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Abstract—Certain families of graphs can be used to obtain
multivariate polynomials for cryptographic algorithms. In par-
ticular, in this paper, we introduce stream ciphers based on non-
bijective multivariate maps. The presented symmetric encryption
algorithms are based on three families of bipartite graphs with
partition sets isomorphic to Kn, where K is selected as the
finite commutative ring. The plainspace of the algorithm is
Ω = {x|

∑
xi ∈ K∗, x ∈ Kn} ⊂ Kn, Ω ∼= K∗ × Kn−1. We

describe the algorithm for the case K = Z2m , m ≥ 2. In fact,
we use the relation d ∗ ddec ≡ 1(mod 2m−1), d, ddec ∈ Z∗

2m−1

to obtain encryption polynomial map of degree greater than
or equal to d + 2 and decryption map of degree greater than
or equal to ddec + 2. We assume ddec grows with the growth
of parameter m, because this makes cryptanalysis very difficult
task. Symmetric encryption and decryption algorithms for users
are numerical recurrent processes, not requiring generation
of encryption and decryption maps in their symbolic forms.
They use arithmetical operations of addition, subtraction, and
multiplication. That’s why the algorithms are robust (execution
speed is O(n)). To break the algorithm an adversary must
use linearization attacks for recovering non-bijective ”decryption
map” of degree greater than ddec + 2 in its symbolic form. To
achieve this, the adversary needs at least O(nddec + 2) pairs
of plaintext and corresponding ciphertext to restore the non-
bijective map of degree greater than or equal to ddec + 2.
We present tables for evaluation of execution time for m = 8
with various length of passwords and sizes of files. Computer
simulations demonstrate good mixing properties of the encryption
functions.

FEW graph based algorithms have been implemented since

1998 (see [1] - [25]). So there is some history of the

usage of sparse algebraic graphs in symmetric cryptographical

algorithms. The following known graphs defined over finite

commutative ring K were used: D(n,K) (see [1], for K = Fq

graphs were defined and investigated in [26], [27]), W (n,K)
(Wenger graphs defined in [28]), graphs A(n,K) introduced

in [45] and graphs D̃(n,K) of [25]. Popular choices of K are

finite fields F127, F27 , F28 , F216 and F32
2 and rings modular

arithmetics Z27 , Z28 , Z216 . We present this research history in

the next section.

In section 3 we introduce a class of bivariate graphs containg

all the above mentioned graphs. Such concept is convenient

for uniform description of encryption scheme and observation

of common properties of graphs from this class (section 4).

We compare graphs and related algorithms corresponding to

different families (W (n,K), D(n,K), A(n,K) and D̃(n,K))
in section 5.

Here the reader can find remarks on multivariate cryptogra-

phy and its connections with cryptographical applications of

Algebraic Graph Theory.

RSA is one of the most popular cryptosystems. It is based on

a number factorization problem and on Euler’s Theorem. Peter

Shor discovered that factorization problem can be effectively

solved by using a theoretical quantum computer. It means that

RSA could not be a security tool in the future postquantum

era. One of the research directions leading to a postquantum

secure public key is the Multivariate Cryptography which

uses a polynomial maps of affine space Kn defined over

a finite commutative ring K into itself as encryption tools

(see [29]). This is a young promising research area because

of the current lack of known cryptosystems with the proven

resistance against attacks with the use of Turing machines.

Other important direction of Postquantum Cryptography is the

study of Hyperelliptic Curves Cryptosystems. We have to say

that classical elliptic curves encryption will be not secure in

the Postquantum era.

Applications of Algebraic Graph Theory to Multivariate

Cryptography were shown in our talks at Erdös Centennial

(2013, Budapest) and Central European Conference on Cryp-

tology 2014 (Alfred Renyi Institute, Budapest) [30], [31].

Talks were devoted to algorithms based on bijective maps

of affine spaces into itself. Applications of algebraic graphs

to cryptography started with symmetric algorithms based on

explicit constructions of extremal graph theory and their

directed analogues (see survey [11], [32]). The main idea is

to convert an algebraic graph in a finite automaton and to

use the pseudorandom walks on the graph as encryption tools.
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This approach can also be used for the key exchange protocols.

Nowadays the idea of ”symbolic walks” on algebraic graphs,

when the walk on the graph depends on parameters given as

special multivariate polynomials in variables depending from

plainspace vector, appears in several public key cryptosystems.

Another source of graphs suitable for cryptography is con-

nected to finite geometries and their flag system (see [33] and

further references).

Multivariate cryptography started from the study of potential

for the special quadratic encryption multivariate bijective map

of Kn, where K is an extention of finite field Fq of charac-

teristic 2. One of the first such cryptosystems was proposed

by Imai and Matsumoto and cryptanalysis for that system was

invented by J. Patarin. A survey on various modifications of

this algorithm and corresponding cryptanalysis can be found

in [29] or [34].

One of the first uses of non-bijective map of multivariate

cryptography was in the oil and vinegar cryptosystem pro-

posed in [35] and analyzed in [36]. Nowadays, this general

idea is strongly supported by publication [37] devoted to

security analysis of direct attacks on modified unbalanced oil

and vinegar systems. It looks like such systems and rainbow

signature schemes may lead to promising Public Key Schemes

of Multivariate Encryption defined over finite fields. Non-

bijective multivariate sparse encryption maps of degree 3 and

≥ 3 based on walks on algebraic graphs D(n,K) defined over

general commutative ring and their homomorphic images were

proposed in [38]. Security of the corresponding cryptosystem

rests on the idea of hidden discrete logarithm problem. U.

Romańczuk-Polubiec and V. Ustimenko combine an idea of

”oil and vinegar signature cryptosystem” with the idea of

linguistic graph-based map with partially invertible decompo-

sition to introduce a new cryptosystem [38]. This algorithm

can be implemented with the use of families D(n,K) and

A(n,K) and natural homomorphism between them. Finally, in

[39] ”hidden RSA multivariate encryption” based on graphs

D(n,K) were proposed.

In this paper we modify the encryption map (private key)

of the above mentioned cryptosystem in terms of family of

bivariate graphs defined over the commutative ring K. These

maps have multivariate nature despite the ”numerical imple-

mentation” in symmetric ciphers mode with the plainspace

isomorphic to K∗ ×Kn−1.

I. ON SOME IMPLEMENTATION OF ALGORITHMS BASED ON

BIJECTIVE MAPS

We worked on a software package that allows us to inves-

tigate strongly symmetric cases of stream ciphers based on

graphs W (n,K), D(n,K), D̃(n,K) and A(n,K), where K is

the arithmetic ring. Some cases are already implemented by

our team at the level of prototype model.

In very special cases the algorithms were previously im-

plemented. The first implementation of D(n,K) encryption

was done in 2000 at the University of South Pacific (USP,

Fiji Islands). The research team was composed by Prof. V.

Ustimenko, PhD Dharmendra Sharma (currently professor of

University of Canberra), postgraduate students V. Gounder

and R. Prasad (see [2], [3]). The work was supported by the

University Research Committee of the University of South

Pacific (USP) grant. The implementation of this case on

asymmetric mode was discussed in [5]. The chosen case for

K was F127, which is the closest prime number to the size

of ASCII code alphabet. It means that one has to delete just

the delete service symbol and can encrypt arbitrary files of

type txt. The chosen string was αi(x) = x+ di, where di are

elements of chosen ring K = F127 chosen in pseudorandom

fashion. So that was a case of shifting encryption.

The affine transformations L1 and L2 were simply iden-

tities. Implemented cipher on ordinary PC was rather robust

in performance, but with average mixing properties. It’s been

used at USP digital network working for campuses and USP

centers located in 11 island countries of South Pacific region.

The package was also used by ORACLE based system of

the bursary office (see [8]). Recently group of students from

Okanagan college (affiliated with the University of British

Columbia) implemented that stream cipher on a cluster net-

work of PC’s. It was used for a large data encryption [10].

The implementation of that security algorithm for protection

of Geo Information Systems was described in [6], [7].

Another case for K = Z256 and graph D(n,K) was

implemented under the Research Committee of Sultan Qaboos

University (SQU, Oman) grant. The research team was com-

posed of professors Vasyl Ustimenko and Abderezak Tousane

and students Rahma Al Habsi and Huda Al Naamani. The

software uses one to one correspondence between element of

Z256 and symbols of binary alphabet. It allows encryption of

various file types (with extension doc, jpg, htm, avi, pdf ,
. . . ) in a way that encrypted file is presented in the same

format with the plaintext. The symmetric algorithm was used

at academical networks of SQU and Kiev Mohyla Academy

[9], [10].

The cases of D(n,K), where K is the finite field F27 F28 ,

F216 , the shifting encryption was implemented and investigated

in [20].

The systematic study of shifting encryption for cases of

shifting encryptions of D(n,K) was conducted at UMCS

(Lublin, Poland). J. Kotorowicz used arithmetical rings Z7
2, Z8

2,

Z16
2 for the implementation with various affine transformation

τL and τR (see [14], [16]). The encryption was essentially

faster than in all previously known cases. The selected affine

transformation leads to an encryption with very good mixing

properties: the change of a single character of the plaintext

or the change of a single character of the encryption string

d1, d2, . . . , ds causes the change of at least 98 percent of the

ciphertext characters. In [23] these cases were implemented

for graphs A(n,K) with very similar results on the mixing

properties. In the case of τR = τL
−1 it can be proved that the

order of A(n,K) and D(n,K) based encryption map grows

with the growth of parameter n. The comparison of orders was

completed through the study of cycles structures of A(n,K)
and D(n,K) encryptions. Results demonstrated similarity in

both cases.
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M. Klisowski implemented D(n,K) and A(n,K) shifting

encryption on symbolic level in the cases of finite fields F27

F28 , F216 F232 ([21], [22], [24]). In [40] A. Wróblewska

proved that shifting D(n,K) encryption is given by a cu-

bical multivariate map. A similar result for A(n,K) based

encryption was stated in [41]. Simulation results of [22],

[23] allow to estimate time of generation of these maps as

functions of parameter n and densities of such multivariate

cubic encryption and decryption maps. A comparison of cases

A(n,K) and D(n,K) for the above fields an be found in [24].

Similar results for cases of Boolean rings of sizes 27, 28, 216,

232 are obtained via computer simulations.

The PhD Thesis of M. Klisowski [42] contains the first re-

sults on D(n,K) and A(n,K) based multivariate maps which

are not defined via shifting encryptions. He used symbolic

strings of kind α1(x) = x+c1, α2(x) = x+c2, . . . , αs−1(x) =
x+ cs−1 , αs(x) = x3 + cs with constants ci, i = 1, 2, . . . , s
for special fields Fq in which x3 = b has unique solution.

It was shown that such a choice makes direct linearization

attacks impossible.

The first implementation for the case of Wenger graph based

encryption was completed at the University of Sao Paolo

(USP, Brasil) (see [12] and further references). Professors V.

Futorny and V. Ustimenko chose field F253 which size is

the closest from below prime to the size of binary alphabet.

This research was partially supported by FAPESP foundation

(grant for international cooperation with USP). Computer

simulation demonstrated high speed of encryption. In [12]

authors evaluated the diameter of graph W (n,Fq) and proved

that the family of these graphs W (n, q), n ≤ q is a family of

small world graphs.

Professor Routo Terada (USP, Brasil) suggested to inves-

tigate the behaviour of these algorithms under linearization

attacks. Computer simulation supports the conjecture on a

good resistance of the encryption scheme to such attacks.

The idea of using graphs A(n,K) in cryptography was

proposed by U. Romańczuk-Polubiec and V. Ustimenko in

[45]. Evaluation of the order of encryption map based on

A(n, q) was presented in [23]. A theoretical study of orders

and cycles can be found in [44], [45].

Some stream ciphers defined via graphs D̃(n,K) were

proposed by M. Polak and V. Ustymenko in [25]. Furthermore,

M. Polak compared LDPC codes corresponding to A(n,K),

D(n,K) and D̃(n,K) in [49].

The importance of such graphs was justified in [44]. The

encryption algorithm was implemented and some properties

(speed, mixing properties, order) were investigated in the

paper.

II. ON THE CLASS OF BIVARIATE GRAPHS

Let K be a commutative ring. We define T (n,K) as a

bipartite graph with the set of vertices V (T ) = P ∪ L,

P ∩L = ∅. We call P = Kn a set of points and L = Kn a set

of lines (two copies of a Cartesian power of K are used). We

will use two types of brackets to distinguish points (p) ∈ P

and lines [l] ∈ L:

(p) = (p1, p2, . . . , pn) ∈ P,

[l] = [l1, l2, . . . , ln] ∈ L.

pi, li (1 ≤ i ≤ n) are elements of K. We say that vertex (p)
(point (p)) is incident with the vertex [l] (line [l]) and we write:

(p)IT [l], if the following relations between their coordinates

hold:






































p2 − l2 = e12p1l1
p3 − l3 = e13p1l2 + e23l1p2
...

ps − ls = e1sp1lis + e2sl1pjs
...

pn − ln = e1np1lin + e2nl1pjn

(1)

where e12, e
1
s, e

2
s ∈ {0, 1,−1}, 1 ≤ is < s, 1 ≤ js < s.

So the incidence relations for graph T = T (n,K) are given

by condition (p)IT [l]. The set of edges consists of all pairs

{(p), [l]} for which: (p)IT [l]. Let us consider the case of finite

commutative ring K, |K| = k. As it instantly follows from the

definition, the order of our bipartite graph is |V (T )| = 2kn

and the number of edges is |E(T )| = kn · k = kn+1.

Graphs T = T (n,K) are k-regular. In fact, the neighbour of a

given point (p) is given by above equations, where parameters

p1, p2, . . . , pn are fixed elements of the ring and symbols

l1, l2, . . . , ln are variables. It is easy to see that if we set l1
then this choice uniformly establishes values l2, l3 . . . , ln. So

each point has precisely k neighbours. In a similar way we

observe that the neighbourhood of any line also contains k
neighbours. Notice, that the order and degree of our graph

defined via strings is, js, e12, e1s, e2s, where s = 2, 3, . . . , n,

does not depend on the strings.

Let us consider some examples.

Wenger graphs W (n,K)

In 1991 Wenger defined the family of bipartite, p-regular

graphs Hn(p), where p prime number [28]. In [26] Lazeb-

nik and Ustimenko introduced straight forward generalization

W (n, q) of these graphs via change of Fp to Fq , where q
is a prime power. They used special Lie algebra and proved

that the family of bipartite, q-regular graphs W (n, q), where

q is prime power and n ≥ 2. Graphs W (n, q) are defined for

all prime powers and Hn(p) = W (n, p) are defined only for

primes.

The set of vertices of infinite incidence structure (P,L, I)
is V = P ∪ L and the set of edges E consists of all pairs

{(p), [l]} for which (p)I[l]. Bipartite graphs W (n, q) have

partition sets Pn (collection of points) and Ln (collection of

lines) isomorphic to vector space Fn
q , where n ∈ N+. Let

us use the following notations for points and lines in graph

W (n, q):

(p) = (p1, p2, p3, . . . , pn) ∈ P,

[l] = [l1,, l2, l3, . . . , ln] ∈ L.
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The point (p) is incident with the line [l], and we write

(p)IW [l], if the following relations between their coordinates

hold:
{

li − pi = p1li−1, (2)

for 2 ≤ i ≤ n. The graphs W (n,Fq) have cycles of length 8.

One can change finite field K for general commutative ring

K and work with graph W (n,K).

Graphs A(n,K)

Graphs A(n,K), formally appearing as graphs E(n,K) in

[43], are used as tools for the study of D(n,K) properties.

Later on the graphs E(n,K) were presented with another name

as an independent family A(n, q) for the first time in [45] for

cryptographic applications.

Let us use the following notations for points and lines in

the graph A(n,K):

(p) = (p1, p2, p3, . . . , pn) ∈ P,

[l] = [l1,, l2, l3, . . . , ln] ∈ L.

The point (p) is incident with the line [l], and we write

(p)IA[l], if the following relations between their coordinates

hold:






















l2 − p2 = l1p1
l3 − p3 = p1l2
l4 − p4 = l1p3
li − pi = p1li−1 for odd i
li − pi = l1pi−1 for even i

(3)

for 3 ≤ i ≤ n.

Graphs D(n,K)

The following interpretation of a family of graphs D(n,K)
in case K = Fq can be found in [27]. By ID we denote

the incidence relation for this graph. Let us use the following

notations for points and lines:

(p) = (p1, p2, p3, . . . , pn) ∈ P,

[l] = [l1,, l2, l3, . . . , ln] ∈ L.

Two types of brackets allow us to distinguish points from lines.

Points and lines are elements of two copies of the vector space

over K. Point (p) is incident with the line [l], and we write

(p)ID[l], if the following relations between their coordinates

hold:






















l2 − p2 = l1p1
l3 − p3 = p1l2
l4 − p4 = l1p2
li − pi = p1li−2 for i mod 4 ≡ 2 or i mod 4 ≡ 3
li − pi = l1pi−2 for i mod 4 ≡ 0 or i mod 4 ≡ 1

(4)

where 3 ≤ i ≤ n.

The set of vertices is V = P ∪ L and the set of edges

E consists of all pairs {(p), [l]} for which (p)ID[l]. Bipartite

graphs D(n,K) have partition sets P (collection of points)

and L (collection of lines) isomorphic to vector space Kn,

where n ∈ N+.

Graphs D̃(n,K)

Formal definitions for the family of graphs D̃(n,K) were

presented in [25].

Construction of projective limits graphs of D̃(n,K) appears

in papers motivated by results on embeddings of Chevalley

group geometries in the corresponding Lie algebras and con-

struction of blow-up for an incidence system of Weyl groups in

[46], [47]. Moreover, this structure is the base for construction

of family of graphs D(n,K) (see [25, 27]).

Let us use the analogical notations for points and lines in

graph D̃(K):

(p) = (p1, p2, p3, . . . , pn) ∈ P,

[l] = [l1,, l2, l3, . . . , ln] ∈ L.

In the incidence structure ˜(P,L, I) the point (p) is incident

with the line [l], and we write (p)ID̃[l], if the following

relations between their coordinates hold:







































l2 − p2 = l1p1
l3 − p3 = p1l2
l4 − p4 = l1p2
l5 − p5 = l1p3 − p1l4
li − pi = p1li−1 for i mod 3 ≡ 0
li − pi = l1pi−2 for i mod 3 ≡ 1
li − pi = l1pi−2 − p1li−1 for i mod 3 ≡ 2

(5)

for 3 ≤ i ≤ n.

Graphs from families D(n,K) and D̃(n,K) are bipartite, k-

regular, where |K| = k. The girth of graphs from the described

families increases with the growth of n. In fact D(n, q) is a

family of graphs of large girth and there is a conjecture that

D̃(n, q) is another family of graphs of a large girth.

All graphs from the considered families are k-regular,

bipartite and the set of vertices is V = P ∪ L, P ∩ L = ∅.

They are sparse graphs.

It is clear that there is a natural homomorphism of

T (n + 1,K) onto T (n,K) of ”deleting the last coordinate”

that sends (x1, x2, . . . , xn, xn+1) to (x1, x2, . . . , xn) and

[y1, y2, . . . , yn, yn+1] to [y1, y2, . . . , yn]. It means that there

is a well defined projective limit T (K) of graphs T (n,K),
n → ∞. Bivariate graphs form a special subclass of so called

linguistic graphs for which natural projective limits are defined

in a similar way.

Recall that the girth g = g(Γ) of the graph Γ is the length

of its minimal cycle.

Let us assume that the girth g(n) of graphs T (n,K) is

unbounded. The obvious inequality g(n + 1) ≥ g(n) holds.

It means that projective limit T (K) has to be a |K|-regular

forest. We have such situation in cases of graphs A(n,Fq) and

D(n,Fq) If q ≥ 2 then A(Fq) is a single tree presented by the

above equations. Graph D(Fq) is an infinite forest containing

infinitely many trees.

Projective limit W (Fq) of Wenger graphs is an infinite

connected graph containing cycles of length 8.
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III. GENERAL ENCRYPTION ALGORITHM

We can convert graph T (n,K) to finite automaton in the

following way. Let v = (v1, v2, v3, v4, . . . , vn) ∈ V (T (n,K))
(or v = [v1, v2, v3, v4, . . . , vn] ∈ V (T (n,K))) and Nα(v) be

the operator of taking neighbor of vertex v where the first

coordinate is α:

Nα(v1, v2, v3, v4, . . . , vn) → [α, ∗, ∗, ∗, . . . , ∗],

Nα[v1, v2, v3, v4, . . . , vn] → (α, ∗, ∗, ∗, . . . , ∗),

where α ∈ K. The remaining coordinates can be determined

uniquely using relations describing the chosen graph T (n,K).
We convert T (n,K) to finite automaton via joining v an

Nα(v) by directed arrow with weight α. We assume that all

vertices of the graph are accepting states.

A bit more interesting object is a symbolic bivariate au-

tomaton. Let a(x) = (α1(x), α2(x), . . . , αs(x)) be a string of

elements from K[x] (totality of polynomials in variable x with

coefficients from K).

We introduce operator Ns
a(x)(v), where v is a point or a

line with coordinates v1, v2, . . . , vn, of taking the last vertex

u of the path v, v1 = Nα1(v1)(v), v2 = Nα2(v1)(v1), . . . ,

vs = Nαs(v1)(vs−1) = u.

We refer to Ns
a(x) as a computation of the symbolic automa-

ton with the string

a(x) = (α1(x), α2(x), . . . , αs(x))

αi ∈ K[x], i = 1, . . . , s and initial state

v = (v1, v2, v3, v4, . . . , vn) ∈ T (n,K) (or

v = [v1, v2, v3, v4, . . . , vn] ∈ T (n,K)). We can consider

Fs(v) = Ns
a(v1)

(v) as a map on P ∪ L.

It is easy to see that the restriction of this map on P is a

polynomial transformation of P = Kn into P (parameter s is

even) or L (parameter s is odd) of kind

x1 → f1(x1, x2, . . . , xn),
x2 → f2(x1, x2, . . . , xn),

...

xn → fn(x1, x2, . . . , xn).

Notice that generally Fs is not a bijection. Let us consider

an invertibility condition for Fs.

Proposition III.1. Let the equations of kind αs(x) = b, b ∈ K

have exactly one solution. Then map Fs is invertible.

Proof: It is easy to check that if Fs(x̄) = ȳ then

F−1
s (ȳ) = x̄. It is easy to see that f1(x1, x2, . . . , xn) =

αs(x1). Let p be some point from Pn and Fn(p) =
(c1, c2, . . . , cn) (point or line). Then the equation αs(x1) = c1
has a unique solution η. So we can compute η1 = α1(η),
η2 = α2(η), . . . , ηs−1 = αs−1(η).

We can compute the chain c = (c1, c2, . . . , cn), Nηs−1
(c) =

c1, Nηs−2
(c1) = c2, . . . , Nη1

(cs−2) = cs−1, Nη((cs−1)) =
cs = (p1, p2, . . . , pn) with η = p1. So Fn is a bijection.

Notice that Ns
a(x) for a(x) of kind α1(x) = β1(x), α2(x) =

β2(α1(x)), α3 = β3(α2(x)), . . . , αs(x) = βs(αs−1(x)) is

a composition of N1
β1(x), N1

β2(x), . . . , N1
βs(x). In this

case invertibility of each βi(x), i = 1, 2, . . . , s guarantees

the bijectivity of Ns
a(x). We refer to such case as recurrently

defined string.

Let L1 and L2 be sparse affine bijective transformation of

the affine space (free module in other terminology) Kn

L1 = TA,b : x̄ −→ x̄A+ b,
L2 = TC,d : x̄ −→ x̄C + d,

where A =
[

ai,j
]

and C =
[

ci,j
]

are n × n matrices with

ai,j , ci,j ∈ K. It is clear that

L−1
1 = T−1

A,b = TA−1,−bA−1 ,

L−1
2 = T−1

C,d = TC−1,−dC−1 .

Let Fn be a polynomial map of Kn to itself. We refer to

Gn = τLFnτR as affine deformation of Fn.

Symmetric algorithm

We can use the data on the graph T (n,K), the symbolic

computation given by the string a = a(x) of polynomials

α1(x), α2(x), . . . , αs(x), where αs(x) is a bijective map of K

to itself and affine transformations L1 and L2 in the following

encryption scheme.

Correspondents Alice and Bob agree on a private encryption

key

Kp = (L1, L2, α = (α1, α2, . . . , αs)),

and keep the key in secret. Messages are written using charac-

ters belonging to the alphabet K. So the plainspace is Kn and

its elements must be treated as points (or lines) of the graph.

To encrypt they use the composition

L1 ◦N
s
a ◦ L2.

Notice that the computation has to be executed in numerical

level:

1) Correspondent Alice writes plaintext p = (p1, p2, . . . , pn)
and treats it as point of the bivariate graph.

2) She computes parameters µi = αi(v1) for i = 1, 2, . . . , s.

3) She computes p0 as L1(p), p1 as Nµ1
(p0), p2 as

Nµ2
(p1), . . . , ps as Nµs

(ps−1).
4) She computes the ciphertext c as L2(ps).proo

Alice and Bob can use their knowledge about triple (L1,

L2, a) for the decryption. Let us assume that Bob receives

the ciphertext c from Alice. To decrypt the ciphertext Bob

proceeds as follows:

1) He has to compute c0 as L2
−1(c).

2) He treats the string of coordinates of this tuple as a vertex

of the graph, which is a point in case of even s or the

line in case of odd s with coordinates c01, c02, . . . , c0n.

3) Bob must find a solution η of αs(x) = c01 and form a

string η0 = η, η1 = α1(η), η2 = α2(η), . . . , ηs−1 =
αs−1(η).

4) He computes c1 as Nηs−1
(c0), c2 as Nηs−2

(c1), . . . , cs
as Nη0

(cs−1).
5) He computes the plaintext p as L1

−1(cs).
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Remark III.2. In the case of identity maps L1 and L2 one

can try Dijkstra’s algorithm for finding the shortest path

between plaintext and ciphertext. Notice that its complexity

is O(v log v), but here v is exponential qn. Therefore we get

worse complexity even than brute force search via the key

space.

In the case of recurrently defined symbolic computa-

tion as above the encryption bijective map is Fs =
L1N

1
β1(x)N

1
β1(x) . . . N

1
βs(x)L2. As we already see, this

encryption transformation is equivalent to L1N
s
a(x)L2, where

a(x) = (β1(x), β2(β1(x)), . . . , βs(βs−1(. . . (β1(x))))). Re-

currently defined symbolic computation is an example of the

polynomial map with an invertible decomposition in the sense

of [31]. It has various applications in the development of mul-

tivariate key exchange protocols and asymmetric multivariate

algorithm. The most popular case of implementation is related

to graphs D(n,K) (see [1, 21]) and A(n,K) (see [22, 23]),

where K is a finite field of arithmetical rings Zm and strings

of kind β1 = x + d1, β2 = x + d2, . . . , βs = x + ds, where

di + di+1, i = 1, 2, . . . , s− 2 are regular elements of the ring

K. We refer to such case as shifting encryption.

Let us consider the case of strong symmetric encryption,

when the function is αs(x) = ax+b, with a regular (invertible)

element of K. In this case it is easy to show that degrees

of encryption map Fn and decryption map Fn
−1 are the

same. The advantage of this case is its universality. One can

implement it in case of arbitrary chosen finite ring K.

IV. ON THE PROPERTIES OF BIVARIATE GRAPH BASED

BIJECTIVE ENCRYPTION MAPS

The girth G of simple graph G is the length of its shortest

cycle. As it was established in [27] the girth of the graph

D(n,Fq) is ≥ n+5. So in the case of shifting encryption the

map with the password x+ d1, x+ d2, . . . , x+ ds, s < n+5
the encryption map Fn has no fixed points. So ciphertext is

always different from the plaintext. Let us consider deformated

shifting encryption of kind τLFnτR. We assume that affine

maps τL and τR are fixed. Correspondents are able to change

string d1, d2, . . . , ds for another one.

We assume that di + di+1 6= 0 for i = 1, 2, . . . , s − 2.

Such choice means that encryption map corresponds to the

path of length s. The inequality g(D(n, q)) ≥ n + 5 implies

that different strings of length s < (n+5)/2 produce different

ciphertexts. So even in the case when τL and τR are known

to adversary the complexity of attacks without an access to

unencrypted information is bounded from below by q(n+5)/2.

In [44] these results were generalized for the case of general

commutative ring K. Let M be a multiplicative subset of K,

i. e. M is closed under the ring multiplication and it does not

contain 0. We say that a string d1, d2, . . . , ds is |M|-regular

if di + di+1 ∈ M for i = 1, 2, . . . , s − 2. It was proven that

different M -regular strings of length s < (n + 5)/2 produce

distinct ciphertexts from the same plaintext. So in the case of

|K| = k, |M| = m the resistance to attacks without access to

unencrypted data is bounded from below by mk(n+5)/2−1.

It was proven that graphs A(n,Fq) form a family of graphs

of increasing girth h(n) that tends to infinity as n grows. The

speed of growth of h(n) needs further evaluation. In [44] it

was proven that different |M|-regular strings of length s < n
produce different encryption maps.

Results on |M|-regular strings of length restricted maps

are obtained in terms of dynamical systems corresponding to

graphs D(n,K) and A(n,K).
Let us assume that maps τL and τR are identities and con-

sider the groups of transformations GD(n,K) and GA(n,K)
generated by shifting encryption maps corresponding to strings

of even length. In [40] was proven that all elements of

GD(n,K) are cubical transformations of affine spaces Pn and

Ln. Similar result for GA(n,K) is stated in [44]. As it follows

instantly from this result transformation F ′

n = τLFnτR and its

inverse are cubical transformations.

The cryptanalytic corollary of this statement is justification

of linearization attacks on stream ciphers corresponding to

stream ciphers based on graphs D(n,K) and A(n,K).
Let correspondents use the transformation F ′

n. The adver-

sary has knowledge on the general scheme of open algorithm

but not on the data for τL and τR and shifting string. So

he knows about cubic nature of encryption. We assume that

he has access to the unencrypted information and is able to

intercept quite many pairs of kind (p, c), where p is plaintext

and c corresponding ciphertext.

Then adversary writes Gn which is a formal cubical map

in standard form with the unknown coefficients in front of

monomial terms. He or she is able to solve system of O(n3)
equations of kind Gn(c) = p and restore the map Gn.

So adversary could control the communication channel. The

complexity of such direct linearization attack is O(n10).

V. ON THE IMPLEMENTATION OF GRAPH BASED STREAM

CIPHER BASED ON NON BIJECTIVE MAPS

Let us describe an implemented algorithm, which can run

in the case of arbitrary commutative ring K and arbitrary bi-

variate graph T (n,K). We slightly modify the above described

symmetric algorithm based on bivariate graphs T (n,K) which

is not a case of shifting encryption. Firstly, we take a symbolic

computation for string a = a(x) = (α1(x), α2(x), . . . , αs(x)),
with αi(x) = xd + ds, i = 1, 2, . . . , s where d is mutually

prime with the order of K∗. So equation xd + ds = c,
x ∈ K∗ has at most one solution. We take L1 as an affine

bijective transformation of kind x1 → x1 + x2 + · · · + xn,

x2 → l2(x1, x2, . . . , xn), x3 → l3(x1, x2, . . . , xn), . . . ,

xn → ln(x1, x2, . . . , xn), where li are linear functions from

K[x1, x2, . . . , xn]. Correspondents will use the plainspace

Ω = {(x1, x2, . . . , xn)|x1 + x2 + · · ·+ xn ∈ K∗,

xi ∈ K, i = 1, 2, . . . , n}.

They will use L1N
s
a(x)L2 as encryption map. To execute

computation in time O(n) they take finite parameter s and

use loaded tables for αi(x), i = 1, 2, . . . , s (one dimensional

arrays ai(x), x ∈ K∗). So they will compute L1(p) = v =
(v1, v2, . . . , vn), form sequence µi = αi(v1), i = 1, 2, . . . , s
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TABLE I
ENCODING AND DECODING TIME

A(n,K) D(n,K) D̃(n,K)
Password Filesize Enc Dec Enc Dec Enc Dec

3

1K 0.0021 0.0029 0.0030 0.0026 0.0039 0.0041
10K 0.0217 0.0253 0.0234 0.0249 0.0322 0.0366
50K 0.1030 0.1338 0.1034 0.1423 0.1572 0.1859

100K 0.2158 0.2701 0.2115 0.2683 0.3309 0.3800
500K 1.2202 1.3863 1.0432 1.3556 1.6161 1.9323
1M 2.1955 2.8346 2.1452 2.7285 3.2809 3.9029

10M 21.9597 27.4227 21.3803 26.6821 32.8819 38.3860

4

1K 0.0416 0.0033 0.0400 0.0032 0.0401 0.0047
10K 0.0311 0.0320 0.0302 0.0360 0.0420 0.0466
50K 0.1393 0.1639 0.1374 0.1580 0.2125 0.2366

100K 0.2800 0.3314 0.2738 0.3280 0.4259 0.4816
500K 1.4381 1.7109 1.3918 1.6541 2.1278 2.4159
1M 2.9271 3.5035 2.8457 3.4055 4.3633 4.9664

10M 29.5728 34.6022 28.6899 33.7773 43.7334 49.4341

5

1K 0.0402 0.0045 0.0336 0.0039 0.0437 0.0058
10K 0.0355 0.0395 0.0382 0.0440 0.0533 0.0596
50K 0.1764 0.2038 0.1718 0.1909 0.2589 0.2876

100K 0.3510 0.4097 0.3391 0.3922 0.5243 0.5781
500K 1.7778 2.0589 1.7237 2.0015 2.7088 3.0049
1M 3.6421 4.2418 3.5507 4.1302 5.4671 6.0630

10M 37.3170 42.0697 36.2427 40.9556 55.1103 60.4248

6

1K 0.0445 0.0053 0.0412 0.0046 0.0445 0.0069
10K 0.0426 0.0481 0.0453 0.0448 0.0705 0.0667
50K 0.2132 0.2371 0.1987 0.2325 0.3123 0.3462

100K 0.4176 0.4830 0.4069 0.4678 0.6303 0.6890
500K 2.1494 2.4572 2.0897 2.3724 3.2690 3.5826
1M 4.3851 4.9386 4.2630 4.8109 6.7762 7.2091

10M 47.8490 50.3557 42.6451 47.7372 65.8464 71.6511

7

1K 0.0434 0.0055 0.0435 0.0059 0.0487 0.0091
10K 0.0477 0.0540 0.0475 0.0533 0.0754 0.0848
50K 0.2437 0.2699 0.2324 0.2671 0.3651 0.3979

100K 0.4903 0.5457 0.4751 0.5275 0.7315 0.7938
500K 2.5089 2.8124 2.5655 2.7524 3.7086 4.0025
1M 5.0959 5.7679 5.1230 5.6692 7.5859 8.2276

10M 51.0014 56.3961 49.8712 54.9345 76.4318 87.4684

and compute recurrently vi = Nµi
(vi−1), i = 1, 2, . . . , s.

They form the ciphertext c as L2(vs).
To decrypt they will take c0 = (c01, c

0
2, . . . , c

0
n) as L2

−1(c)
and find a solution η for the equation xd + ds = c01. Loaded

table of values for αs
−1 will allow to find η fast. Next

they form a string η0 = η, η1 = α1(η), η2 = α2(η), . . . ,

ηs−1 = αs−1(η). So users take string c1 = Nηs−1
(c0),

c2 = Nηs−2
(c1), . . . , cs = Nη0

(cs−1). Finally they get

plaintext as L−1(cs).
The case of this symmetric algorithm appears as a private

key for a cryptosystem introduced in [39] with the plainspace

Zn
m.

We selected string of polynomials as αi = xd+di, di ∈ K,

i = 1, 2, . . . , s and special linear transformations L1 and L2,

given by the lists of linear forms.

We can theoretically evaluate degrees of encryption denc
and decryption ddec. In cases of graphs D(n,K) and A(n,K),
these parameters are bounded below by some constants de-

pending from parameters αi, i = 1, 2, . . . , s. We can select

string of parameters and get ddec large enough to make crypto-

analysis a difficult task. In case D̃(n,K) the degrees are even

larger, they have size O(n). Notice that direct linearization

attacks are formally impossible because the encryption map is

not a bijective one.

The implementation of the algorithms in the present work

was done using the Python programming language, in par-

ticular version 2.7. The code doesn’t use any out-of-the-box

libraries for facilitating operations with matrices. The tests

for measuring the processing time have been executed on

Algorithm 1 Encoding with graph A(n,Z256)

1: Input: password p = (p0, p1, . . . , pk−1),
message m = (m0,m1, . . . ,mn−1)

2: Output: encrypted message

3: x = m
4: for i = 0, 1, ..., k − 1 do

5: if i mod 2 = 0 then

6: y0 = (m3
0 + pi) mod 256

7: for j = 1, 2, . . . , n do

8: if j mod 2 ≡ 1 then

9: yj = (xj−xj−1·y0) mod 256
10: else

11: yj = (xj−x0·yj−1) mod 256

12: else

13: x0 = (m3
0 + pi) mod 256

14: x1 = (y1 − y0 · x0) mod 256
15: for j = 1, 2, . . . , n do

16: if j mod 2 ≡ 0 then

17: xj = (yj+x0·yj−1) mod 256
18: else

19: xj = (yj+xj−1·y0) mod 256

20: if k mod 2 ≡ 1 then

21: return y
22: else

23: return x

a machine with Intel Core2 Duo CPU 9600 1.60GHz x 2,

RAM memory 4.8 GB, operating with Ubuntu 16.04 LTS.

The complexity of the algorithms is of order O(sn), where

s is the length of the password. In particular, we implement

this stream cipher for case of K = Z256 and αi(x) = x3 + di
(d = 3 and ddec = 43), i = 1, 2, . . . , s without using loaded

tables for functions. A description of the ”nonlinear part”

of encryption process, i. e. computation of Ns
a is presented

below. We recommend a password for which d2 and di−di+2,

i = 1, 2, . . . , s− 2 are regular elements of the ring.

VI. CONCLUSION

The paper presents a class of stream ciphers defined in terms

of graphs given by equations over the finite commutative ring

K. The algorithm has multivariate nature: plaintext is a tuple

from the free module Kn, key string is also an element of

Km, the encryption map is polynomial transformation of Kn

into itself. Users have options to vary parameters n and m
and ring K. If the parameter m is bounded by a constant, then

the speed of numerical recurrent of encryption is O(n). The

key can be given as a sequence of polynomials in a single

variable x. We observe results on simplest case of key strings

x+d1, x+d2, . . . , x+ds obtained by theoretical studies and

via computer simulation in case of finite fields or arithmetical

rings of kind Z2m . In case of graphs D(n,K) and A(n,K)
simple conditions on di ensure that different keys produce

distinct ciphertexts and allow to estimate the complexity of

adversary attacks without access to plaintext. In the above
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Algorithm 2 Encoding with graph D(n,Z256)

1: Input: password p = (p0, p1, . . . , pk−1),
message m = (m0,m1, . . . ,mn−1)

2: Output: encrypted message

3: x = m
4: for i = 0, 1, ..., k − 1 do

5: if i mod 2 = 0 then

6: y0 = (m3
0 + pi) mod 256

7: y1 = (x1 + x0 · y0) mod 256
8: if n ≥ 2 then

9: y2 = (x2 + x0 · y1) mod 256
10: if n ≥ 3 then

11: for j = 3, 4, . . . , n do

12: if j mod 4 ≡ 3 or j
mod 4 ≡ 0 then

13: yj = (xj + xj−2 · y0)
mod 256

14: else

15: yj = (xj + x0 · yj−2)
mod 256

16: else

17: x0 = (m3
0 + pi) mod 256

18: x1 = (y1 − y0 · x0) mod 256
19: if n ≥ 2 then

20: x2 = (y2 − y1 · x0) mod 256
21: if n ≥ 3 then

22: for j = 3, 4, . . . , n do

23: if j mod 4 ≡ 3 or j
mod 4 ≡ 0 then

24: xj = (yj − y0 · xj−2)
mod 256

25: else

26: xj = (yj − yj−2 · x0)
mod 256

27: if k mod 2 ≡ 1 then

28: return y
29: else

30: return x

mentioned case encryption and decryption maps are cubical

and adversary after the interception of O(n3) pairs of kind

plaintext-ciphertext can conduct a linearization attack in time

O(n10). In case of D̃(n,K) the degree of both maps grows

linearly with the growth of parameter n, which makes the

search for the inverse map via linearization attacks a difficult

task. Additionally, authors started investigation of bijective

and non-bijective encryption maps with keys of kind xd + d1,

xd + d2, . . . , xd + ds, where d > 1.

In the non-bijective case the plainspace is large subset of

Kn and the adversary has to restore the multivariate encryption

transformation E and search for polynomial map E′ such that

EE′ fixes each plaintext. Known methods do not allow to

solve this task in polynomial time. Special case with high

degree E′ is implemented. Loaded tables for xd allow a fast

Algorithm 3 Encoding with graph ˜D(n,Z256)

1: Input: password p = (p0, p1, . . . , pk−1), message m =
(m0,m1, . . . ,mn−1)

2: Output: encrypted message

3: x = m
4: for i = 0, 1, ..., k − 1 do

5: if i mod 2 = 0 then

6: y0 = (m3
0 + pi) mod 256

7: y1 = (x1 + x0 · y0) mod 256
8: if n ≥ 2 then

9: for j = 2, 3, . . . , n do

10: if j mod 3 ≡ 2 then

11: yj = (xj + (x0 · yj−1) mod 256
12: else if j mod 3 ≡ 0 then

13: yj = (xj + xj−2 · y0) mod 256
14: else

15: yj = (xj + xj−2 · y0 − x0 · yj−1)
mod 256

16: else

17: x0 = (m3
0 + pi) mod 256

18: x1 = (y1 − y0 · x0) mod 256
19: if n ≥ 2 then

20: for j = 2, 3, . . . , n do

21: if j mod 3 ≡ 2 then

22: xj = (yj − yj−1 · x0) mod 256
23: else if j mod 3 ≡ 0 then

24: xj = (yj − y0 · xj−2) mod 256
25: else

26: xj = (yj − y0 · xj−2 + yj−1 · x0)
mod 256

27: if k mod 2 ≡ 1 then

28: return y
29: else

30: return x

encryption of text even in case of large parameter d.
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