&l

Proceedings of the Federated Conference on

DOI: 10.15439/2018F185

Computer Science and Information Systems pp. 1079-1083ISSN 2300-5963 ACSIS, Vol. 15

UAV downwash dynamic texture features for terrain
classification on autonomous navigation

J. P. Matos-Carvalho, José M. Fonseca, André Mora
Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
Email: jp.carvalho@uninova.pt, jmf @uninova.pt, atm@uninova.pt

Abstract—The information generated by a computer vision
system capable of labelling a land surface as water, vegetation,
soil or other type, can be used for mapping and decision making.
For example, an unmanned aerial vehicle (UAV) can use it
to find a suitable landing position or to cooperate with other
robots to navigate across an unknown region. Previous works on
terrain classification from RGB images taken onboard of UAVs
shown that only static pixel-based features were tested with a
considerable classification error. This paper proposes a robust
and efficient computer vision algorithm capable of classifying the
terrain from RGB images with improved accuracy. The algorithm
complement the static image features with dynamic texture
patterns produced by UAVs rotors downwash effect (visible at
lower altitudes) and machine learning methods to classify the
underlying terrain. The system is validated using videos acquired
onboard of a UAV.

Keywords—Image processing, Texture, Machine Learning, Ter-
rain Classification, UAV

I. INTRODUCTION

Nowadays, due to UAVs’ higher availability and capabil-
ities, there is a research trend to explore innovative appli-
cations of UAVs useful to the society. They are having a
major impact on search and rescue missions, in logistics, in
precision agriculture, among other applications. Key issues are
to provide a safe and reliable operation and to perceptionate
the surrounding area. This latter, within this paper, will be to
identify the underlying terrain. Terrain classification is a crucial
functionality for a wide range of autonomous vehicles [1]:
either for ground vehicles to avoid water bodies, aerial vehicles
to determine suitable landing areas, or surface vehicles to
detect safe passageways. As further explained in section II,
several approaches have been used for terrain classification.
However, there is still margin for improving accuracy by ex-
tracting more complex image features. When at lower altitudes,
UAV’s rotors downwash effect create singular image texture
patterns depending on the type of terrain, which can be used
to differentiate them.

The main goal of this paper is to propose a computer
vision algorithm that using RGB images captured by a camera
onboard of a UAV is capable of classifying a terrain by
analysing static image features (colour and texture) and rotors
downwash effect on the underlying surface. There are several
issues that must be addressed in order to achieve this goal,
namely: Which terrains can be more accurately classified
using the downwash effect? Which are the texture and motion
patterns of each terrain (water movement for example)? Which
static and dynamic image features can be extracted to classify
the terrain? To address these challenges, new optimization
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procedures and techniques will be proposed in this paper,
aiming the best possible performance.

This paper is structured with six sections starting with
an introductory section and followed by a presentation of
related works. In the experimental setup section the system
background, namely the hardware and the terrain types, are
described. On the Terrain Classification Method the system
architecture, the static and dynamic texture features and the
machine learning classifier will be presented. The article
finishes with the experimental results and drawn conclusions.

II. RELATED WORK

UAVs (Unmanned Aerial Vehicle) play an important role
on the new generation of information technology and is
predicted to have a major impact in the human life in the
near future [2]. One of the areas is in computer vision, where
it is possible to acquire, process, analyse and understand aerial
images. Many researchers have proposed terrain classification
systems based on features derived from colour information [3],
texture patterns [4], [5], [6] and from additional sensors, as is
the case of laser scan systems [7], [8], [9]. Although many of
these algorithms are for terrestrial unmanned ground vehicles,
currently there is a shift towards UAVs, where the visual
features have wider importance.

One of the most recent works of terrain detection and
classification is presented in [10]. The authors use the concept
of optical flow to detect the water texture direction in images
acquired by an RGB camera onboard of a UAV. From the
directions of the textural features, the algorithm determines if
the terrain, where the UAV is flying over, is water or non-water.
One of the problems identified is that the UAV must be stable
over the target while identifying the type of terrain, which, in
the best case, takes four seconds to execute. Another reason
that requires the UAV to be stand still during calculations is
that the computer vision algorithm does not compensate the
UAV movement. Thus, when the directions of the features are
calculated, the results do not represent the reality.

A classification method using colour features was proposed
in [3]. The proposed method converts a RGB image into an
image entitled "normal RGB", where each pixel is divided by
the square root of the three colour channels. Thus, each terrain
will emphasize the colour that represents it (for example, green
for vegetation). The proposed method was limited due to the
fact that it varies significantly with illumination.

Laser scanners have proven to be important to distinguish-
ing between land and water as presented in [7], [8] and [9].
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However, in low water depths the laser sensor produces in-
correct results, due to the fact that it captures reflections from
the seabed and misclassifies it as non-water terrain. Therefore,
this laser scan approach, by itself, reveals to be insufficient
and requires additional equipment.

III. EXPERIMENTAL SETUP

The dynamic of different terrains when exposed to wind
provoke singular texture patterns that can be used in their
identification. In this paper we study the importance of static
image features, such as colour and texture, when compared
with the dynamic features exhibited by the downwash effect,
for terrain classification.

In this work three different terrain types (water, vegeta-
tion and sand), which can benefit from the downwash effect
for their identification (Figure 1) were identified. It can be
seen that the downwash effect produces: on water a circular
dynamic texture; on vegetation a linear spread from inside
outwards; and on sand it is almost stable or it moves outwards.
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Fig. 1.
(e)(®.

Examples of terrain types: water (a)(b); vegetation (c)(d); and sand

IV. TERRAIN CLASSIFICATION METHOD

If different types of terrain behave differently when ex-
posed to UAV rotors downwash effect, then it should be
possible to obtain unique information for their identification.
Based in this research hypothesis, it is possible to obtain some
conclusions. When exposed to the downwash effect, water
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particles’ movement is always greater than in vegetation and
sand terrains. Also, regarding static texture, usually vegetation
has a more rough texture than sand or water terrains; water
only presents roughness when exposed to wind and downwash
effect; and sand (fine grains) has a lower roughness. It can also
be seen that sand depends on the patterns already in the terrain,
showing usually a more irregular texture (figures 1.e and 1.f)
when compared with water that shows a unique signature and
regular texture when exposed to wind (figures 1.a and 1.b).

A. System Architecture

The proposed system architecture to classify the terrain
using texture information is shown in Figure 2. As previously
identified in sections I and IV, two texture features are
proposed to classify the terrain, namely, static and dynamic
textures. At this stage it were also assessed the features that
can be computed in parallel, in order to speedup the system
execution time.

Rectified image

Motion Analysis

| Texture Filter

Threshold

Projections

Classification

Output (Terrain)

)

Fig. 2. Proposed system architecture.

Five main processes were identified in the architecture
(figure 2), namely:

o  Rectified Image: Performs lens geometrical correc-
tions;

e  Texture Filter: Extracts terrain’s static textural infor-
mation using Gabor filters;

o  Threshold: A thresholding is applied to the static
texture image to highlight the terrain roughness;

e  Projections: Vertical and horizontal projections were
applied to the thresholded image, extracting unique
features that help differentiate the different types of
terrains;

e  Motion Analysis: Extracts information from dynamic
textures. Optical flow and thresholding techniques are
used to identify the moving parts;

e  C(lassification: The extracted features are used as
inputs of an automatic classified to identify the type of
terrain. Machine learning techniques already proved to
be efficient for terrain classification [11], [12], [13].
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B. Static Textures

This section presents the proposed method for extracting
terrain’s static textures, based on the Gabor filter to be able
to choose multiple texture directions. This filter is the impulse
response formed by a multiplication of a sinusoidal signal with
a Gaussian envelope function and can be computed using the
following complex equation:
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Its real and an imaginary components can be obtained by
equations 2 and 3, respectively:
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These equations (1, 2 and 3) require as input parameters:

e x and y: Filter coordinates, where x represents the
columns and y the rows;

e Lambda ()\): Represents the sinusoid’s wavelength;
o  Theta (0): Defines the Gaussian envelope orientation;
e  Psi (1)): Symbolizes the phase offset;

e Sigma (0): Describes the Gaussian envelope size;

e Gamma (v): Reflects the shape of the ellipse in the
gabor filter space.

In this work we used only the real component of the Gabor
function (equation 2). After obtaining the multiplication of
a Gaussian with a sinusoidal function, i.e. the kernel of the
filter, it will be convolved with the original image (equation 6).
The result of the Gabor filter applied over a water surface is
presented in Figure 3.
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As can be seen in figure 3, it is possible to obtain the
texture of a water-type terrain when it is affected by the
downwash effect of the UAV. From the binarized image, a
vertical projection was made to see the singular features of
this terrain type (Figure 4).

From the observed vertical projection of water type terrain
(figure 4) it can be seen that it produces an undulatory effect
with a local minimum in the centre of the downwash. This
effect in water type terrains is due to the lower roughness
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Fig. 3. Example of a static texture extraction: a) Raw image; b) ¢) Convolution
with the Gabor filter 6-0 degrees (b) and 0-90 degrees (c); d) Sum of images
b) and c) after thresholding.

300

250

200

150

White Pixels

100

50

0 100 200 300 400 500 600
Width

Fig. 4. Vertical projection of the example in Figure 3.d.

in the centre of the downwash. However, due to the water
movement, around the centre a higher roughness is observed
(white pixels in the binarized image in figure 3.d). The next
step was to translate this observed feature into a computational
model.

By calculating the local maxima and minima of the vertical
projection in figure 3.d, it is possible to calculate a line (red
line in Figure 4) that most closely approximates these points.
A polynomial regression was used.

After obtaining this smoothed projection, new local minima
and maxima are calculated and used to obtain two features:
Area measured between the local minimum and its respective
two local maxima; and Integral between the local minimum
and its two respective local maxima. The first has the advantage
of being relative to minima and maxima values, while the
integral gives an absolute value and will vary for lower and
higher roughness.
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C. Dynamic Textures

This section presents the proposed method for extracting
dynamic terrain textures.

As mentioned in section IV, water-type terrain only ex-
hibit dynamic texture when exposed to the downwash effect.
However, in spite having a dynamic texture, when analysing
the optical flow it is never stronger than the dynamic observed
for sand and vegetation. As referred in section III, the optical
flow method can calculate the distance travelled by block
matching features in a given frame sequence. In this paper, the
Farneback algorithm [14] was used to detect the movement of
these features. One of the advantages to using the Farneback
algorithm 1is the direct flow, Fy , return of features between
two frames.

With the obtained flow is then used to calculate the distance
travelled (trajectory) by each feature in a sequence of frames:

Travelisiance = Y _ \/ Az (i) + By(i) @)
=2

where:

A, (i) = [&1 — 21 + Fap) )

By(i) = [y1 — i1 + Fa ) )

and z; and y; are the positions in x and y in the most
recent frame (n), x1 and y; are the initial positions (n = 1)
and Fy, and Fy, are the flow displacements between frames
n and n — 1. We used normalized x and y coordinates for the
calculations.

To eliminate features that did not move or were almost
static in a sequence of frames, we filtered those not exceeding
a pre-defined empiric threshold (1%). Then, knowing the
maximum number of features, we calculate the percentage of
dynamic features that appear in the image (equation 10). An
example is shown in Figure 5.

filtered features

-100% (10)

Dynamic =
Y feature Total features

D. Classification

To increase certainty and automate the classification of
the type of terrain, a machine learning technique was used,
namely a feed-forward neural network (NN). The architecture
of the designed neural network, was composed by two layers,
a hidden layer with 10 neurons and an output layer with 3
neurons (water, vegetation and sand). A sigmoidal function
was used as activation function and the final classification was
derived from the output neuron with highest activation value.

The training dataset was composed by 251 samples, from
which 70% were for training, 15% for testing and 15% for
validation. After training the NN, it was obtained 92.9%
accuracy with the training set and 93.8% with the test dataset.
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Fig. 5. Dynamic textures detection by Farneback algorithm and distance
travelled calculation. a) water; c) vegetation and d) sand.

V. EXPERIMENTAL RESULTS

To validate the proposed static and dynamic texture features
for terrain classification, a total 251 frames from several types
of terrains were used to validate the proposed system. From
these 90 frames were for water, 88 frames for vegetation and
73 frames for sand.

Regarding the static texture feature the area and integral
were calculated and displayed in Figure 6. It is possible to
observe a clear separation between water, vegetation and sand,
even with some outliers. In water type terrain, the three clusters
that can be noticed for the integral feature, were mainly due
to different water environments (lake and pool).
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Fig. 6.  Static Texture - Relation in area with respect to the integral of
minimum and maxima locals.

To validate the dynamic texture feature it was calculated
in a three frame period (n = 3) and plotted against the
area feature from the static texture. This feature shows the
same discriminant level to separate the different terrains. From
Figure 7, it can be seen that water type terrain obtained a lower
dynamic texture value (< 45%), which can due to a higher
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concentration of these dynamic features in the downwash
centre and outside hasn’t exceed the threshold. Sand and
vegetation shown a more uniform pattern, obtaining a higher
number of features. On average, sand presents a percentage
between 55% to 90%. Finally, vegetation with a percentage of
features between 90% and 100%, is the terrain with highest
dynamic texture, i.e., moving features.
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Fig. 7. Dynamic Texture - Relation in number of features with respect to
the integral of minimum and maxima locals.

Finally, these features were extracted from the figures 1.a-
f and shown to the neural network classifier, which outputted
the automated terrain classification. The extracted features and
the classification result is shown in Table I. As expected
the proposed features and classification method, shown good
results by classifying correctly all the six examples, reinforcing
the idea that a combination of static and dynamic texture can
be used to automatically extract terrain type from RGB images.

TABLE 1. EXPERIMENTAL RESULTS
Figure Static Texture Dynamic Texture Classification
Area (%) Integral (%) Number of Features (%)
1 1.44 8.32 32.88 water
2 1.55 7.59 36.70 water
3 0.01 27.42 98.32 vegetation
4 0.05 23.71 98.69 vegetation
5 0.24 14.67 63.74 sand
6 0.07 4.07 59.30 sand
VI. CONCLUSIONS

The main objective of this paper was to design a computer
vision system capable of extracting static and dynamic image
features, such as optical flow and texture features, to identify
the type of terrain with improved accuracy by taking advantage
of the the UAV’s rotors downwash pattern effect. For this, it
was necessary to conduct a research into detection methods
already implemented and of interest to this work.

Texture features, such as Gabor filtering (static textures)
and optical flow (dynamic textures), were studied to improve
terrain classification aiming the best possible performance.

We emphasize that by implementing the static textures
filter, vegetation-like terrains were found to have a higher
texture than sand and water type terrains. On the other hand,
water-type terrain, also presents a singular characteristic due
to the downwash effect provoked by the UAV, which can be
decisive to different it from other terrain types.
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