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Abstract—The literature describes examples of software frame-
works providing developers with generic and reusable function-
ality for building healthcare applications. Using concepts and
technologies from Information Retrieval, Machine Learning, and
Semantic Web, we present a novel software framework called
HSSF (Health Surveillance Software Framework) which aims
to facilitate the development of applications to support health
professionals in the prevention of chronic diseases. The main
contribution of this paper includes lessons learned distilled from
(i) the reuse and evolution of the HSSF components on the
development of three new health surveillance applications, and
(ii) a quantitative evaluation of the HSSF reusability in terms of
time spent and artifacts reused on such development task. Lessons
learned are summarized as advantages and drawbacks regarding
HSSF reusability. The HSSF allows healthcare applications not
only to relate scientific research evidences, exams and treatments,
but also to incorporate them together into the clinical practice.

I. INTRODUCTION

THE practice of software reuse can potentially make

information technology products more efficient for clients

and cheaper for the production. Reuse is not limited to the

source code or to the machine code; in a broader sense,

documents, coding styles, components, models, patterns and

knowledge items may be reused.

One way to promote reuse is to create software frameworks

as abstraction of functionalities to build and deploy applica-

tions. We consider software frameworks as reusable designs

of all or part of a software system described by a set of

codes, libraries, tools, APIs, and mainly by abstract classes

and the way that instances of these classes collaborate [1].

Therefore, the main goal of a software framework is to create

new software more efficiently by means of reuse.

As in other knowledge domains, there are various ex-

amples of software frameworks targeting the development

of healthcare applications. For instance, OpenMRS [2] [3]

describes data items such as clinical findings, laboratory test

results or socioeconomic data that can be stored by medical

systems. OpenMRS consists of a concept dictionary to avoid

the need to modify the database structure to add new diseases.
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This framework supports the programming of new functions

without the need to modify the core code when the focus is the

reuse of concepts and/or database models. IBM has developed

the SpatioTemporal Epidemiological Modeler (STEM), which

models infectious and vector borne diseases. STEM provides

developers with a plug and play software architecture for

the development of simulations of disease spread, e.g. in

bioterrorist crises [4].

In terms of reuse of services, the service-oriented architec-

ture (SOA) paradigm is used as a software framework that

aims at facilitating the support for clinical decision [5]. At

the level of classes reuse, the virtual reality domain also

offers frameworks such as (i) ViMeT [6], which focuses

especially on the development of applications that simulate

biopsy exams, and (ii) SOFA [7] [8], which targets research

into medical simulation. Still considering medical simulation,

TES [9] carries out computational simulations of transcranial

electrical stimulation.

Despite of the large amount of software frameworks support

in healthcare, institutions, professionals and patients are still

burdened with the amount of information created due to the

mass adoption of the Internet and to the availability of several

types of documents, including health records, social websites

for health, medical images, among others. Furthermore, the

information contained in such documents is too complex and

semantically rich for traditional search engines to make sense

of. This scenario can benefit from health surveillance systems

which can recommend information related to the medical

records of a given patient [10], or to a similar user, for

example, to provide informational and emotional support in

on-line social websites for health [11].

This paper (i) presents the Health Surveillance Software

Framework (HSSF) as an evolutionary and reusable design

of software components to support the development of health

surveillance applications [10], (ii) evaluates aspects of the

HSSF reuse, and (iii) lists the lessons learned along the

evolution of the HSSF architecture.

The HSSF diagram, an object-oriented application frame-

work, allows distinct health surveillance applications to be

created by instantiation of its abstract classes. HSSF has been

developed by evolving our previous software which were
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designed as a reusable set of functionalities for surveillance

systems. Hence, we built HSSF by generalizing software

components from three previous endeavors: the Automatic-

SL [12], the CISS [13], and the FREDS [14].

The Automatic-SL system assists healthcare professionals

in their decisions recommending Surveillance Levels (SLs)

to identify patients’ healthcare needs. It can be used to

recommend pediatric procedures in primary healthcare, and

it also identifies significant risk factors and protective factors

associated with the patients and their families. The CISS

establishes associations between chronic diseases (cardiovas-

cular diseases, diabetes and obesity) reported in scientific

papers and a given patient’s clinical record with genetic and

epigenetics1 risk factors. Finally, the FREDS effort focuses

on the definition of conceptual mappings between the content

of medical images and the textual information contained in

medical records, applied in a scenario of computer-aided

diagnosis in thyroid cancer.

By reusing HSSF components, developers have created

three new healthcare applications: the CISS+ [16], the CISS-

SW [17] and the QASF [18] [19]. They answered a question-

naire that helped us understand the reuse of the HSSF mainly

in terms of the number of reused artifacts and the time spent

on reuse activities. Finally, lessons learned were elaborated

from this whole experience with the HSSF components.

As far as we know, there has been no related research to

HSSF in terms of two perspectives: (i) the same underlying

theory and technology, including Information Retrieval, Ma-

chine Learning, and Semantic Web; and (ii) the health surveil-

lance support, i.e. aiding the prevention of chronic diseases by

alerting healthcare workers about risk factors through retrieval

of published scientific papers with information on epigenetic

risk factors, or even classification of patients into risk groups.

Most frameworks in the healthcare domain have proposed

reusing services (mainly simulations, electronic health records

and medical decision support) and data model (ontologies,

dictionaries and databases).

This paper is structured as follows: Section 2 the devel-

opment of the HSSF framework; Section 3 describes the

evaluation carried out as an attempt to understand the HSSF

reusability. Finally, Section 4 discusses the lessons we have

learned along the process, and Section 5 brings final remarks

and perspectives for future work.

II. THE DEVELOPMENT OF HSSF

Here we briefly present how the HSSF was developed

and evolved in terms of its software components architecture

and its core systems including the Automatic-SL [12], the

CISS [13], and the FREDS [14] systems. Further details can

be found elsewhere2 [10].

1People exposed to risk factors (e.g. food shortage) at the beginning of life
can have altered the gene expression, which can impact adult life by posing
higher risk of developing chronic diseases. Epigenetics studies those changes
in the gene expression [15].

2Source code with documentation, papers and reports with UML models
are available at the official HSSF website – http://dcm.ffclrp.usp.br/hssf/ .

A. The HSSF architecture

The architecture of the HSSF is comprised of three main

layers — Presentation, Business, and Storage — so that each

layer contains its own modules to process documents, as

depicted in Fig. 1.

The Business layer consists of abstract classes and exter-

nal packages of utilities, both two in the target domain, as

well as two connector layers, called Communication layers,

which provide the required communication components to the

Presentation and Storage layers.

The Presentation layer presents different views and tem-

plates such as Graphical User Interfaces (GUIs), which allows

access by two main types of users: (a) healthcare professionals,

who can analyze risk groups automatically classified by means

of surveillance services, or who can receive recommendations

of papers related to a given patient’s clinical record (e.g.

during a medical appointment); and (b) researchers interested

in investigating the relationship between risk factors, chronic

diseases, risk groups and patients’ records.

The two Communication layers are composed of connec-

tors for tools, ontologies and knowledge sources. The upper

Communication layer allows the presentation of recommenda-

tions to end users (healthcare professionals and researchers)

via GUIs. The bottom Communication layer integrates the

Business layer with features provided by the tools (e.g. classi-

fiers) and knowledge sources (e.g. pre-processed collections of

scientific papers and ontologies), and also comprises modules

for communication with databases.

In the Business layer, the Search For Papers module inter-

acts with public repositories of scientific papers. This module

collects and updates a collection of papers. Currently, the

repository crawler uses concepts from ontologies of target

domain to focus the crawler on topics of interest. There is

no crawler for clinical records because all clinical records of

interest are considered to be associated with scientific papers.

Also in the Business layer, the Textual Processing mod-

ule is composed of programming utilities and modules for

Paper Processing, Clinical Record Processing and Natural

Language Processing. Textual Processing module processes

textual information from a set of clinical records and collected

scientific papers, which are all stored in the Storage Layer.

Each document (clinical record or paper) is processed, so

Paper Processing and Clinical Record Processing modules can

identify simple and complex terms. The Natural Language

Processing module applies natural language processing, such

as processing of n-grams, stemming, removal of stopwords and

recognition of concepts. The recognized terms are statically

weighted and stored. The processing of clinical records is

similar to the processing of scientific papers.

The Concept Recognition module manipulates linguistic and

knowledge resources, which in turn support the association

between different lexical concepts. Clinical records can be

manipulated in one language and papers can be processed

in another language. For instance, the Concept Recognition

module exploits classes and methods from the Unified Med-

ical Language System (UMLS) [20] to identify concepts
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Fig. 1. The HSSF architecture [10].

from health topics such as epigenetics. The overall textual

processing of the HSSF, supported by linguistic resources,

includes the removal of stopwords, the processing of n-grams,

the recognition of concepts, and the computation weights

for concepts. The removal of stopwords for the papers and

clinical records collections is based on lists of stopwords from

programming utilities such as Snowball3. The processing of

n-grams uses the open source Python NLTK4 set of modules,

linguistic data and documentation for research and develop-

ment in natural language processing and text analytics.

The processing of clinical records is not identical to the

processing of papers: after the processing of n-grams and the

identification of concepts, a query array containing the remain-

ing concepts is built for clinical records, whereas a weight

matrix is composed of the scientific papers. Both the query

array and the weight matrix are submitted to the Similarity

module, which is in charge of computing similarities. The

architecture of HSSF allows the Similarity module to calculate

similarity measures between papers and clinical records, and

it can also apply automatic relevance feedback.

B. The HSSF core systems

This section describes three health surveillance systems that

we developed: the Automatic-SL [12], the CISS [13], and the

FREDS [14] systems. Together these systems contribute with

their main software components so as to build the HSSF

architecture previously presented.

The Automatic-SL system aims to identify children with de-

velopmental problems and therefore assists healthcare profes-

3A small string processing language designed for Information Retrieval
purposes; documentation is available at http://snowballstem.org/.

4Documentation is available at https://www.nltk.org/.

sionals in their decisions and in reassessing recommendations

as a multidisciplinary team [12]. After each medical appoint-

ment at a pediatric care center, this system collects patient

information to automatically assign it a Surveillance Level

(SL) measure which in turn indicates the type of healthcare

procedure and service that a patient needs. Exploiting machine

learning techniques, the Automatic-SL identifies significant

risk and protective factors associated with patients and their

families. Therefore, it provides surveillance indications that

support preventive care to avoid diseases in adulthood.

As another surveillance service, the CISS system retrieves

scientific papers that relate chronic diseases to genetic and

epigenetic risk factors found in patients’ clinical records [13].

From the PubMed repository, a CISS module routinely

searches and retrieves new scientific papers in the domain of

genetic and epigenetic risk factors for chronic diseases. Next,

CISS processes textual information of that collection of papers

for later retrieval of relevant papers according to a clinical

record submitted by a healthcare professional.

To associate papers with a clinical record, CISS also pro-

cesses its textual content and then calls a module which

calculates the similarity among documents. In turn, this mod-

ule accesses the pre-processed version of the collection of

scientific papers to retrieve papers with the highest degrees

of similarity to the clinical records. Selected papers are then

presented to a healthcare professional with risk factors as-

sociated with the record previously submitted. By using this

approach, healthcare professionals should be able to create

a clinical routine with families and set up the best possible

growing conditions.

Finally, the FREDS system was included during the design

phase of the HSSF. Aiming to support decision making sys-
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tems in terms of diagnosis of diseases, the FREDS system

establishes conceptual relationships or mappings between mi-

croscopic images content and textual information crawled from

clinical records [14]. The main idea is to extract complemen-

tary information from exams that describe cell components

similar to those identified in the microscopic image evaluated

by a pathologist. The aim is to contribute with the reduction

of the semantic gap between the computational retrieval of

medical images and the human interpretation of their content.

The FREDS system advocates that the semantic mapping can

support the generation of knowledge.

The HSSF software framework has then emerged from

the experience of developing the three aforementioned health

surveillance systems. The orchestration of those systems as

software components and their respective (required/provided)

interfaces are summarized in Fig. 2.

The CISS component provides developers with classes sup-

porting important functionalities: Scientific Papers Searching,

Medical Record Processing, Article Processing, Textual Pro-

cessing, Natural Language Processing, Concept Recognition,

and Similarity. These functionalities are provided via Clini-

calRecordProcessing to the Automatic-SL component so as it

can classify patients according to surveillance level measures

automatically computed. The DocumentProcessing is used by

the FREDS component so as it can relate image reports to

imaging exams on an automatic way.

The FREDS component offers classes to the Image Feature

Extraction, the Image Segmentation, Image Classification, and

the Imaging Report Retrieval. The ImagingExamProcessing

provides these services. Finally, the Automatic-SL component

serves a classification functionality to be reused by other

applications via SurveillanceLevelProcessing.

III. THE DEPLOYMENT OF HSSF

In previous section, we described how HSSF was originally

built by means of its fundamental software components which

provide multiple services including clinical record processing,

imaging exam processing, among others.

Throughout this section, we present how those components

were reused to develop three new health surveillance applica-

tions as proofs of concept to the HSSF framework.

A. CISS+

As an evolution of the original CISS system, the first

application developed by means of the reuse of HSSF com-

ponents is called CISS+ [10]. It augments the semantics of

terms and concepts of scientific papers and clinical records by

means of the use of the UMLS metathesaurus [20] and the

MetaMap tool [21]. Experiments with UMLS and MetaMap

demonstrated the effectiveness of the concept recognition task

with a reduction of roughly 90% of terms.

Also as novelty, the CISS+ employs automated techniques

of relevance feedback to refine queries. The Similarity class

of the CISS component calculates similarity measures among

scientific papers and clinical records and runs automatic

Fig. 2. The component diagram of HSSF.

relevance feedback using three approaches: (i) using meta-

information from the Medical Subject Headings (MeSH)5 of

scientific papers from the PubMed database; (ii) considering

the whole set of documents with identified concepts after n-

grams processing of medical records as relevant documents;

and (iii) considering meta-information from the “Publication

Type” field of PubMed papers.

Hence, the CISS+ reuses mainly paper searching, textual

processing, extended recognition of concepts, and mechanisms

of query expansion in the Similarity and Concept Recognition

classes of the CISS component.

B. CISS-SW

Using Semantic Web concepts and technologies, the CISS-

SW is a search system that enables physicians to retrieve a

scientific paper related to a patient’s clinical record [17].

After the textual processing, the CISS-SW maps terms of

papers into RDF triples6 [22], stores them in a Triple Store7,

and composes a SPARQL [23] query by using the clinical

records. With this query, the system retrieves form the triple

store the papers related to the clinical records.

Therefore, the new functions of the CISS-SW include the

processing and retrieval of scientific papers with Semantic

Web support. In general, it reuses the classes related to the

textual processing of clinical records provided by the HSSF.

C. QASF

A question-answering system returns short and direct an-

swers to users. The QASF (Question Answering System

in Chronic Diseases) application receives a question about

chronic diseases and epigenetics information, and then looks

for answers in collections of scientific papers [18] [19]. The

aim is to help healthcare professionals to rapidly find focused

related answers in the domain of chronic diseases.

The QASF architecture essentially consists of three mod-

ules: (i) Question Processing, (ii) Answer Processing, and (iii)

Document Processing [18].

5The U.S. National Library of Medicine’s hierarchically-organized termi-
nology for indexing and cataloging of biomedical information.

6An RDF triple is a data entity composed of subject-predicate-object, like
“John knows Steve” or “Steve is 42”. RDF triples are the standard information
exchange format in the Semantic Web.

7A triplestore is a purpose-built database for the storage and retrieval of
RDF triples through semantic queries usually written in the SPARQL syntax.
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The Question Processing module converts the question

a user submits in natural language to a query that helps

to search and select answers. This module applies pattern

recognition and machine learning algorithms to handle the

type and the content of the question, respectively. The QASF

exploits linguistic and knowledge resources (e.g. WordNet and

SNOMED) to support the processing of learning healthcare

information.

As the only module reused from the HSSF architecture,

the Document Processing module retrieves documents (e.g.

scientific papers) that might have the answer to the user

question. From each candidate document, this module also

extracts excerpts that should be the answer.

Finally, the Answer Processing module processes all the

potential right answers and classifies them according to a

similarity value. Currently, the QASF considers the cosine

between the user question and the candidate answer as the

similarity value. Hence, the user is given the “n” first answers.

IV. EVALUATION

Considering the software engineering literature, reusability

is the degree to which an asset (e.g. a module or component)

can be used in more than one software system, or in building

other assets. In this section, we describe how we measured the

reusability of the HSSF components in developing the systems

described in the previous section.

Although the number of reused lines of code is a commonly

used unit of measure, a software framework is more than lines

of code. In the case of reuse, another well-known measure

is the developer hour, which refers mainly to the time spent

on searching, analysis and integration/modification. The time

spent on these activities must be less than the time that is

necessary to develop the artifact to be reused.

In order to evaluate the benefits of the HSSF framework, we

requested each developer of the CISS+ (one participant), CISS-

SW (one participant) and QASF (two participants) applications

to answer a questionnaire we elaborated, as illustrated in

Fig. 3. The analysis of the corresponding answers was an

attempt to understand the reuse of the HSSF components in

terms of the time spent and the artifacts reused.

The QASF developers answered the questions together, then

we have considered only one answer. We have disregarded the

amount of time required to locate/search the HSSF as a tool

to be reused because all the developers belong to the same

group.

A. Questionnaire answers

Regarding the question 1, developers have considered

classes, lines of code, and external packages as the software

artifacts the most reused assets of the HSSF. From the answers

to question 2, we identified that the most useful classes were

the Paper Search and the Paper Processing classes, followed

by Natural Language Processing and Concept Recognition.

Regarding the question 3, despite analyzing from 20 to 25

classes, QASF developers reused from 1 to 4 classes without

modification as well as from 1 to 4 classes with modifications.

The CISS+ developer analyzed between 15 and 19 classes

and reused all of them without modifications. However, this

person has actively participated in the creation of the HSSF.

Finally, the CISS-SW developer analyzed from 5 to 9 classes

and reused between 5 and 9 classes without modifications.

Considering the answers to question 4, as the QASF de-

velopers have not found proper documentation, they spent

months to understand the model, to integrate the classes, and

to understand and extend source code. The CISS+ developer

did not spend time on any of those activities because she is

member of the CISS development team. Finally, the CISS-

SW developer spent days reading the documentation and only

weeks understanding the model and the classes, integrating

these, and understanding and extending source code.

Another interesting result is the number of attempts that

each developer made before reusing the HSSF components

(question 5). Disregarding the CISS+ developer, the other

developers have only carried out between 1 and 3 attempts

before the reuse. This small number of attempts is a good

indicator of the HSSF reusability.

The last question of the questionnaire confirms this finding

because the two developers have stated that they earned weeks

and months regarding the development of their systems when

they reused the HSSF. The developers of the QASF considered

they did not earn much time, but we noticed they did not

find any documentation (papers, reports, models, manuals, and

help documentation) about the HSSF. Such documentation is

available at the official HSSF website. QASF was recently

created, hence the difficulty of reuse can be due to the need

of updating many technologies exploited by the HSSF.

B. The average time spent on reusing HSSF classes

A look at the answers of the questionnaire has motivated us

to find an ad hoc measure to quantify the time spent on the

reuse of HSSF classes. To assess whether the reuse of classes

yields a positive result besides the costs with the modification

and integration of the reusable item of the HSSF in the current

project, we have defined the average time needed for classes

reuse as

T
(a)

=
T

(u)
c

C
+

T
(m)
c

Cr

(1)

in which:

• T
(u)
c is the time associated with understanding of the

classes;

• C is the number of classes analyzed;

• T
(m)
c is the time spent integrating or extending the classes

by source lines of code; and

• Cr is the total number of classes reused without modifi-

cations.

We ignored the risk of wasting time on the search for classes

because the developers belong to the same team. Therefore,

we only considered the questions 3.a, 3.b, 4.b, and 4.d (or 4.e)

which are C, Cr, T
(u)
c , and T

(m)
c , respectively.
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Questionnaire: An attempt to understand the HSSF reuse experience

1. What kind of artifacts did you reuse from CISS? (you can select more than one)

[ ] Models [ ] Classes

[ ] Tools [ ] Lines of code

[ ] Libraries [ ] API

[ ] External Packages [ ] Other:_________________________________

2. If you reused classes, which components were more useful for your application? (you can select more than one)

[ ] Natural Language Processing [ ] Paper Processing

[ ] Paper Search [ ] Clinical Record Processing

[ ] Textual Processing [ ] Classification

[ ] Concept Recognition [ ] GUI

[ ] Similarity [ ] Other:_________________________________

3. If you reused classes, please answer the following (a., b., c.) questions:

a. How many classes did you analyze to reuse from CISS?

[ ] 1 to 4 [ ] 10 to 14 [ ] 20 to 25

[ ] 5 to 9 [ ] 15 to 19 [ ] zero

b. How many classes (without modifications) did you reuse from CISS?

[ ] 1 to 4 [ ] 10 to 14 [ ] 20 to 25

[ ] 5 to 9 [ ] 15 to 19 [ ] zero

c. How many classes did you extend/modify from CISS to be reused?

[ ] 1 to 4 [ ] 10 to 14 [ ] 20 to 25

[ ] 5 to 9 [ ] 15 to 19 [ ] zero

4. How much time did you spend in the following activities to reuse CISS?

a. Reading documentation:

[ ] hours [ ] months

[ ] days [ ] Other: ____________________

[ ] weeks

b. Understanding/analyzing the model:

[ ] hours [ ] months

[ ] days [ ] Other: ____________________

[ ] weeks

c. Understanding/analyzing the classes: 

[ ] hours [ ] months
[ ] days [ ] Other: ____________________
[ ] weeks

d. Integrating the classes: 

[ ] hours [ ] months

[ ] days [ ] Other: ____________________

[ ] weeks

e. Understanding/analyzing lines of source code:

[ ] hours [ ] months

[ ] days [ ] Other: ____________________

[ ] weeks

f. Extending by coding:

[ ] hours [ ] months

[ ] days [ ] Other: ____________________

[ ] weeks

5. In average, how many attempts did you make before reusing an artifact from CISS?

[ ] 1 [ ] 4 to 5 [ ] More than 8

[ ] 2 to 3 [ ] 6 to 7 [ ] zero

6. Do you consider the reused artifacts saved time of the developing a new application?

[ ] Yes. How much ? Estimative:______ hours. [ ] No.

Fig. 3. Questionnaire answered by developers who reused HSSF.
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Using the answers given by the developers of the CISS+,

CISS-SW and QASF applications, we have listed the results for

this equation in Table I. This includes the average time (T a)

spent on reusing the classes of the HSSF by developers of the

CISS+, CISS-SW and QASF applications. T a, T
(u)
c and T

(m)
c

are measured in terms of days. C and Cr, in turn, represent

numbers of classes.

TABLE I
THE AVERAGE TIME (Ta) SPENT ON REUSING HSSF CLASSES

Developer C Cr T
(u)
c

T
(m)
c

Ta

CISS+ 19 19 7 6 0.68

CISS-SW 9 9 7 7 1.55

QASF 25 4 30 30 8.7

Table I also shows that the CISS+ developer spent 0.68

days reusing each class of the HSSF. This was expected

because she collaborated with the development of many HSSF

classes before developing the CISS+ application. The CISS-SW

developer spent 1.55 days reusing each class of the HSSF,

whereas the QASF developers spent much more time (8.7

days) than the other two developers. This was also expected

because QASF developers did not find documentation about

the HSSF and needed to update HSSF classes and packages.

Besides questions 3.a., 3.b., 4.b., and 4.d. (or 4.e.), some

other quantitative answers to the questions can help to measure

the HSSF reuse, but the reuse of the model, class, and source

lines of code must be related because they consist of artifacts

reused at different levels of design abstractions. In other

words, our ad-hoc equation previously presented considers

independent variables only.

In a near future, we intend to augment this initial effort

including other time of reuse of other levels of design ab-

stractions. Another situation to verify includes measures of

the topology of the model, which includes connectivity, and

between, among others, and should help us to infer coupling

of classes, for example. Some literature works have presented

result metrics in terms of reuse [24] [25].

V. ANALYSIS, LESSONS LEARNED AND RESULTS

When thinking about reuse, we must consider that the

process of creating and updating of a software framework

should never end. It is fundamental to reuse the framework

while aiming to receive the developers’ feedback on the

development of new versions of the reused framework.

The creation of the HSSF framework has been a long

process that has relied on collaborative work including ideas,

software requirements, designs and development, augmenta-

tions, results and publications. This process started in 2007

with the initial development of the Automatic-SL system [12],

which was followed by the creation of the CISS system [13]

and FREDS [14]. In the end of 2014, we agreed on a version

of the HSSF; and in 2015, we developed two new systems

to validate the HSSF, the CISS+ [16], and the CISS-SW [17]

systems. Finally, in 2016, we included new classes in the HSSF

after we developed the QASF system [18] [19].

The HSSF framework provides hot spots that are easy to

manipulate such as:

• the insertion of other scientific information resources

besides PubMed;

• the use of another domain ontology to create queries and

to filter scientific papers from the desired information

resources;

• the exploration of other ontologies and/or thesauri aiming

at the recognition of medical and biomedical concepts

besides UMLS;

• the manipulation of different types of clinical records or

other documents in the healthcare domain; and

• the use of other classification and clustering techniques.

Given those hot spots, the less flexible one is the exploration

of other ontologies and/or thesauri aiming at the recognition

of medical and biomedical concepts besides UMLS. The

HSSF carries a multilingual processing (mainly English and

Portuguese), so it is necessary to apply a linguistic resource

that can relate multilingual concepts and bring semantic re-

lationships. In the healthcare domain, UMLS still represents

the best option to recognize concepts, justifying the natural

inflexibility. However, an extension of our framework to ma-

nipulate other linguistic resources besides UMLS has already

been designed.

As frozen spots of the HSSF framework, we can mention

abstract classes that allow each hot spot cited, for instance, an

abstract class to illustrate ordinary attributes of different sets of

documents and another abstract class to represent attributes of

different document types. Other frozen spots consist of classes

for textual processing (e.g. stopwords elimination and n-grams

processing) as well as for the identification of relationships

among documents.

In 2016, we presented the first version of HSSF as a

software framework, which consisted of an architecture and

a class diagram depicted elsewhere [10]. After we created

the QASF, we were able to extrapolate and to update that

diagram to integrate Automatic-SL, CISS, FREDS and QASF,

as depicted in Fig. 4. By analyzing our own reuse experience,

we have distilled some lessons learned and also classified these

as advantages or drawbacks with the HSSF reuse.

In terms of drawbacks of the HSSF reuse, we can consider:

• the need to learn technical aspects of the programming

languages, packages and ontologies to generate a steep

learning curve that is necessary for the developers to

know how the framework works before they can reuse

it; and

• the cost in terms of demand of development expertise.

Considering these limitations, the HSSF faces problems

in a specific abstraction domain. For years, some authors

have advocate that the reuse of software frameworks degrade

the performance/efficiency of the application and its security

issues [26] [27]. However, HSSF users have not noticed

any of these two points yet. Moreover, security is not an

essential requirement of the CISS+, the CISS-SW, and the

QASF applications.
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Fig. 4. The HSSF framework extended with two QASF services available to developers: QuestionProcessing and AnswerProcessing.

On the other side, the use of the HSSF offers the following

advantages:

• the HSSF reduces the time and the energy spent on

developing the CISS+ and CISS-SW systems because the

developers have the standard infrastructure and diagram

of the HSSF providing the organization of modules and

the classes of application;

• as a consequence from the previous advantage, developers

can devote more time to requirements and user interfaces;

• the source codes of the three systems (CISS+, CISS-SW

and QASF) are more organized and well documented

because they follow the coding convention of the HSSF,

which makes the source codes clean and easy to under-

stand; and

• the use of the HSSF infrastructure affords three well-

separated applications and defined business and logic

layers from the user interface, making the code cleaner

and extensible.

Finally, we believe that the HSSF improves the quality of

the applications because the developers focus on the unique

requirements of their application instead of spending time on

infrastructure. Two of the users of the HSSF consider that their

performance during the developing of their applications were

improved reusing assets of the HSSF.

VI. CONCLUSION

The Automatic-SL, CISS and FREDS systems could be

abstracted because they had common classes, purposes, and

collaborations. For instance, the Relevance Feedback (RF-

SL) classifier of the Automatic-SL system generates structured

information from medical records and transforms it into bags

of words; this system also eliminates stopwords and conducts

stemming to produce a term-weight matrix. This matrix resem-

bles the concept-weight matrix used by the CISS to compute

similarity between scientific papers and medical records.

The main difference is that the matrix of the CISS uses

UMLS concepts instead of simple terms. Nevertheless, the

application recognition of concepts and the construction of

the weight matrix according to these recognized concepts

are perfectly applicable not only to the RF-SL module of

the Automatic-SL, but also to other classifiers of the latter

system. On the other hand, FREDS is composed of medical

image processing classes that can also be related to textual

processing.

Between 2007 and 2012, when the Automatic-SL and the

CISS systems were created, the HSSF had its first classes

designed for reuse with a focus on the processing and clas-

sification of healthcare-related information. Some years later,

newcomers and specialists of our research group have used

the HSSF, which has resulted in three new applications,

the CISS+, the CISS-SW and the QASF. The developers of

these systems have answered a questionnaire as an attempt to

understand the reuse of the HSSF basically in terms of types

of artifacts and time spent on reuse. The answers have allowed

us to measure the average time that is necessary to reuse HSSF

classes and to distill experiences such as lessons learned.

The HSSF is a software framework still under development.

In a near future, it will be included a new set of class diagrams

with more details for novel types of reuse, allowing much more

general applicability. Besides this ongoing work, the results

reported herein open new research directions that include:

• extension to the Chronic Disease Ontology (CDO) with

knowledge obtained from scientific papers on epigenet-

ics mechanisms and epigenetics risk factors for chronic

diseases retrieved by the CISS;

• use of text entailment to map risk factors for chronic

diseases;

• integration of new computational tools to map new con-

cepts;

• modelling of an electronic medical record system coupled

to CISS for use by the pediatric team; and

• investigation into the use of pediatric consensus by the

HSSF.

By extending and reusing HSSF capabilities, our main goal

is to allow healthcare applications developers to relate science

research results, exams and treatments, which may be all

incorporated into the clinical practice.
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