this case,

Hamilton and Euclidean distances can be calculated. For

[RS1] = [0, 4], [RS2] = [1, 5], dH = 1 and dE =
√
2

2
≈ 0, 71.

The Hamilton distance is the same as abs(∆([RS1], [RS2])),
and Euclidean distance estimates it to some extent.

VI. CONCLUSION

The paper has presented two comparison and ranking

methods for rough sets in Pawlak approximation spaces.

Although the two methods are borrowed from Multiple

Attribute Decision Making analysis, their application to rough

sets is a new approach. Based on the presented calculations and

interpretations, it seems that this approach deserves attention.
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