
An Experimental Analysis on Scalable

Implementations of the Alternating Least Squares

Algorithm

Dânia Meira

Data Science Retreat/EyeEm

Berlin, Germany

Email: meira.dania@gmail.com

José Viterbo

Institute of Computing

Fluminense Federal University

Niterói, RJ, Brazil

Email: viterbo@ic.uff.br

Flavia Bernardini

Institute of Computing

Fluminense Federal University

Niterói, RJ, Brazil

Email: fcbernardini@ic.uff.br

Abstract—The use of the latent factor models technique
overcomes two major problems of most collaborative filtering
approaches: scalability and sparseness of the user’s profile
matrix. The most successful realizations of latent factor models
are based on matrix factorization. Among the algorithms for
matrix factorization, alternating least squares (ALS) stands out
due to its easily parallelizable computations. In this work we
propose a methodology for comparing the performance of two
parallel implementations of the ALS algorithm, one executed with
MapReduce in Apache Hadoop framework and another executed
in Apache Spark framework. We performed experiments to
evaluate the accuracy of generated recommendations and the ex-
ecution time of both algorithms, using publicly available datasets
with different sizes and from different recommendation domains.
Experimental results show that running the recommendation
algorithm on Spark framework is in fact more efficient, once
it provides in-memory processing, in contrast to Hadoop’s two-
stage disk-based MapReduce paradigm.

I. INTRODUCTION

A
MONG the many techniques used to implement recom-

mender systems, collaborative filtering, which is based

on comparing the profile of preferences of the users, is a

very popular technique in e-commerce applications, due to

its good results [1]. Neighborhood-based approaches present

scalability problems, given that the algorithm has to process

all the data to compute a single prediction. Hence, if there is a

large number of users and items, such approaches may not be

appropriate for online systems which recommend in real time.

Furthermore, these algorithms are more sensitive than model-

based to some common problems of recommender systems.

One common problem is the sparsity of the matrix that stores

the ratings that represent the users’ preferences about the avail-

able items. This refers to a situation in which transactional or

feedback data is sparse and insufficient to identify similarities

in users’ interests making it difficult and unreliable to predict

which consumers are similar [2]. Another recurrent problem

in generating recommendations happens when we wish to

recommend items that no one in the community has yet rated

or interacted with. This is known as the cold-start problem and

pure collaborative filtering cannot help in a cold start setting,

since no user preference information is available to form any

basis for recommendations [3].

Nevertheless, there are models that can help bridge the gap

from existing items to new items, by inferring similarities

among them. Model-based approaches, instead of directly us-

ing the ratings stored, as the neighborhood-based systems, use

ratings to learn a predictive model. The model building process

is performed by different machine learning algorithms such

as Bayesian networks [4], neural networks [5], and Singular

Value Decomposition [6]. These approaches tend to be faster

in prediction time than the neighborhood-based approaches.

However, the construction of the model is a complex task

that demands the estimation of a multitude of parameters, and

usually requires a considerable amount of time [1].

These problems become more evident when trying to con-

struct recommender systems associated with Websites that

have a large number of users and items and, thus, associated

with huge databases. Online systems demand high availability

and short response time, as they must integrate and quickly

process incoming streams of data from all users’ activities, in

order to generate the recommendations. All this process need

to occur with a latency of seconds, as the most promising

items selected by the recommendation algorithms have to

be showed to the users while they are still browsing the

Website. The greater the number of users to serve and items

from which to recommend, the greater is the amount of

processing required, which increases the time it takes to

generate each recommendation. The digital music Spotify

platform [7] is a practical example of an online recommender

system with high demand: their music personalization service

has more than 50 million active users, 30 million cataloged

songs and around 20 thousand new songs added per day [8].

Amazon [9] generates recommendations from a database with

253 million products [10] for users of 270 million active

customer accounts [11]. An efficient approach is essential

in all those cases. Nowadays, to tackle such performance

challenges, online recommender systems have combined two

strategies: (i) efficient algorithms, that avoid the computational

complexity of calculating each of the entries of the high

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 351–359

DOI: 10.15439/2018F166

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 351

dimensional and sparse matrix; and (ii) optimized data storage

and processing. This means processing real-time information

to build a predictive model and present its output in seconds.

In order to solve this problem, some authors have developed

a class of model-based collaborative filtering algorithms that

are fast and easy to calculate, called latent factor models [12].

They attempt to identify relevant features (latent factors) that

explain observed ratings. These features can be interpreted as

the preference of the users and the characteristics of the items

being recommended. Using these latent factors, it is possible

to infer the user’s preference and make a recommendation of

the better items for him/her. The most successful techniques

to perform latent factors modeling are based on matrix factor-

ization [13]. They have become popular recently because they

combine scalability and predictive accuracy, and, besides, they

offer flexibility for modeling different real situations, being

superior to the neighborhood-based methods for producing

recommendations because they allow the incorporation of

additional information such as implicit feedback, temporal

effects, and confidence levels [14]. Recent works suggest

modeling only the observed ratings, while avoiding overfitting,

through an adequate regularized model [15].

Some parallel algorithms for latent factor models with

regularization have been designed aiming at improving the

modelling performance. Among them, two can be highlighted:

(i) the low-rank matrix factorization with Alternating Least

Squares (ALS), which uses a series of broadcast-joins [16],

built on top of the open source MapReduce implementation

Hadoop [17], and its ecosystem, which we call HadoopMR-

Mahout; and (ii) the Alternating Least Squares with Weighted-

λ-Regularization (ALS-WR) [18] which has been imple-

mented in Apache Spark’s Machine Learning library, MLlib,

which we call Spark-MLLib [19]. Scalability and performance

are key issues for recommender systems, since computational

complexity increases with the number of users and items, but

the performance gain for these implementations has not yet

been systematically evaluated in any comparative study.

Although ALS Matrix Factorization algorithms are not new,

some recent works shows that evaluating solutions that can

be faster in specific situations, such as memory restrictions

and some other high processing situations that may occur,

still needs some attention. Authors of [20] propose some

techniques for finding efficient and portable ALS Matrix

Factorization for Recommender Systems. They apply thread

batching technique and three architecture-specific optimiza-

tions for a new solution, and they implement an ALS solver

in OpenCL so that it can run on various platforms (CPUs,

GPUs, and MICs). Authors of [21] propose a new software

solution to improve the performance of Recommender Sys-

tems, relying heavily on Apache Spark technology to speed

up the computation of recommendation algorithms.

This work aims to conduct an experimental analysis to com-

pare two different scalable implementations of the Alternating

Least Squares algorithms (Spark-MLLib and HadoopMR-

Mahout) for collaborative filtering recommendation. We per-

formed experiments to evaluate the accuracy of generated

recommendations and the execution time of both algorithms,

using publicly available datasets with different sizes and from

different recommendation domains.

This work is organized as follows. In the next section,

we explain the fundamental concepts about model-based ap-

proaches for implementing collaborative filtering. In Section

3, we discuss matrix factorization implementations, explaining

how parallel implementations improve efficiency of recom-

mender algorithms. In Section 4, we describe the methodology

used for the comparative study between the two different im-

plementations of the ALS algorithm, on different recommen-

dation domains and dataset sizes, and present our experimental

results for three assessed dimensions: accuracy, efficiency and

scalability. In Section 5, we discuss the contributions and

limitations of the proposed study, presenting also some topics

for future work.

II. MODEL-BASED COLLABORATIVE FILTERING

The fundamental assumption of CF is that if users X and Y

rate n items similarly, or have similar behaviors (e.g., buying,

watching, listening), hence they will rate or act on other items

similarly. CF techniques use a database of preferences for

items by users to predict additional topics or products a new

user might like. The problem space can be formulated as a

matrix of users versus items, with each cell representing a

user’s rating on a specific item. This matrix will be referred

as ratings matrix from now on.

Under this formulation, the problem is to predict the val-

ues for specific empty cells. In collaborative filtering, this

matrix is usually very sparse, since each user only rates a

small percentage of the total available items. To fill in the

missing entries of the ratings matrix, models are learnt by

fitting the previously observed ratings. Once the goal is to

generalize these observed ratings in a way that allows us to

predict future, unknown ratings, caution should be exercised

to avoid overfitting the observed data. This can be achieved by

modeling the latent factors of the ratings matrix, that is, finding

a small set of latent features that explain observed ratings and

describe the general characteristics of users and items. The

most successful techniques to model latent factors are based

on matrix factorization, because they combine scalability and

predictive accuracy.

A. Matrix Factorization

Matrix factorization models map both users and items to a

joint latent factor space, such that user-item interactions are

modeled as inner products in that space. The latent space tries

to explain ratings by characterizing both items and users on

the same set of factors, which are the characteristics inferred

from the observed ratings [18]. The intuition of this method is

that it can be equivalent to a summarization. It boils down the

world of user preferences for individual items to a world of

user preferences for more general and less numerous features

(like genre). This is, potentially, a much smaller set of data.

Although this process loses some information, it can some-

times improve recommendation results because this process

352 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

smooths the input in useful ways when it generalizes the

features that describe the items, making similar what appeared

to be distinct at first, thus avoiding overfitting the observed

ratings. For example, imagine two car enthusiasts. One loves

Corvette, and the other loves Camaro, and they want car

recommendations. These enthusiasts have similar tastes: both

love a Chevrolet sports car. But in a typical data model for this

problem, these two cars would be different items. Without any

overlap in their preferences, these two users would be deemed

unrelated. However, a matrix factorization based recommender

would perhaps find the similarity. The matrix factorization

output may contain features that correspond to concepts like

Chevrolet or sports car, with which both users would be

associated. From the overlap in features, a similarity could be

computed. These features correspond to the latent factors, or

singular values of the ratings matrix and their correspondence

to concepts are not explicit. Also, the exact number of singular

values describing a matrix is not previously known, so there is

a need to experiment to find the appropriate number of singular

values that best summarizes the concepts for a given domain.

Consider a recommender system with m users and n items.

Let R = [rui] be the ratings matrix, where rui ∈ R
(m×n).

Matrix factorization models map both users and items to a

joint latent factor space of dimensionality k, that is, R̂ is a

rank-k approximation of the ratings matrix R. Let P = [pu]
be the user feature matrix, where pu ∈ R

k, and Q = [qi] be the

item feature matrix, where qi ∈ R
k. So, user-item interactions

are modeled as inner products:

r̂ui = qTi × pu (1)

An example of matrix factorization computation is found

next on Figure 1. On a system with five users (represented by

the upper matrix in the figure) and six items (represented by

the left matrix in the figure), the estimation of the rating value

of item 3 given by user 4, r̂43, is given by the inner product

of the vectors representing item 3, i.e., qT3 , and user 4 , i.e.,

p4.

Fig. 1. Sinusoid

The major challenge is to compute the mapping of each item

and user to latent factor vectors qi, pu ∈ R
k. The traditional

implementation to learn latent factors is the singular value

decomposition (SVD), but it suffers from the high portion

of missing values in the ratings matrix, because, in general,

users have rated only a small set of items [14]. The SVD can

be computed one column at a time, whereas for the partially

specified case, no such recursive formulation holds [18]. Also,

addressing only few known ratings is highly likely to model

overfitting [12]. Earlier works relied on imputation [2], [22],

which fill in missing ratings and make the ratings matrix

dense. However, the data may be considerably distorted by

inaccurate imputation and also computing the SVD becomes

very expensive after imputation, as it significantly increases

the size of the matrices.

More recent works suggested modeling directly only the ob-

served ratings, while avoiding overfitting through an adequate

regularized model [15]. This model minimizes the regularized

squared error on the set of observed ratings, as shown in

Eq. 2, where k is the set of (u, i) pairs for which rui is

known (the training set). The system learns the model by fitting

the previously observed ratings. However, solving Eq. 2 with

many parameters, when k is relatively large, from a sparse

dataset usually overfits the data. The overfitting is avoided by

regularizing the learning parameters, whose magnitudes are

penalized by the λ constant [23]. This is also known as the

Tikhonov regularization [24]. Eq. 2 is solved using a learning

algorithm such as the alternating least squares (ALS) [18],

which is the focus of this work.

min(p, q)
∑

(u,i)∈k

(rui − qTi pu)
2 + λ(||qi||

2+||pu||
2) (2)

B. Alternating Least Squares (ALS)

Eq. 2 is not convex when both qi and pu are unknown.

However, fixing one of them turns the optimization into a

quadratic problem that can be solved. So, ALS technique

rotates between fixing the qi’s and pu’s. When all pu’s are

fixed, the system recomputes the qi’s by solving a least-squares

problem, and vice versa. This ensures that each step decreases

Eq. 2 until convergence.

Although it is computationally more expensive than

Stochastic Gradient Descent (SGD), ALS implementation is

favorable in at least two cases. The first is when dealing

with densely filled matrices, as such in systems centered on

implicit data. Because the training set cannot be considered

sparse, looping over each single training case (as in the case

of SGD) would not be practical. The second case is when the

system can use parallelization. The algorithm computes each

qi independently of the other item factors and computes each

pu independently of the other user factors, which allows for

massive parallelization of the implementation [18].

When re-computing the user feature matrix P for example,

pi, the i-th row of P , can be re-computed by solving a least

squares problem only including ri, the i-th row of R, which

holds user i’s interactions, and all the columns qj of Q that

correspond to non-zero entries in qi. This re-computation of

pi is independent from the re-computation of all other rows of

P and therefore, the re-computation of P is easy to parallelize

if efficient data access to the rows of R and the corresponding

DÂNIA MEIRA ET AL.: AN EXPERIMENTAL ANALYSIS ON SCALABLE IMPLEMENTATIONS OF THE ALTERNATING LEAST SQUARES ALGORITHM 353

columns from Q is effectively managed. The sequence of re-

computing of P followed by re-computing Q is referred to as

a single iteration in ALS. Algorithm 1 summarizes the steps

of the ALS algorithm.

From a data processing perspective, computing ALS means

that a parallel join occurs between the interaction data R

and Q (the item features) in order to re-compute the rows

of P . Analogously, a parallel join is conducted between R

and P (the user features) to re-compute Q. Finding an efficient

execution strategy for these joins is crucial to the performance

of any parallel solution, since the required amount of inter-

machine communication, as network bandwidth is the scarcest

resource in a cluster.

III. MATRIX FACTORIZATION IMPLEMENTATIONS

In this section, we discuss previous works that propose

matrix factorization implementations to solve the recommen-

dation problem. We describe each of the proposed implemen-

tations and the performance results obtained.

A. Traditional Implementations

The Netflix Prize, a competition that began in October

2006, has motivated the progress in the field of collaborative

filtering. The nature of the competition has encouraged rapid

development, where innovators built on each generation of

techniques to improve prediction accuracy. In September 2009

the prize was awarded to the BellKor’s Pragmatic Chaos team

that managed to achieve the winning RMSE of 0.8567 on

the test subset, which represents a 10.06% improvement over

Cinematch, Netflix’s own recommendation algorithm.

The recommendation strategy used by the winning solution

was an ensemble of more than 100 different predictor sets,

the majority of which are factorization models, learned by

stochastic gradient descent (SGD), applied directly on the raw

data.

For single machine implementations, SGD is the preferred

technique to compute a low-rank matrix factorization, because

it is easy to implement and computationally less expensive

then ALS. Unfortunately, SGD is inherently sequential, be-

cause it updates the model parameters after each processed

interaction. Techniques for parallel SGD have been proposed,

yet they are either hard to implement, exhibit slow convergence

or require shared-memory.

The SGD implementation used in this solution is described

by [25] as possible to be executed to factorize the 17,000

x 500,000 matrix with 40 latent factors on 2G of RAM,

a C compiler, and good programming habits. But in the

paper describing the winning solution, he did not specify the

environment nor the performance of the algorithm, as this was

not important for the prize. The algorithms could run for as

many as long as needed, since the only evaluated metric was

the RMSE.

Finally, in 2012 Netflix announced that they did not imple-

ment the Netflix Prize solution algorithm, and they gave two

reasons for that. The first reason is that the new methods were

evaluated off-line but the additional accuracy gains measured

did not seem to justify the engineering effort needed to

bring them to a production environment. Also, their focus on

improving personalization had shifted since 2007, just a year

after the beginning of the competition, when Netflix streaming

service was launched. From DVDs to an online streaming

service, Netflix as a whole changed dramatically, not only the

way the users interact with the service but also the types of

data available to use in the algorithms.

As of 2012, Netflix reported having more than 23 million

subscribers in 47 countries. Those subscribers streamed 2

billion hours from hundreds of different devices in the last

quarter of 2011. Every day they add 2 million movies and

TV shows to the queue and generate 4 million ratings. They

have adapted their recommendation algorithm to this new

scenario, and 75% of what people watch is from some sort

of recommendation. This new strategy still runs the learning

algorithm in batch, as briefly discussed in the Large-Scale

Recommendation Systems Workshop on the ACM Conference

Series on Recommender Systems in 2013, held at Hong Kong.

B. Parallel Implementations

Another team participating in the Netflix Prize proposed, in

2008, a parallel implementation of matrix factorization, called

the Alternating-Least-Squares with Weighted-λ-Regularization

(ALS-WR) [18]. This solution was motivated by two main

reasons: the size of the dataset, which was 100 times larger

than previous benchmark datasets, resulting in much longer

model training time and much larger system requirements; and

the fact that the observed ratings corresponded to only about

1% of the complete ratings matrix, which means dealing with a

very sparse matrix. Since this implementation was motivated

by the Netflix data, it is dealing with observed ratings, or

explicit feedback. Thus, it solves the matrix factorization

problem with ALS using only the observed ratings. Rewriting

Eq. 2, Eq. 3 is obtained, where nmi
and nmu

are the number of

observed ratings for the item i, and for the user u respectively.

Let Iu denote the set of items i that user u has rated, then

nmu
is the cardinality of Iu; similarly Ii denotes the set of

users who rated item i, and nmi
is the cardinality of Ii.

(3)

min(p, q)
∑

(u,i) ∈k

(rui − qTi pu)
2

+ λ

(
∑

i

nmi
||qi||

2 +
∑

u

nmu
||pu||

2

)

The solution for Eq. 3 follows the steps demonstrated in

Section II-B, but, instead of initializing the matrix Q to random

values on Step 1 in Alg. 1, it suggests assigning the average

rating for that item as the first row, and small random numbers

for the remaining entries. The stopping criterion used is based

on the observed RMSE on the validation dataset. After one

round of updating both Q and P , if the difference between

the observed RMSEs is less than 0.0001, the iteration stops

and the obtained P , Q are used to make final predictions on

the test dataset.

354 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Algorithm 1 ALS algorithm

1: procedure ALS(P,Q) ⊲ Matrices representing user feature matrix and item feature matrix, respectively

2: Initialize matrix Q with random values

3: repeat

4: Fix Q, solve P by minimizing the objective function (the sum of squared errors)

5: Fix P , solve Q by minimizing the objective function similarly

6: until Stop criteria is satisfied

7: return P , Q

8: end procedure

In this cited approach, a version that allows for parallel

computation of Matlab was used. It creates several separate

copies of Matlab, each with its own private workspace, and

each running on its own hardware platform, collaborate and

communicate to solve problems. Each such running copy

of Matlab is referred to as a “lab”, with its own identifier

(labindex) and with a static variable (numlabs) telling how

many labs there are. Matrices can be private (each lab has its

own copy, and their values differ), replicated (private, but with

the same value on all labs) or distributed (there is one matrix,

but with rows, or columns, partitioned among the labs).

Because all of the steps use R, two distributed copies of

it were used: one distributed by rows (i.e., by users) and the

other by columns (i.e., by items). Both P and Q matrices

were distributed computed and updated. While computing

P , it is required a replicated version of Q, and vice versa.

Thus, the labs communicate to make the replicated versions

of these matrices from the distributed versions that are first

computed. Matlab’s “gather” function performs the inter-lab

communication needed for this.

To update Q, it is required a replicated copy of P , local to

each lab. The ratings data distributed by columns (items) is

used. The data is distributed by blocks of equal numbers of

items. The lab that stores the ratings of item i will, naturally,

be the one that updates the corresponding column of Q, which

is items i’s feature vector. Each lab computes qi for all items

in the corresponding item group, in parallel. These values are

then “gathered” so that every node has all of Q, in a replicated

array. To update P , similarly all users are partitioned into

equal-size user groups and each lab just updates user vectors in

the corresponding user group, using the ratings data partitioned

by rows.

The broadcast step is the only communication cost due to

using a distributed, as opposed to a shared-memory, algorithm.

This method reported taking up less than 5% of the total run

time. The algorithm achieves a nearly linear speedup; for k =
100, it takes 2.5 hours to update P and Q once with a single

processor, as opposed to 5 minutes with 30 processors.

This first work implemented ALS in parallel Matlab and

executed on a Linux cluster, with 30 Xeon 2.8GHz processors

and every four processors shared 6 GB of RAM. When applied

to the Netflix dataset with 100 latent factors and 30 iterations

was computed in 2.5 hours and obtained a RMSE of 0.8985

which is a performance improvement of 5.91% over Netflix’s

Cinematch system.

After the popularization of the Hadoop platform, the paral-

lelization of the ALS algorithm was revisited with a new pro-

posal for a parallel implementation using a series of broadcast-

joins that can be efficiently executed with MapReduce [16].

This implementation has partially contributed to Apache Ma-

hout, the open source machine learning library that runs on

top of Apache Hadoop framework, and is publicly available.

The evaluation setup was a cluster of 26 machines, each with

two 8-core Opteron CPU and 32GB of RAM. The experiments

showed that on the Netflix dataset, which consists of more than

a million ratings given to 17,700 movies by 480,189 users, it

was possible to run 37 to 47 iterations of the algorithm, and

it typically converges after 15 iterations [18].

This approach is limited to use-cases where neither Q nor

P need to be partitioned, meaning they individually fit into the

memory of a single machine of the cluster. A rough estimate

of the required memory for the re-computation steps in ALS

is max(|M |, |N |)×k× 8byte, as alternatively, a single dense

double precision representation of the matrices Q or P has to

be stored in memory on each machine. Even for 10 million

users or items and a rank k = 100, the estimated required

memory would be less than 8 GB, which can easily be handled

by today’s commodity hardware. Experiment results show that,

despite this limitation, this implementation is able to handle

datasets with billions of data points.

In such a setting, an efficient way to implement the neces-

sary joins for ALS in MapReduce is to use a parallel broadcast-

join. The smaller dataset (Q or P) is replicated to every

machine of the cluster. Because all of the steps use R, each

machine already holds a local partition of R which is stored

in the DFS. Then the join between the local partition of R and

the replicated copy of P (and analogously between the local

partition of R and Q) can be executed by a map operator. This

operator can additionally implement the logic to re-compute

the feature vectors from the join result, which means that it is

possible to execute a whole re-computation of Q or P with a

single map operator.

Figure 2 illustrates the parallel join for re-computing P

using three machines. First, the broadcast of Q is done to

all participating machines, which create a hashtable for its

contents, the item feature vectors. R is stored in the DFS

partitioned by its rows and forms the input for the map

operator, where e.g., R(1) refers to partition 1 of R. The

map operator reads a row ri of R (the interaction history of

user i) and selects all the item feature vectors qj from the

DÂNIA MEIRA ET AL.: AN EXPERIMENTAL ANALYSIS ON SCALABLE IMPLEMENTATIONS OF THE ALTERNATING LEAST SQUARES ALGORITHM 355

hashtable holding Q that correspond to non-zero entries j in

ri. Next, the map operator solves a linear system created from

the interactions and item feature vectors and writes back its

result, the re-computed feature vector pi for user i. The re-

computation of Q works analogously, with the only difference

that P is broadcasted and R is stored with partitioning done

by its columns (the interactions per item) in the DFS.

Fig. 2. Parallel recomputation of user features by a broadcast join [16]

This proposed approach is able to avoid some of the

drawbacks of MapReduce and the Hadoop implementation

described in Section III-A. It uses only map jobs that are easier

to schedule than jobs containing map and reduce operators.

Additionally, the costly shuffle-phase is avoided, in which all

data would be sorted and sent over the network, once the

join and the re-computation are done in a single job, which

also spare to materialize the join result in the HDFS. This

implementation contains multithreaded mappers that leverage

all cores of the worker machines for the re-computation of the

feature matrices and uses JBlas for solving the dense linear

systems present in ALS. The broadcast of the feature matrix is

conducted via Hadoop’s distributed cache in the initialization

phase of each re-computation. Furthermore, Hadoop is con-

figured to reuse the VMs on the worker machines and cache

the feature matrices in memory to avoid that later scheduled

mappers have to reread the data. The main drawback of a

broadcast approach is that every additional machine in the

cluster requires another copy of the feature matrix to be sent

over the network.

The implementation was also validated on a synthetic

dataset called Bigflix, generated from the Netflix dataset and

containing 25 million users and more than 5 billion ratings.

The performed scale-out test measured the average runtime

per job during 5 iterations with 10 latent factors on clusters

of 5, 10, 15, 20 and 15 machines. With 5 machines iteration

takes about 19 minutes and with 25 machines it was 6 minutes

faster.

IV. EXPERIMENTAL ANALYSIS

In this section, we give details of the ALS implementations

on Mahout and MLlib libraries that will be executed on

Hadoop and Spark respectively. We describe the datasets and

the ambient on which the implementations are evaluated, and

present the experimental evaluation on the parallel implemen-

tations.

A. Datasets

The datasets chosen to run the experiments are from the

movies domain (MovieLens) and jokes domain (Jester). Due

to copyright problems, Netflix dataset is not available for

download anymore. So, to perform the recommendation evalu-

ation on the movies domain, the MovieLens data is frequently

used. The MovieLens dataset consists of anonymous ratings

of movies and contains approximately 10 million ratings from

71,567 users on 10,681 movies. Ratings are made on a 5-

star scale (whole-star ratings only) and each user has at least

20 ratings. The dataset was collected and made available by

GroupLens Research, which currently operates a movie recom-

mender based on collaborative filtering, at their webpage. This

dataset was previously used to evaluate matrix factorization

based methods with neighbor based correction technique, and

achieved a best RMSE score of 0.8275 [13].

The Jester dataset consists of anonymous ratings of jokes

collected between November 2006 and May 2009. Thus,

this data is in a humor domain. It was firstly used to test

the Eigentaste recommender and now is freely available for

research use. The full data set contains 1,761,439 ratings from

59,132 users on 140 jokes. The ratings are real values ranging

from -10.00 to +10.00. Ten percent of the jokes (called the

gauge set, which users were asked to rate) are densely rated,

others, more sparsely. Two thirds of the users have rated at

least 36 jokes. The remaining users have rated between 15

and 35 jokes. The average number of ratings per user is 46,

so it is a particularly dense data set compared to Netflix

Prize and MovieLens. This dataset was previously used to

evaluate matrix factorization based methods with neighbor

based correction technique, and achieved a best RMSE score

of 4.1229 [13].

B. Mahout ALS Implementation

Mahout 0.9, which was used for this evaluation, presents

a MapReduce implementation of ALS that is composed of

two jobs: a parallel matrix factorization job, which contains

training phase of the ALS algorithm, and a recommendation

job that outputs a list of recommended item ids for each user.

Given the ratings matrix (R), the matrix factorization job

computes the two intermediate matrices: user-to-feature (P)

and item-to-feature (Q). This implementation follows the strat-

egy described in Section III-B, the parallel broadcast-join [16].

Firstly, the smaller dataset (Q or P) is replicated to every

machine of the cluster. Also, the ratings matrix is partitioned,

and each partition sent to a machine on the cluster, which

stores it in the local HDFS. The join between the local partition

of R and the replicated copy of P (and analogously between

the local partition of R and Q) can be executed by a map

operator. This operator can additionally implement the logic

to re-compute the feature vectors from the join result, which

means that it is possible to execute a whole re-computation of

Q or P with a single map operator.

The recommendation job processes the user-to-feature ma-

trix and item-to-feature matrix calculated from the factoriza-

tion job to compute the top-N recommendations per user. The

356 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

val Rb = spark.broadcast(R)

for (i <-1 to ITERATIONS){

P = spark.paralellize(0 until n)

.map(j => updateUser(j, Rb, Q))

.collect()

Q = spark.paralellize(0 until m)

.map(j => updateUser(j, Rb, P))

.collect()

}

Fig. 3. ALS Spark implementation

predicted rating between user and item is a dot product of the

user’s feature vector and the item’s feature vector.

C. MLlib ALS Implementation

This is a blocked implementation of the ALS factorization

algorithm that groups the two sets of factors (referred to as

"users" and "items") into blocks and reduces communication

by only sending one copy of each user vector to each item

block on each iteration, and only for the item blocks that need

that user’s feature vector. This is achieved by precomputing

some information about the ratings matrix to determine the

"out-links" of each user (which blocks of items it will con-

tribute to) and "in-link" information for each item (which of

the feature vectors it receives from each user block it will

depend on). This allows the implementation to send only an

array of feature vectors between each user block and item

block, and have the item block find the users’ ratings and

update the items based on these messages.

Because all of the steps use the ratings matrix R, it is helpful

to make it a broadcast variable so that it does not get re-sent

to each node on each step. Figure 3 shows the ALS Spark

implementation. Note in Lines 3 to 5 that collection 0 until

u are parallelized and collected to update each array [26].

The ALS recommender accepts as input an RDD (Resilient

Distributed Datasets) of ratings (user: Int, product: Int, rating:

Double).

D. Experimental Results

The experiments were developed with Python 2.6 and firstly

executed in local single machine mode for testing. Then, the

final experiments were executed at Amazon Web Services

(AWS).

The clusters used for the evaluation consists of t2.small EC2

instances running Ubuntu 64-bit OS with Oracle Java (JDK) 7,

Apache Hadoop 1.2.1 and Apache Spark 1.1.1. Each t2.small

instance has a 3.3GHz core processor, 2GB of RAM and 15GB

of SSD storage. The accuracy and efficiency experiments were

conducted on a cluster of 4 machines.

To evaluate these algorithms, the datasets were randomly

divided into three non-overlapping subsets, named: training

(60%), test (20%), and validation (20%). These datasets are

saved on two datanodes of the HDFS, since this is the smaller

cluster configuration for scalability experiment.

These two datanodes are accessible for all the workers

through the experiments, since Spark is running in the same

Hadoop cluster through Spark’s standalone mode, that is, by

simply placing a compiled version of Spark on each node on

the cluster.

1) Accuracy and Efficiency Experiment: To evaluate the

quality of the recommendations produced by each of the two

implementations, multiple models are trained based on the

training set, and that which achieves the smallest root-mean-

square error (RMSE), given by Eq. 4, on the validation set

after running 20 iterations of the algorithm is chosen as the

best fit ALS model [18]. Finally, this model is evaluated on

the test set.

RMSE =

√√√√ 1

|Sval|

∑

(m,n)∈Sval

(rui − r̂ui)2 (4)

The parameters tested to find the best fit ALS model

are combinations resulting from the cross product of

the dimensionality of the latent factor space, k =
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] and the regularization param-

eter λ = [0.10, 0.25, 0.50, 0.75, 1.00].
Analyzing the convergence of the Spark-MLlib ALS on

the Jester validation set for the number of latent factors

(k), we can see that the recommendation quality usually

improves when increasing λ until the optimal value of 0.5.

Then, the increment worsens the recommendation accuracy.

For the HadoopMR-Mahout ALS on the Jester validation set,

we observed the same behavior presented by the Spark-MLlib

implementation: the recommendation quality usually improves

when increasing λ until the optimal value of 0.5 but beyond

that, the recommendation is worse.

The best fit Spark-MLlib ALS for the Jester dataset has

RMSE on the test set of 4.1339 and 4.1395 for the HadoopMR-

Mahout. Both models have the same value for the parameters k

and λ, but the MLlib implementation achieves a result 0.13%

better, with a training execution time that is more than 10

times faster, in a cluster with 4 t2.small instances, as shown

on Table I.

TABLE I
BEST FIT ALS MODEL RESULTS FOR JESTER DATASET

Spark-MLlib HadoopMR-Mahout

kBestfitALS 20 20

λBestfitALS 0.5 0.5

RMSE(Validation Set) 4.1378 4.1385

RMSE(Test Set) 4.1339 4.1395

Execution time (sec) 61.4 671.4

For the MovieLens dataset, the best fit Spark-MLlib ALS

is trained with k = 20, λ = 0.5 and RMSE = 0.8099 on the

validation set. We observed that the model converges on each

value of λ ≥ 0.5 regardless of the feature space size. The

RMSE on the test set is 0.8091, which means that the model

does not overfit the observed ratings. For the HadoopMR-

Mahout ALS modelling results, the best fit is trained with

DÂNIA MEIRA ET AL.: AN EXPERIMENTAL ANALYSIS ON SCALABLE IMPLEMENTATIONS OF THE ALTERNATING LEAST SQUARES ALGORITHM 357

k = 20, λ = 0.5, and RMSE = 0.8196 on the validation set, the

same parameters found for the Spark-MLlib implementation.

The convergence behavior found before repeats itself here, for

each λ ≥ 0.5 regardless of the feature space size. Also, the

RMSE on both implementations for the same regularization

parameter is very close: the largest difference is of only 0.0002

or 0.001% of the rating score, represented on a scale of -10.0

to +10.0.

Comparing the best fit ALS models achieved by both

implementations, again the Spark-MLlib solution has a better

performance: more accurate, with a RMSE on the test set

1.4% smaller than the HadoopMR-Mahout implementation,

and more efficient, with execution more than 5 times faster

to run (Fig. 4). The results for the MovieLens dataset are

summarized on Table II.

Fig. 4. Execution time for the best fit ALS model on a cluster with 4 machines

TABLE II
BEST FIT ALS MODEL RESULTS FOR MOVIELENS DATASET

Spark-MLlib HadoopMR-Mahout

kBestfitALS 20 20

λBestfitALS 0.1 0.1

RMSE(Validation Set) 0.8099 0.8196

RMSE(Test Set) 0.8091 0.8202

Execution time (sec) 149.1 847.9

2) Scalability Experiment: To test the scalability of these

recommender systems, we measure the walltime of 20 iter-

ations of the best fit ALS model on each of the datasets

on different cluster sizes, consisting of 2, 4 and 6 AWS

EC2 t2.small instances. We observe that the computation

speedup does not linearly scale with the number of machines,

which is an expected behavior since both implementations

have a broadcast of the ratings matrix so every additional

machine causes another copy of it to be sent over the network.

Comparing the speedup values for the two implementations,

shown on Fig. 5, we find that, when training the HadoopMR-

Mahout ALS model with 6 machines, it shows an improvement

of 1.60x on the Jester dataset and 1.45x on the MovieLens

dataset over the execution with 2 machines, and for the Spark-

MLlib implementation, executing with 6 machines provides an

improvement of 1.86x on the Jester dataset and 2.39x on the

MovieLens dataset over the execution with 2 machines.

Fig. 5. Speedup for both implementations

As seen in Table III, the distributed and parallel ALS

implementation on MLlib executed on the Spark cluster with

6 machines achieved the faster training time for both datasets:

54.7 seconds for Jester that contains about 1.7 million joke rat-

ings, and 115.3 seconds for MovieLens that contains about 10

million movie ratings. By extrapolating these results, we find

that a recommender system with a dataset with 100 million

ratings input, which is 10 times bigger than the MovieLens

dataset, would take about 415 seconds to be trained on a

cluster with 6 machines with the t2.small EC2 configuration.

If we wished to put such a system into production, we could

either utilize more of these general purpose instances or choose

machines with more RAM, such as the M3 instances or the

R3 memory optimized instances, which suggests that the Spark

implementation is suitable for real world use cases.

TABLE III
SUMMARY OF RECOMMENDATION TIME

Dataset size (# of ratings) Recommendation time (in sec)

Jester: 1.7 mi 54.7

MovieLens: 10 mi 115.3

100 mi 415

V. CONCLUSIONS

Alternating Least Squares (ALS) algorithm is an efficient

approach in situations where generating online recommenda-

tions and processing large datasets is required. In this work,

we described two scalable parallel implementations of the ALS

algorithm, the Mahout ALS and MLlib ALS. Each one uses a

different framework for distributed processing on clusters of

commodity hardware, respectively, Hadoop MapReduce and

Spark.

We performed an experimental analysis comparing the dif-

ferent implementations of the ALS algorithm for collabora-

tive filtering recommender systems, using datasets from two

different domains: MovieLens, from the movies domain, and

Jester, from the jokes domain. First we found the best fit ALS

model for each of the datasets. Using the optimized parameters

to train the ALS models, we performed the evaluation of

the implementations in terms of execution time and accuracy

results on the test set.

358 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

The experimental results showed that Spark-MLlib solution

has a better performance than the Mahout ALS in terms of

accuracy and efficiency for both recommendation domains.

For the Jester dataset, the RMSE on the test set with Spark-

MLlib was 0.13% better than with HadoopMR-Mahout, and

the training was more than 10 times faster in a cluster with 4

machines. For the MovieLens dataset, the RMSE on the test set

was 1.4% smaller on the Spark-MLlib implementation, and the

modeling was 5 times faster. This study also featured a scala-

bility experiment, running the best fit ALS model on clusters

of 2, 4 and 6 machines. Again, the results were favorable to

Spark, since it has a more expressive computational speedup:

training time on a cluster with 6 machines was 86% faster on

the Jester dataset and 139% on the MovieLens dataset when

comparing to execution time on a cluster with 2 machines.

Deploying a recommender system on six t2.small instances

available from EC2 took 115.3s for a dataset containing

about 10 million ratings, and, by extrapolation, it would take

about 415s for a dataset with 100 million ratings. The results

suggest that a cluster with at least six t2.small instances or

fewer and more potent machines, like M3 or R3 memory

optimized instances available on EC2, would run a user’s

full recommendations measures in a few seconds, which is

a suitable time frame for production settings. Future works

are desirable in order to keep comparing the recommendation

algorithms implementations available in the newer releases of

MLlib and Mahout, as well as newer technologies, since both

engines for large-scale data processing are rapidly evolving.

REFERENCES

[1] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso, “Comparison
of collaborative filtering algorithms: Limitations of current techniques
and proposals for scalable, high-performance recommender systems,”
ACM Trans. Web, vol. 5, no. 1, pp. 2:1–2:33, Feb. 2011. doi:
10.1145/1921591.1921593. [Online]. Available: http://doi.acm.org/10.
1145/1921591.1921593

[2] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings of

the 10th International Conference on World Wide Web, ser. WWW ’01.
New York, NY, USA: ACM, 2001. doi: 10.1145/371920.372071. ISBN
1-58113-348-0 pp. 285–295. [Online]. Available: http://doi.acm.org/10.
1145/371920.372071

[3] Z. Huang, H. Chen, and D. Zeng, “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering,”
ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 116–142, Jan. 2004.
doi: 10.1145/963770.963775. [Online]. Available: http://doi.acm.org/10.
1145/963770.963775

[4] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the

Fourteenth Conference on Uncertainty in Artificial Intelligence, ser.
UAI’98. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1998. ISBN 1-55860-555-X pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[5] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in Proceedings of the 24th

International Conference on Machine Learning, ser. ICML ’07.
New York, NY, USA: ACM, 2007. doi: 10.1145/1273496.1273596.
ISBN 978-1-59593-793-3 pp. 791–798. [Online]. Available: http:
//doi.acm.org/10.1145/1273496.1273596

[6] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, “Application
of dimensionality reduction in recommender system – a case study,”
in WebKDD Workshop, held in conjunction with the ACM-SIGKDD

Conference on Knowledge Discovery in Databases (KDD’2000), 2000.

[7] Spotify, “Spotify,” n.d., available at https://www.spotify.com/.
[8] C. Johnson, “Scala data pipelines for music recommendations,”

2015, available at http://www.slideshare.net/MrChrisJohnson/
scala-data-pipelines-for-music-recommendations.

[9] Amazon.com, “Amazon.com,” n.d., available at http://www.amazon.
com/.

[10] ExportX, “How many (more) products does amazon sell?” 2014, avail-
able at http://export-x.com/2014/08/14/many-products-amazon-sell-2.

[11] Statista, “Number of worldwide active amazon cus-
tomer accounts from 1997 to 2014 (in millions),”
2014, available at http://www.statista.com/statistics/237810/
number-of-active-amazon-customer-accounts-worldwide/.

[12] Y. Koren and R. Bell, “Advances in collaborative filtering,” in Rec-

ommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and
P. Kantor, Eds. Springer, 2011, pp. 33–48.

[13] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Using visual representa-
tions of data to enhance sensemaking in data exploration tasks.” Journal

of Machine Learning Research, vol. 10, pp. 623–656, 2009.
[14] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques

for recommender systems,” Computer, vol. 42, no. 8, pp. 30–
37, Aug. 2009. doi: 10.1109/MC.2009.263. [Online]. Available:
http://dx.doi.org/10.1109/MC.2009.263

[15] R. Bell, Y. Koren, and C. Volinsky, “Modeling relationships at multiple
scales to improve accuracy of large recommender systems,” in Proc.

13th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, ser. KDD ’07. New York, NY, USA: ACM, 2007.
doi: 10.1145/1281192.1281206. ISBN 978-1-59593-609-7 pp. 95–104.
[Online]. Available: http://doi.acm.org/10.1145/1281192.1281206

[16] S. Schelter, C. Boden, M. Schenck, A. Alexandrov, and V. Markl,
“Distributed matrix factorization with mapreduce using a series of
broadcast-joins,” in Proceedings of the 7th ACM Conference on

Recommender Systems, ser. RecSys ’13. New York, NY, USA:
ACM, 2013. doi: 10.1145/2507157.2507195. ISBN 978-1-4503-2409-0
pp. 281–284. [Online]. Available: http://doi.acm.org/10.1145/2507157.
2507195

[17] The Apache Software Foundation, “Apache hadoop,” n.d., available at
http://hadoop.apache.org/.

[18] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in

Information and Management. AAIM 2008. LNCS, vol 5034, R. Fleischer
and J. Xu, Eds. Springer, 2008.

[19] The Apache Software Foundation, “MLlib,” n.d., available at http:
//spark.apache.org/mllib/.

[20] J. Chen, J. Fang, W. Liu, T. Tang, X. Chen, and C. Yang, “Efficient and
portable als matrix factorization for recommender systems,” in 2017

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), May 2017. doi: 10.1109/IPDPSW.2017.91 pp.
409–418.

[21] C. Enrique, T. Alexander, C. Héctor, J. G. Francisco, G. Felipe,
B. Belén, and A. Diego, “In-memory distributed software solution
to improve the performance of recommender systems,” Software:

Practice and Experience, vol. 47, no. 6, pp. 867–889, 2017. doi:
10.1002/spe.2467. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/spe.2467

[22] D. Kim and B.-J. Yum, “Collaborative filtering based on iterative
principal component analysis,” Expert Syst. Appl., vol. 28, no. 4,
pp. 823–830, May 2005. doi: 10.1016/j.eswa.2004.12.037. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2004.12.037

[23] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Proceedings of the 20th International Conference on Neural Information

Processing Systems, ser. NIPS’07. USA: Curran Associates Inc.,
2007. ISBN 978-1-60560-352-0 pp. 1257–1264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2981562.2981720

[24] A. N. Tikhonov, “Solution of incorrectly formulated problems and the
regularization method,” Soviet Mathematics, vol. 4, p. 1035–1038, 1963.

[25] S. Funk, “Netflix update: Try this at home,” 2006, available at http:
//sifter.org/~simon/journal/20061211.html.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10. [Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.
1863113

DÂNIA MEIRA ET AL.: AN EXPERIMENTAL ANALYSIS ON SCALABLE IMPLEMENTATIONS OF THE ALTERNATING LEAST SQUARES ALGORITHM 359

