
An Improved Architecture of a Hardware

Accelerator for Factoring Integers with Elliptic

Curve Method

Michał Andrzejczak

Wojskowa Akademia Techniczna

ul. Urbanowicza 2, 01-489 Warszawa, Poland

Email: michal.andrzejczak@wat.edu.pl

Abstract—Elliptic Curve Method (ECM) is a well-known
method for factoring integers, which is usually used in the
Number Field Sieve algorithm as a subroutine for factoring
smaller integers than the targeted one. ECM is called many
times and can be executed in parallel for different inputs. This
method mainly consist of simple operations on elliptic curves.
Thus, ECM is suitable for hardware implementations that can
efficiently reduce computational time. This work describes a
new, improved FPGA-based hardware accelerator for ECM,
designed for large scale computations. Our accelerator can
operate with an on board ARM processor or with an external
host computer. This design can factor several numbers at once
and can be easily ported to various FPGA boards. Different
methods for improving results (e.g. the use of DSP blocks, cache-
registers, reorganizing instruction order) are described and their
performance is analyzed. As a result, one of the fastest hardware
ECM units is achieved.

I. INTRODUCTION

F
ACTORIZATION is one of the main hard problems used

in construction of cryptosystems. One of the most known

and the most popular cryptosystem based on factorization

problem is RSA. To the present day, several algorithms for fac-

toring integers have been developed and used in various cases.

The best algorithm for factoring integers with large factors

used in RSA is Generalized Number Field Sieve (GNFS) [2].

This method require to factor a lot of smaller numbers in

one of the main steps of the algorithm and the Elliptic Curve

Method can be efficiently used for this. ECM performs many

operations on a small data, requiring little memory and can

be run many times in parallel with the same probability of

factoring chosen number. Thus, special purpose hardware can

efficiently improve overall factorization time. In this paper an

improved architecture of a hardware accelerator for factoring

integers with Elliptic Curve Method (ECM) is presented.

Analysis of previous architecture is included and detected

weaknesses are described with potential improvements. At

the end, influences of several changes in initial design are

compared, with the best result more than three times better

than previously reported in literature.

II. ELLIPTIC CURVE METHOD

The ECM was proposed by H.W. Lenstra [1] (called Phase

1) in late 80’s and its principles are based on Pollard (p-1)

method. Later, ECM was extended and improved by Brent [3]

and Montgomery [4] (called Phase 2).

Let choose a field K with characteristic different from 2 and

3. The elliptic curve EA,B is the set of points (X,Y ) ∈ K
such that

Y 2 = X3 +AX +B

where A,B ∈ K and 4A3+27B2 6= 0 with a special point

OE = (0 : 1 : 0) called a "point at infinity".

For more efficient computer implementation, Montgomery’s

form of elliptic curve is recommended due to lack of number

inversion computation. Montgomery’s form can be obtained

from Weierstrass form presented above by following change

of the variables X → (3x + a)/(3b), Y → y/b, A → (3 −
a2)/(3b2), B → (2a3 − 9a)/(27b3). Homogeneous form of

this curve is:

by2z = x3 + ax2z + xz2

with the triple (x : y : z) represents the point (x/z :
y/z) in affine coordinates. Projective coordinates of curve in

Montgomery’s form allow all intermediate computations to be

performed using only x and z coordinate. The y coordinate can

be retrived from two others coordinates, but is not necessary

in ECM algorithm.

Let q be an unknown factor of N - the number being

factorized. The ECM starts with randomly selecting an elliptic

curve Ea,b and a random point on it. Computations are

performed modulo the number N , as if Z/nZ was a field.

First step of computations can be done just once. In this step,

product of all prime numbers and its powers is computed.

Most time consuming operation is done in second step, where

scalar multiplication of chosen point by computed product is

performed. In the last step, greatest common divisor of resulted

z coordinate and a factorized N is computed. Pseudocode for

ECM is shown in Listing 1.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 363–368

DOI: 10.15439/2018F197

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 363



Algorithm 1 ECM algorithm, phase 1

Require: a composite number N , random point P0 on random

elliptic curve E, integer bound B1

Ensure: a factor of N or fail
k ←

∏
p≤B1

plogp
B1

2: Q0 ← kP0;

q ← gcd(zQ, N);
4: if q > 1 then

return q
6: else

return fail
8: end if

A. Complexity of the ECM

The complexity of ECM is sub-exponential and is described

as:

O(n) = e
√
log p log log p

√

2+o(1)

M(logn)

where M(logn) is the complexity of multiplication mod n.

First part depends only on factors of the chosen integer.

The only way to speed up computations is to execute point

multiplication as fast as possible, so basically what this paper

is about.

III. INITIAL DESIGN

The initial design was proposed in [8]. The main idea of

that hardware accelerator is to spread as many as possible

autonomous ECM units in one FPGA chip. The ECM units

have Harvard architecture with separable instruction list and

data memory. Design can be described in three levels. First of

them, the top level, describe FPGA device and interconnec-

tions between main modules and external components. Lower

level is about design of ECM unit, interconnections between

memory, controllers and arithmetic modules. The last level

describes architecture and algorithms used in modules building

the ECM unit (modular multipliers, adders, controller).

A. Top level

FPGA

PC
ECM

ECM

ECM

Control 

unit

Fig. 1. Top level

In Fig. 1 the top level is shown. FPGA chip is filled by as

many ECM units as possible with one global control unit for

all of them, responsible for Montgommery Ladder execution,

communication with external PC and managing the work units.

Connected PC is used for random curves sampling and for last

stage of the algorithm, the gcd computation. It is done in this

way to maximize logic usage and simplify chip design. Many

independent ECM units allow better clock signal distribution.

FPGA is responsible only for point multiplication over elliptic

curve.

B. ECM level

Every ECM unit is equipped with internal memory, memory

controller, microprocessor and 4 arithmetic units (two for

modular multiplication, one for addition and subtraction) as

shown in 2. During initialization, every ECM unit need random

elliptic curve and random point over this curve. Provided

curves should be in Montgomery form and every coordinate

should be converted to Montgomery domain [5].

The memory controller is responsible for communicating

with two way memory bank. Loaded data words are con-

catenated and put into bus registers. This controller has also

internal semaphore table for preventing data override during

parallel execution and additional table for storing result ad-

dress of computed data.

The main controller has ROM memory for instruction and

can execute simple commands. Every instruction takes two

memory addresses for data input and one address for writing

result. There are 5 instructions:

• ADD - instruction used for addition

• SUB - used for subtraction

• MULA- multiplication by first unit

• MULB- multiplication by second unit

• LOADN- modulus read from memory

These instructions can be used to replace computation path

with computations over Edwards curves by simply reprogram-

ming the ROM table.

The ECM unit is equipped with two modular multiplication

unit which allow faster point multiplication. This idea was

taken from [6].The computation flow for point doubling and

addition in Montgomery form ([5]) is shown in Table I) and

uses two multipliers in parallel.

C. Module level

Modular multiplication is the most time consuming opera-

tion. During every point doubling/addition it is performed 11

times and this number can be reduced to 10. To obtain the

lower number of multiplications one coordinate of P0 must

be chosen arbitrarily to simplify computations by selecting

zP0 = zP−Q = 1. Thus, use of two modular multipliers

can increase total throughput. For multiplication, logic based

algorithm [7] was used. The aim of that was to have design

capable to be deployed on low cost devices without enough

DSP modules. This also save logic required for routing to

these modules in designs with high percentage of logic usage.

Implemented algorithm perform modular multiplication of n
- bit numbers in Montgomery form in n clock cycles. Mod-

ular reduction in Montgomery’s domain is based on efficient

hardware bit shift operation and was chosen due to very good

performance.

364 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Add SubMul 2Mul 1

Memory 

controller

Microcontroller

ROM

Memory

A
d
d
r 

C

A
d
d
r 

B

A
d
d
r 

A

COMMAND

R
E
A

D
Y

ADDR

DIN

DOUT

WR

RD

REG A

C
O

M
M

A
N

D

COMMAND
COMMAND

COMMAND

DATA BUS

STATUS 

BUS

REG C
REG B

Fig. 2. ECM level

TABLE I
ONE STEP OF SCALAR MULTIPLICATION IN CASE OF zP−Q = 1

Adder Substractor Multiplier 1 Multiplier 2

a1 = xP + zP s1 = xP − zP

a2 = xQ + zQ s2 = xQ − zQ m1 = s
2
1 m2 = a

2
1

s3 = m2 −m1 m3 = s1 · a2 m4 = s2 · a1

a3 = m3 +m4 s4 = m3 −m4 x2P = m1 ·m2 m6 = s3 · a24

a4 = m1 +m6 xP+Q = a
2
3

m8 = s
2
4

zP+Q = m8 · xP−Q z2P = s3 · a4

D. Comparision

Basic parameters of this design are shown in Table II in

comparison with other results reported earlier in literature.

The design was compiled for low cost Altera DE1-SOC board

equipped with Cyclone VCSEMA5F31C6 FPGA and for high

end Stratix IV targeted for high performance computing.

IV. ANALYSIS AND IMPROVEMENTS

The reported results for initial design are very competitive.

However, deep analysis of proposed solution indicates several

bottlenecks which may be improved to achieve much better

performance.

Fig. 3 shows data dependency graph for point multiplication.

Every arrow represents memory read operation and circles are

the arithmetic operations with result write to memory. Memory

controller is capable only to read from memory to one register

at once which result in doubling the same operation. Moreover,

data is loaded almost immediately after being write to memory

in several cases.

A. Memory improvements

Analysis of the simulation diagrams proved that memory

operations give one of the biggest slowdown on design. Every

arithmetic operation needs two load operations of operands

(which is done by sequential memory loads, concatenated at

the end) and one write operation of result, done in similar

manner. For 192-bit length numbers and 32-bit size memory,

communication overhead takes around 20 clock cycles for one

operation.

Simple solution for this problem is to increase memory base

size to decrease this overhead. Increasing memory base size

from 32-bits to 128-bits can decrease the number of memory

calls from 21 to 6 clock cycles. Size of the design increase

slightly with this improvements, further called opt1.

On the other hand, situation when one variable is loaded

twice in a row or written and read in next step is very common.

The first issue can be solved by expanding instruction set

by load instruction for two operands at once. Several cases

when the same data is loaded for two arithmetic units can be

improved by splitting arithmetic instructions for more atomic

operations. Instead one arithmetic instruction, where attributes

are addresses in memory, we use load to register instructions

and execute arithmetic operation instruction (without any

arguments). .

The second issue needs additional cache registers for tem-

porary results. Adding these registers slightly increases design

size, but offered overall performance by FPGA chip is im-

proved. With this change it is possible to replace order list.

New orders can be more atomic. With atomic instructions the

program size increase, but there is no need in memory con-

troller to be responsible for parallel data access. 4 temporary

registers were added to design. With these registers and with

direct result to input operation, memory usage is limited only

MICHAL ANDRZEJCZAK: AN IMPROVED ARCHITECTURE OF A HARDWARE ACCELERATOR FOR FACTORING INTEGERS 365



TABLE II
RESULTS OF THE IMPLEMENTATION COMPARED WITH OTHERS REPORTED IN LITERATURE

Author: Gaj [6] Gaj [6] Zimmermann [11] Zimmermann [11] de Meulenaer [10] Andrzejczak [8]

Device: S35000 V4LX200 V4SX35 XC4VSX35 XCV4SX25 SGX530

Number length: 198 - bit 198 - bit % 202 - bit 134 - bit 135 - bit 192 - bit

Max. number of modules 13 24 24 24 1 96

Max. clock freq. 80 MHz 104 MHz 200 MHz 200 MHz 220 MHz 150 MHz

Clock cycles in phase 1 1 666 500 1 666 500 1 473 596 797 288 13 750 2 101 400

Time for phase 1 21 ms 16 ms 7.37 ms 3.99 ms 63 s 14 ms

Curves/sec: 624 1 448 3 240 6000 16 000 6822

Fig. 3. Data computation graph for point multiplication

to load first coordinates for first bit of ladder and load one

coordinate (a24) for every bit. The intermediate results can

be stored in these 4 additional temporary registers or can be

directly passed to input of another arithmetic unit. The saved

memory can be used in Phase 2 to store more pre computation

results and improvements from opt1 are less significant in

overall result and are not included in this design, called opt2

Instructions have no longer the same format. Arithmetic

instructions are not taking any arguments, they operate on data

provided to special input registers loaded earlier. Extended

instruction set with description is shown in Table III

TABLE III
EXTENDED INSTRUCTION SET WITH FORMAT DESCRIPTION

Name Description

RLOAD Load data from one register to another one.

Can be used to load data for two registers at once

MLOAD Memory load to one or two registers

MULA Start multiplication in unit A

MULB Start multiplication in unit B

ADD Start addition

SUB Start subtraction

WAITFOR Waits for end of computation in selected module

After memory operation optimization and with the new

instruction set, data computation graph is changed. Fig. 4

presents improved data computation graph. All coordinates

loaded from memory are marked by gray color and correspond

to first improvement. Second improvement is presented with

red circles marking data loaded for different modules in one

load operation. Double loads for integer squaring or doubling

are marked by one pointer. Values stored in temporary registers

are marked with dots.

B. Multiplication unit replacement

The other way to increase number of checked elliptic

curves is to speed-up multiplication computation. The modular

multiplication based on logic gates takes n clock cycles and

to decrease this number DSP multiplication algorithms should

be used. Algorithm for modular Montgomery multiplication

proposed by Itoh [9] was selected. Multiplier is parametrized

by radix and multiplication is performed in n2 steps, where:

n =
number length

radix

Optimal selection of radix is crucial for overall performance.

Bigger radix needs more DSP (Digital Signal Processing)

blocks used for integer multiplication. The size of multiplier

(in Logic Elements) increase as increase the number of DSP

blocks needed, because of longer paths used to route signals to

these blocks. The best results have been achieved for radix 32,

requiring only 3 DSP blocks per multiplication and executing

366 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



TABLE IV
IMPROVEMENTS COMPARISION

Parameter Initial opt1 opt2 opt3 Stratix IV opt3

Logic: 30 060 31 394 30 982 25 566 372 951

Logic usage(%): 97 % 98 % 97 % 80 % 92 %

DSP: - - - 66 654

Max. clock freq. 88 MHz 88 MHz 85 MHz 90.1 MHz 151 MHz

Num. of Units 10 10 9 11 109

Clock cycles per bit 1580 1374 1215 481 481

Clock cycles in phase 1: 2 101 400 1 827 420 1 615 950 639 730 639 730

Curves/sec: 418 480 473 1546 25 557

Improvement factor: 1 1.14 1.13 3.69 3.72

Fig. 4. Data computation graph for improved point multiplication

in 54 clock cycles. Bigger radix significantly decrease the

maximum clock frequency, due to longer propagation paths

and require more DSP block, which lead to higher logic

utilization. Variant with shorter radix executes in more clock

cycles and leave many DSP blocks unused in global view.

The replacement of multiplication algorithm saved around

150 clock cycles per each call of this function. Two modules

are used at once, so in general around 750 clock cycles

are saved compared to previous used logic based algorithm.

Moreover, DSP-based module requires less logic element and

Quartus Prime compiler was able to fit one more ECM unit

in targeted Cyclone V device. For 11 ECM units the compiler

needs 25 566 ALM (Adaptive Logic Modules) which is 80%

of all available resources. Adding one more ECM unit is not

possible. For 12 ECM units compiler can not place all of

them close to hardware multipliers, so longer routing path are

needed. For targeted Cyclone V, 33 091 ALM is required and it

is above 100% of available resources. Multiplier replacement

is called opt3

Improvements were implemented incrementally. Every next

design contains improvement from previous versions. Table

IV compares results of constructed modules. The last column

contains compilation data for Stratix IV GX530, used to check

throughput of initial design. This one is much bigger than the

low cost Cyclone V and can be used in practice to factorize

numbers in GNFS. Achieved results are 3.72 times better than

at the beginning. The total number of sieved curves is the

highest one from reported in literature.

V. CONCLUSIONS

An improved hardware architecture for factoring integers

has been presented. Careful analysis of algorithm and hard-

ware design lead to architectural changes resulting 3.72 times

faster device. The most efficient was the change of multiplica-

tion algorithm, which reduced almost half of the total number

of computations. Additional temporary registers may be more

significant for total computation time if the base of memory

was not increased and memory operations will still take almost

four times more. With all improvements combined, the fastest

architecture is obtained.

Recently Intel introduced new more powerful devices called

Stratix 10. Further works will adapt described design for new

devices. Preliminary simulations shows around 180 thousands

curves per second for one of the biggest devices from the new

family.

REFERENCES

[1] H. W. Lenstra, “Factoring Integers with Elliptic Curves” Annals of

Mathematics, vol. 126, no.2, pp. 694–673, 1985.

MICHAL ANDRZEJCZAK: AN IMPROVED ARCHITECTURE OF A HARDWARE ACCELERATOR FOR FACTORING INTEGERS 367



[2] A. K. Lenstra and H. W. Lenstra, “The Development of the Number
Field Sieve” Lecture Notes in Math, Volume 1554, 1993.

[3] R. P. Brent, “Some integer factorization algorithms using elliptic curves,”
Australian Computer Science Communications, vol. 8, pp. 148-163,
1986.

[4] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of
factorization,” Mathematics of Computation, vol. 48, pp. 243-264, 1987.

[5] P. L. Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation,, vol. 44, pp. 519-519, 1985.

[6] K. Gaj et al., “Area-time efficient implementation of the elliptic curve
method of factoring in reconfigurable hardware for application in the
number field sieve,” IEEE Transactions on Computers, vol. 59, pp. 1264-
1280, 2010/9

[7] K. Gaj, M. Huang, S. Kwon, T. A. El-Ghazawi, “An Optimized
Hardware Architecture for the Montgomery Multiplication Algorithm,”

Public Key Cryptography, , 2008
[8] M. Andrzejczak, “Koprocesor kryptograficzny wspierajacy faktoryzacje

liczb metoda krzywych eliptycznych,” [Konferencja mlodych naukow-
cow wiwat 2017, Falenty, Polska, 2017], in press.

[9] K. Itoh, M. Takenaka, N. Torii, S. Temma, Y. Kurihara “Fast Implemen-
tation of Public-Key Cryptography on a DSP”, [Cryptographic Hardware
and Embedded System], 2002.

[10] G. de Meulenaer, F. Gosset, G. de Dormale, J. Quisquater, “Integer Fac-
torization Based on Elliptic Curve Method: Towards Better Exploitation
of Reconfigurable Hardware”, [15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2007)], Napa, CA,
2007, pp. 197-206.

[11] R. Zimmermann, “Optimized Implementation of the Elliptic Curve Fac-
torization Method on a Highly Parallelized Hardware Cluster”, Master
Thesis, TU Braunschweig, 2009 r.

368 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


