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Abstract—In this paper, we present a non-deterministic strat-
egy for searching for optimal number of trees hyperparameter in
Random Forest (RF). Hyperparameter tuning in Machine Learn-
ing (ML) algorithms is essential. It optimizes predictability of an
ML algorithm and/or improves computer resources utilization.
However, hyperparameter tuning is a complex optimization task
and time consuming. We set up experiments with the goal of
maximizing predictability, minimizing number of trees and min-
imizing time of execution. Compared to the deterministic search
algorithm, the non-deterministic search algorithm recorded an
average percentage accuracy of approximately 98%, number
of trees percentage average improvement of 44.64%, average
time of execution mean improvement ratio of 175.62 and an
average improvement of 94% iterations. Moreover, evaluations
using Jackknife Estimation show stable and reliable results from
several experiment runs of the non-deterministic strategy. The
non-deterministic approach in searching hyperparameter shows
a significant accuracy and better computer resources (i.e cpu
and memory time) utilization. This approach can be adopted
widely in hyperparameter tuning, and in conserving utilization
of computer resources like green computing.

I. INTRODUCTION

M
L performance tuning is aimed at improving the pre-

dictability of ML algorithms. Improving performance

of a ML systems can be done by configuring a set of hyper-

parameters. Most ML algorithms have several hyperparameters

to be configured. Hyperparameters specify the interoperabil-

ity of the underlying model. ML algorithms hyperparameter

tuning is aimed at getting optimal values that can improve

the algorithm’s predictability considering minimum consump-

tion of computer system resources [6]. When adopting ML

algorithm to a specific dataset, hyperparameter tuning can be

cumbersome and time consuming [13].

Manual, grid search and bayesian optimization are methods

of hyperparameter optimization. Grid search is deterministic.

It does an exhaustive search. It uses a predefined parameter

space S = {0, 1, 2, ..., n}. The goal is to search an optimal

hyperparameter s in S that records an optimal accuracy. Grid

search consumes substantial amount time and is computation-

ally expensive. However, it gives accurate results [4]. Manual

search involves randomly selecting a value s in S. The value

s is configured in the algorithm, the experiment executed and

the accuracy observed. The process is repeated comparing the

accuracy. The hyperparameter that records the optimal accu-

racy is selected. Manual search is cumbersome and difficult

to reproduce results [1]. Bayesian optimization stochastically

and efficiently trades off exploration and exploitation of the

parameter space. It also explores historical information to

find the parameters that maximize functions to inform user

the configurations that best optimize predictability of the ML

algorithm [5].

This paper introduces a non-deterministic search algorithm.

The algorithm randomly selects 10% of elements in a param-

eter space. It then uses heuristics and termination conditions

to maximize accuracy (acc) and minimize time of execution

(t). This algorithm was applied and tested in selecting optimal

number of trees (θ) in random forest (RF). In this paper, Sec-

tion II covers related works, Section III discusses methodology

and Section IV concludes this paper.

II. RELATED WORKS

In the paper by Hazan et al. (2017), large scale machine

learning systems at times involves large number of parameters

that are fixed manually. This is time consuming and at times

inaccurate and difficult for a human expert. A hyper-parameter

optimization strategy is proposed inspired by analysis of

boolean function focusing on high-dimension datasets. The

algorithm is an iterative application of compressed sens-

ing techniques for orthogonal polynomials. The algorithm is

tested in deep neural networks. In terms of running time,

the algorithm records at least an order of magnitude faster

than Hyperband and Bayesian Optimization and outperform

Random Search 8x [Hazan et al., 2017]. Hazan et al. (2017)

guides this work as they develops an algorithm and tests it

in another algorithm; their algorithm establishes heuristics for

reducing the search space.

Experiments showed that accuracy increased when number

of trees in RF was doubled. However, there was a threshold

beyond which there was no significance gain in accuracy.

Therefore, increasing number of trees does not always mean
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a better performance can be attained [15]. We note that,

there was no significant variable that used to measure use of

computing resources consumed when varying number of trees.

MapReduce was used to optimize regularization parameters

for boosted trees and random forests (RF). For RF[2], two

parameters were tuned: the number of trees in the model and

the number of features selected to split each node. Experiments

showed that performance was sensitive to the number of

trees but less sensitive to the number of features in each

split. Results showed that MapReduce could make parameter

optimization feasible on a massive scale. However, it created

possibilities for overfitting that could reduce accuracy and lead

to inferior learning parameters [6].

In the technical report by [3], they discuss manually setting

up, using and understanding RF. They note that RF grows trees

rapidly and setting up a large number of trees (e.g. 1000) is

okay. They further note that, if there are many variables, they

can grow more trees (of up-to 5000) Beiman, (2003). From

this work we can set up experiments with variable number of

trees and see their effects on computing resources.

ML algorithms often involve careful tuning of learning

parameters and model hyper-parameters. Parameter tuning is

often a "black art" that requires expert experience, rules of

thumb or sometimes brute-force search. To solve this problem,

the following techniques were used: a full Bayesian treatment

expected improvement, and algorithms (e.g ANN) for deal-

ing with variable time regimes and running experiments in

parallel. Results of this experiment surpassed a human expert

at selecting hyper-parameters on the competitive CIFAR-10

dataset; beating the state of the art by over 3%. SVM was

used as a case study algorithm [13].

A novel idea for approximate tree learning is seen in

sparsity-aware algorithm for sparse data and weighted quantile

sketch. The algorithm (XGBoost) proposes candidate splitting

points according to percentiles of feature distribution, then

maps the continuous features into buckets split, aggregates

the statistics and finds the best solution among proposals

based on the aggregated statistics. The algorithm also provides

an insights on cache access patterns, data compression and

sharing to build a scalable tree boosting system. The algorithm

has been widely used and recognized in machine learning and

data mining challenges e.g. Kaggle and KDDCup 2015. The

algorithm can be applied to machine learning systems and in

solving real-world scale problems using a minimal amount of

resources [4].

Optimizing parameters of an evolutionary algorithm values

is a challenging activity. CMA-ES tuning algorithms gave

better results in terms of utility, in evolution algorithms.

It is noted that using algorithms for tuning parameters of

evolutionary algorithms does pay off in terms of performance.

However, tuning algorithms gave better tuning parameter val-

ues than relying on intuitions and the usual parameter setting

conventions [14].

It is challenging to create a large dataset and improve train

ability of deep neural network models (DNNs). A selection

of supplemental training datasets was used in fine-tuning

a high-performing neural network model. Natural Language

Processing system ability is improved after being evaluated

by the Item Response Theory ability scores without negatively

affecting generalization due to overfitting [9].

Large scale machine learning systems at times involve large

number of parameters that are fixed manually. This is time

consuming and at times inaccurate and difficult for a human

expert. A hyper-parameter optimization strategy is proposed

inspired by analysis of boolean function focusing on high-

dimension datasets. The algorithm is an iterative application

of compressed sensing techniques for orthogonal polynomials.

The algorithm is tested in deep neural networks. In terms

of running time, the algorithm records at least an order of

magnitude faster than Hyperband and Bayesian Optimization

and outperform Random Search 8x. The algorithm requires

only uniform sampling of the hyperparameters and is easily

parallelizable [7].

In the department of Soil Survey in Kenya Agriculture and

Livestock Research Organization (KALRO) [10] and other soil

research organizations, land evaluation is done manually, is

stressful, takes a long time and is prone to human errors

[11][12]. Parallel RF experiment prototypes are set up in

[11] and further experiments in [12]. Parallel RF, Linear

Regression, Linear Discriminant Analysis, KNN, Gaussian

Naive Bayesian and Support Vector Machine are applied

in predicting land suitability for crop (sorghum) production,

given soil properties information. Parallel RF had a better

accuracy of 0.96 and time of execution of 1.7 sec [12].

Besides assertions regarding performance reliability of de-

fault parameters in RF, many RF experiments fit using these

values. An examination of parameter sensitivity of RF in

computational genomic was studied. Experiments were eval-

uated using Area Under Curve (AUC), Root Mean Square

Error (RMSE) and cross-fold validation. It was seen that RF

performance was strongly affected by number of trees, sample

size and number of random variables used at each split. It

was noted that tuned RF gave better results than when default

parameters/values are used. Effects of parameterization were

analyzed using selection methods and showed that tuning can

successfully improved prediction accuracy of non-parametric

ML algorithms [8].

III. METHODOLOGY

In this research, we considered 14 standardized datasets col-

lected from UCI Machine Learning website, namely: Balance

Scale (1), Breast Cancer Wisconsin - Original (2), Car Eval-

uation (3), Habermans Survival (4), Pen-Based Recognition

of Handwritten Digits (5), Website Phishing (6), Yeast (7),

Banknote Authentication (8), Contraceptive Method Choice

(9), Diabetic Retinopathy Debrecen (10), EEG Eye State (11),

Pima Indians Diabetes (12), Wine Quality - White (13) and

Wine Quality (14). In each dataset, we used simple random

sampling without replacement strategy to sample 10% of

elements in the search space. All experiments were run 10

times and results averaged. Number of trees (θ) was varied

accordingly as we measured accuracy (acc) and time of
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execution (t). The computer had the following specifications:

Intel(R) Xeon(R) CPU W3505 @ 2.53GHz x 2.

A. Considering 2 to 4096 Number of Trees

We considered a finite set of sorted number of trees in

the parameter space. RF predictability was evaluated by acc

defined in equation 1 with n samples, where ŷi is the predicted

label and yi is the original label. The results of acc and t are

tabulated in Tables I and II respectively.

acc(y, ŷ) =
1

n

n−1∑

i=0

1(ŷi = yi) (1)

Table I shows a general trend of accuracy increasing steadily

with increase in number of trees, then flattens. RF classi-

fication employs bagging principles, where a committee of

trees each, cast a vote for the predicted class. However, RF

classifier introduces modifications in bagging where it builds

a large collection of de-correlated trees, and then averages

them. When the number of trees become huge, we see RF

accuracy varying insignificantly meaning the average accuracy

of de-correlated trees varying insignificantly. Average accuracy

varies because of the random nature of RF, for example,

randomly selecting features when building trees. We further

observed an interesting trend in the number of trees against

accuracy; increasing the number of trees does not significantly

contribute to a positive accuracy. The maximum accuracy

values are in bold, in Table I. Moreover, we see 13 out of

the 14 dataset’s maximum accuracy values found between 2
and 512 trees. Dataset 6 with 2048 number of trees recorded an

accuracy of 88.7% and 6.42 seconds. It’s second best accuracy

is 88.4% with 0.89 seconds observed at 256 number of trees.

In this case, we think 256 number of trees is better because

the change in accuracy rather insignificant (-0.3) while it runs

faster (approximately 7x faster). Generally, we observed better

results between 2 and 512, and we assume these results can

be extended to other datasets. We call the region between 2
and 512, the fertile region.

Table II shows a general trend of time of execution increas-

ing steadily with increase in number of trees. This tells us that

more number of trees demand more computing resources. We

also observed a relative significant change in time of execution,

the threshold values are in bold. Generally, after 64 number of

trees, we see a significant change in time difference. Increase

in number of trees increases time of execution. More number

of trees requires more computer resources to build and average

the de-correlated trees in RF.

Different datasets give different values of accuracy and time

of execution with the same number of trees. The selected

datasets have different complexity i.e dimensionality, number

of records and classes. This leads to a variation in accuracy and

time of execution. For us to have an optimal number of trees

hyperparameter in RF classifier, it is important we consider

maximizing accuracy and minimizing number of trees.

However, we see the 6th dataset maximum accuracy of

88.7% and time of execution of 6.42 seconds being out of the

fertile region i.e 2048 number of trees. As per our experiments,

this is a probability of 0.07 i.e 1 out of 14 datasets can exhibit

this. The second best accuracy of 87.9% is observed in the

fertile region i.e 128 number of trees with 0.5 seconds time of

execution. In such instances, we can compromise accuracy to

get a better time of execution, for this case, we compromise

0.8% accuracy to gain 5.92 seconds.

B. Considering 2 to 512 Number of Trees

In the fertile region, we observed lower time of execution

and maximum accuracy, therefore, we will have avoided

searching out regions (> 512) that show higher time of exe-

cution and significantly same or lower accuracy. We defined a

finite set of sorted number of trees from the parameter space θ.

We configured, trained and tested RF with the respective θ and

recorded acc and t. The results are show in Fig. 1 and 2. Fig.

1 is a box plot of accuracy for number of trees against datasets

across 14 datasets in the fertile region. Most datasets had a

low inter-quartile range, low difference between the low and

maximum points and more outliers below the lower whiskers.

Some box plots also recorded some outliers above the upper

whisker. A low difference in quartile ranges means there was

a low variation in accuracy from the median and 50% of the

accuracy records are within this region. However, the outliers

inform us that, some maximum accuracy values were very far

away from the median and some lowest accuracy values were

very far away from the median. The goal of any data scientist

is to have the maximum accuracy when configuring RF with

a specific number of trees. Nonetheless, we see variations in

accuracy on different datasets, i.e. different datasets record

different accuracy levels. This make the search problem more

difficult because we need to have a strategy that will be

dynamic to search the best accuracy in different datasets. This

research was interesting in finding number of trees (i.e. the

outliers in the upper whisker) that maximize accuracy.

Fig. 2 is a box plot of time of execution of number of trees

against datasets across 14 datasets in the fertile region. We see

the lower whisker having almost the same time of execution.

This means there are some number of trees that could give

almost the same minimum time of execution when configured

in RF. We also see the lower whiskers being shorter than the

upper whiskers. A shorter lower whisker means most lower

time of executions were closer to the median. This research

was interesting in these number of trees that minimize time of

execution.

From these analysis, we formulated deterministic, non-

deterministic and automatic configuration (having 8 number of

trees by default) algorithmic approaches in searching optimal

number of trees hyperparameter in the fertile region.

C. Deterministic Hyperparameter Search

Deterministic search algorithm is defined in equation 2. We

developed a deterministic hyperparameter search algorithm

from equation 2 as outlined in Algorithm 1. We considered

number of trees θ, time t and accuracy acc descriptions and

results from Section III-B. The deterministic hyperparameter

search algorithm’s goal is to maximize acc and minimize θ.
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Table I: Accuracy (percentage) of RF with θ trees for 14 datasets (DS)

DS Number of Trees
2 4 8 16 32 64 128 256 512 1024 2048 4096

1 80.3 81.9 83.0 82.4 84.6 85.6 84.6 84.0 84.0 84.0 84.6 84.6
2 91.7 93.7 97.1 98.0 97.6 97.6 97.6 97.1 97.1 97.1 97.1 97.1
3 86.3 85.5 83.6 83.8 84.8 84.4 84.6 84.4 84.8 84.8 84.6 84.6
4 76.1 79.3 75.0 76.1 79.3 79.3 78.3 78.3 78.3 79.3 78.3 79.3
5 92.5 96.8 98.3 98.6 98.4 98.9 99.0 99.1 99.0 99.1 99.1 99.1
6 81.5 86.9 86.2 87.4 85.7 87.4 87.9 88.4 87.7 87.9 88.7 88.2
7 48.6 47.8 52.9 57.3 56.5 59.5 59.8 58.8 58.8 58.5 58.5 58.8
8 96.6 97.8 97.6 97.6 97.3 97.6 97.8 97.8 98.1 97.8 97.8 97.8
9 46.4 48.4 49.1 51.6 49.5 49.8 51.1 49.5 50.7 51.4 50.9 51.1
10 61.3 64.7 65.3 65.0 69.9 66.5 67.6 67.9 68.2 67.1 67.9 67.3
11 77.9 84.2 87.9 89.3 91.3 92.7 92.0 92.2 92.2 92.1 92.3 92.2
12 66.7 71.0 74.9 74.5 76.6 76.6 76.6 75.8 77.5 76.6 77.1 77.1
13 54.9 59.4 64.7 64.6 65.7 65.9 67.1 67.3 67.1 66.6 67.3 67.4
14 54.4 69.7 63.3 67.3 69.2 69.2 69.6 70.2 69.8 69.2 69.8 69.8

Table II: Time of execution (sec) of RF with θ trees for 14 datasets (DS)

DS Number of Trees
2 4 8 16 32 64 128 256 512 1024 2048 4096

1 0.21 0.21 0.22 0.23 0.25 0.30 0.51 0.90 1.60 3.29 6.49 12.45
2 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.59 3.09 5.98 12.35
3 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.80 3.39 6.79 13.57
4 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.80 1.60 3.30 5.99 12.06
5 0.21 0.21 0.22 0.23 0.26 0.41 0.60 1.10 2.20 4.01 8.23 15.87
6 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.89 1.89 3.46 6.42 13.14
7 0.21 0.21 0.22 0.23 0.26 0.30 0.50 1.00 1.88 3.71 7.13 14.06
8 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.69 3.17 6.64 12.76
9 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.89 3.47 6.95 13.70
10 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.79 3.47 6.93 14.41
11 0.21 0.21 0.22 0.33 0.46 0.71 1.20 2.40 4.70 9.18 18.27 36.62
12 0.21 0.21 0.22 0.24 0.25 0.30 0.50 0.79 1.68 3.46 6.43 12.64
13 0.21 0.21 0.22 0.23 0.25 0.51 0.70 1.40 2.69 5.28 10.45 21.20
14 0.21 0.21 0.22 0.23 0.25 0.40 0.60 1.10 2.09 3.76 7.33 14.96

We note that, ∃accmax ∈ acc that has θbest. The deterministic

search algorithm is exhaustive, i.e., it does a linear search and

returns accmax, with θbest and the time needed t. Experiment

results are tabulated in Tables III, IV and V.

θ∗best, acc
∗
best = argmax

θ∈T

Q̂ (θ, acc) (2)

Algorithm 1 The Deterministic Hyperparameter Search

1: procedure DETERMINISTICSEARCH(train, test)

2: ti ← CURRENTTIME()

3: T ← [θ1, θ2, θ3, . . . , θn]
4: accmax ← 0
5: for each θ in T do

6: rf ← RANDOMFOREST(θ, train)
7: accnew ← ACCURACY(rf, test)
8: if accnew > accmax then

9: (accmax, θbest)← (accnew, θ)

10: time_spent← CURRENTTIME()− ti
11: return (accmax, θbest, time_spent)

D. The Non-Deterministic Hyperparameter Search Algorithm

In this research, we were interested in maximizing accuracy

and minimizing number of trees. Tables 1 and 2 shows almost

the same accuracy but with different time of execution. Table

2 shows more NoTs require more ToE (i.e. memory and

cpu time). With this analogy, this research formulated a non-

deterministic search approach to converge close/to maximize

accuracy and minimize number of trees and save time of

execution. The algorith is outlined Algorithm 2, where θi =
random(∈ T ), ψ1 = 1 + lim

100
, and ψ2 = 1− lim

100
.

We considered θ, acc and t descriptions and results from

Section III-B. The goal of this algorithm was to maximize acc

and minimize t through randomization. In this algorithm we

assumption that, ∃accbest ∈ acc that has θbest. Note that the

function GENERATE( ) returns 26 elements which is approx-

imately 10% of elements in the parameter space. We iterate

through the random selected number of trees as we configure

RF. We considered percentage upper bound and lower bound

of the accbest. If accrand falls in the upper boundary, then

accbest ← accrand, θbest ← θrand and we break, with the

assumption that we do not anticipate further percentage ∆
accbest. If accrand falls in the lower boundary and θrand is

less than θbest, then accbest ← accrand, θbest ← θrand and we

also break, with the assumption that we have an insignificant

∆ accbest and we have a better tbest. Moreover, if accrand falls

above the upper boundary, then accbest ← accrand, θbest ←
θrand, and we continue looping with the assumption that
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Fig. 1. Number of trees (many) against datasets of Accuracy in RF for 14 Datasets

Fig. 2. Number of trees (many) against datasets of Time of Execution in RF for 14 Datasets

KENNEDY SENAGI, NICOLAS JOUANDEAU: A NON-DETERMINISTIC STRATEGY FOR SEARCHING OPTIMAL NUMBER 77



we anticipate further percentage ∆ accbest. Lastly, we break

when iteration counts are 10% of the parameter space, with

the assumption that we have uniformly sampled the whole

parameter space. We set the percentage boundary as 1%
to increase the algorithm’s accuracy. Experiment results are

tabulated in Tables III, IV and V.

Algorithm 2 The Non Deterministic Hyperparameter Search

1: vals = []
2: procedure GENERATE()

3: while LEN(vals) ≤ 26 do

4: val = 2 + rand()%512
5: if val is not in vals then

6: add val in vals

7: return val

8: procedure NONDETERMINISTICSEARCH(train, test)

9: ti ← CURRENTTIME()
10: accrand, θrand, accbest, θbest, count← 0
11: T ← GENERATE( )
12: for each θrand in T do

13: rf ← RANDOMFOREST(θrand, train)
14: accrand ← ACCURACY(rf, test)
15: if count == 0 then

16: (accbest, θbest)← (accrand, θrand)

17: if ψ1.accbest > accrand > ψ2.accbest then

18: if accrand < accbest then

19: if θrand < θbest then

20: (accbest, θbest)← (accrand, θrand)
21: break

22: else

23: (accbest, θbest)← (accrand, θrand)
24: break

25: else if accrand > ψ1.accbest then

26: (accbest, θbest, count)← (accrand, θrand, 0)

27: count← count+ 1
28: if count >= 10 then break

29: time_spent← CURRENTTIME()− ti
30: return (accbest, θbest, time_spent)

E. Determinstic and Non-Deterministic Hyperparameter

Search Algorithms, and Auto-Configured RF

Table III contains results and analysis of minimum num-

ber of trees selected by deterministic and non-deterministic

hyperparameter search algorithms. We see a considerably

good percentage improvement of number of trees in the

non-deterministic search algorithm. At some instances, for

example, in datasets 8 and 13, the non-deterministic search

algorithm was able to perfectly converged to the minimum

number of trees with 26 and 2 iterations respectively. In

some datasets e.g dataset 1, the percentage number of trees

improvement was poor. Moreover, as observed in Table III,

50% of the datasets used less than 50% (i.e. less than 5%

of random values in the search space) of random values

while iterating, to converge close/to maximum accuracy and

minimum number of trees. With this observation, in some

cases, we can have an assumption that sometimes increasing

the search space would not have much scientific significance.

Generally, the percentage number of trees improvement was

44.6% and the average number of iterations used were 14.5.

Table IV has results and analysis of accuracy recorded from

running deterministic, non-deterministic and auto-configured

RF algorithms. The auto-configured RF had a mean percentage

difference -5.46 while the non-deterministic search algorithm

had a considerably better percentage change of -2.1. In non-

deterministic search algorithm, datasets 2, 8 and 13 recorded

a zero percentage change in accuracy. 50% of the datasets

recorded a percentage change of more than 1%.

Table V has results and analysis of time of execution of de-

terministic and non-deterministic search algorithms, and auto-

configured RF. The ratio of deterministic:non-deterministic al-

gorithms and deterministic: auto-configured RF are calculated.

Their averages are also calculated. Both auto-configured RF

and non-deterministic algorithm record a very high average

ratio of 5623 and 176 respectively.

As discussed in Section III-C, the deterministic search

algorithm is exhaustive and selects the minimum number of

trees that has the maximum accuracy. With these results, we

benchmark the non-deterministic search algorithm and auto-

configured RF. The non-deterministic search algorithm, as

discussed in Section III-D, uses the principle of randomization,

heuristics and terminating policies as outlined in Algorithm

2. With this strategy, the non-deterministic search algorithm

recorded ≈ 98% average accuracy, and could run at an average

of 175.62 faster, on an average of 14.5 iterations. Using

the strategy formulated in Algorithm 2, the non-deterministic

search algorithm recorded 100% accuracy at three instances

and recorded zero number of trees percentage improvement

on two instances. Moreover, in the non-deterministic search

algorithm, we recorded number of trees that are below the

number of trees threshold (64 trees), that showed a significant

change in time of execution, as discussed in Section III-A. This

means the formulated strategy worked quite well. Considering

dataset 2, we note that 0% percentage accuracy change, was

got with more number of trees (48 trees instead of 46 trees)

but at 34.8 times faster. These shows 100% accuracies got,

at more number trees but takes a shorter searching time.

This makes the strategy formulated in this research more

relevant. Despite the 1% boundary policy and breaking policies

strategies, 50% of the datasets recorded less than 1% change in

percentage accuracy. The other 50% scored fairly good results

too. Generally, a shorter time of execution means the process

will take a shorter time in memory and shorter cpu time, when

tuning RF. We see the non-deterministic search algorithm run

≈ 175 faster on average, achieving an average of ≈ 98%

accuracy, on an average of 5.6% iterations (i.e 14.5 of 256

iterations in the parameter space). This is an improvement in

iterations by 94.4%. Therefore, the non-deterministic search

algorithm can improve utilization of computing resources

while maintaining a significant accuracy.

Auto-configuring (having 8 number of trees by default) RF
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Table III: Recorded minimum number of trees (θbest) and itera-

tions for deterministic and non-deterministic search algorithms

across 14 datasets (DS), and their mean (µ)

DS Deterministic Non-Deterministic
θbest θbest θ % improvement Iteration

1 26 32 -23.08 5
2 46 48 -4.35 26
3 116 46 60.34 26
4 70 18 74.29 26
5 48 16 66.67 26
6 216 26 87.96 26
7 118 34 71.19 3
8 44 44 0.00 26
9 48 42 12.50 2
10 18 10 44.44 4
11 196 50 74.49 26
12 164 10 93.90 2
13 46 46 0.00 2
14 150 50 66.67 3

µ 93.28 33.71 44.64 14.5

Table IV: Maximum accuracy (accbest) recorded across 14
datasets (DS), and their mean (µ)

DS Deterministic Auto-Configured Non-Deterministic
accmax accbest % ∆ accbest % ∆

1 0.862 0.819 -4.99 0.856 -0.70
2 0.976 0.971 -0.51 0.976 0.00
3 0.850 0.846 -0.47 0.846 -0.47
4 0.815 0.761 -6.63 0.804 -1.35
5 0.993 0.973 -2.01 0.990 -0.30
6 0.897 0.855 -4.68 0.887 -1.11
7 0.601 0.552 -8.15 0.593 -1.33
8 0.985 0.976 -0.91 0.985 0.00
9 0.538 0.480 -10.78 0.505 -6.13
10 0.711 0.627 -11.81 0.682 -4.08
11 0.925 0.890 -3.78 0.919 -0.65
12 0.797 0.740 -7.15 0.736 -7.65
13 0.681 0.636 -6.61 0.681 0.00
14 0.710 0.654 -7.89 0.679 -4.37

µ 0.81 0.77 -5.46 0.80 -2.10

Table V: Time of execution (sec) recorded across 14 datasets

(DS), and their mean (µ)

DS Deterministic Auto-Configured Non-Deterministic
i (sec) t (sec) Ratio t (sec) Ratio

1 224.11 0.03 7470 1.22 183.7
2 217.97 0.02 10899 6.27 34.8
3 239.22 0.03 7974 6.45 37.1
4 216.26 0.02 10813 6.43 33.7
5 282.42 0.07 4035 6.38 44.3
6 235.94 0.03 7865 6.25 37.7
7 249.68 0.04 6242 0.78 319.7
8 230.44 0.03 7681 6.34 36.3
9 246.37 0.03 8212 0.51 484.0
10 246.37 0.04 6159 0.94 263.2
11 622.88 0.29 2148 10.20 61.1
12 227.91 0.03 7597 0.46 497.6
13 360.73 0.11 3279 0.59 613.5
14 260.52 0.05 5210 0.77 338.8

µ 227.11 0.05 5623 3.15 175.62

showed good results. It recorded ≈ 94.5% average accuracy

change and very good time of execution ratio of 5623;

probably had fewer iterations.

Table VI: Jackknife Estimates for deterministic and non-

deterministic search algorithms across 14 datasets (DS), and

their mean (µ)

DS Bias-Corrected Confidence Interval
Jackknifed Estimate Deterministic Non-Deterministic

Determ- Non-Determ- Lower Upper Lower Upper
inistic inistic

1 0.86 0.85 0.86 0.87 0.85 0.85
2 0.98 0.98 0.98 0.98 0.98 0.98
3 0.85 0.85 0.85 0.85 0.85 0.85
4 0.82 0.79 0.82 0.82 0.79 0.8
5 0.99 0.99 0.99 0.99 0.99 0.99
6 0.89 0.88 0.89 0.89 0.88 0.89
7 0.61 0.59 0.6 0.61 0.59 0.59
8 0.99 0.99 0.99 0.99 0.98 0.99
9 0.53 0.52 0.53 0.53 0.51 0.52

10 0.71 0.69 0.71 0.71 0.69 0.69
11 0.93 0.91 0.93 0.93 0.91 0.92
12 0.8 0.77 0.79 0.8 0.77 0.78
13 0.68 0.67 0.68 0.68 0.66 0.67
14 0.71 0.69 0.71 0.71 0.68 0.69

µ 0.81 0.80 0.81 0.81 0.80 0.80

F. Evaluation using Jackknife Estimation

Jackknife is used to evaluate the quality of the prediction of

computational models. It uses resampling to calculate standard

deviation error and estimate bias of a sample statistic, as shown

in equations 3 and 4 [16]. We computed Jackknife across the

14 datasets and tabulated results as shown in Table VI. We

recorded a zero for bias and standard errors across all datasets.

V ar(θ) =
n− 1

n

n∑

i=1

(θ̄i − θ̄jack)
2, θ̄jack =

1

n

n∑

i=1

(θ̄i) (3)

θ̄BiasCorrected = Nθ̄ − (N − 1)θ̄jack (4)

In Table VI we see different datasets record different values of

Bias-Corrected Jackknifed Estimates. We also observe stable

results are per the predictions in Table IV. Standard error is

used for null hypothesis testing and for computing confidence

intervals (upper and lower bounds). This explains why we

observe confidence intervals deviating insignificantly. We also

see the bias-corrected Jackknifed estimate deviating minimally

because the standard error were zero across all the records.

These results show that the non-deterministic search algorithm

predictions are stable and reliable.

IV. CONCLUSION

In this research, we formulated a non-deterministic strategy

in searching for the best hyperparameter in random forest

algorithm considering number of trees, accuracy and time

of searching hyper-parameter. The non-deterministic search

strategy recorded significantly good results in maximizing ac-

curacy, minimizing number of trees and minimizing searching

time. Evaluations using Jackknifed Estimation show that its

predictions are stable. Moreover, the non-deterministic search

strategy had a significant accuracy levels and better utilization

cpu processing and time in memory. This research can be

widely adopted in algorithms hyperparameter search and in

green computing to preserve computing resources.
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