
A new WAF-based architecture for protecting web

applications against CSRF attacks in malicious

environment

Michal Srokosz∗, Damian Rusinek†, Bogdan Ksiezopolski†

∗Polish-Japanese Academy of Information Technology

ul. Koszykowa 86, 02-008 Warszawa, Poland

msrokosz@pjwstk.edu.pl
†Maria Curie-Sklodowska University

pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland

{damian.rusinek, bogdan.ksiezopolski}@umcs.lublin.pl

Abstract—Web application firewall is an application firewall
for HTTP applications. Typical WAF uses static analysis of HTTP
request, defined as a set of rules, to find potentially dangerous
payloads in the requests. Generally, these rules cover common
attacks such as cross-site scripting (XSS) and SQL injection
which are server-related attacks. Cross-site scripting is client-
side attack however the server is attacked and forced to return
malicious response. Rule-based approach becomes useless when
the attack is client-related, for example employing malware on
the banking site. Malware allows to change the transfer data.
This scenario is hard to detect because the browser displays
valid transfer data and data is changed to the thieves’ accounts
number at the communication stage.

In this paper we introduce a new web-based architecture for
protecting web applications against CSRF attacks in malicious
environemnt. In our approach we extend a classic, static WAF
approach with historical and behavioral analysis, based on
actions performed by the user in the past.

I. INTRODUCTION

O
NE OF the ideas to increase Web applications security

was Web Application Firewall, a proxy server used to

defend web apps against attacks usually employed in the

application layer in contrary to classic firewalls. WAFs are

located between classic firewall and the application server.

Such architecture allows the firewall to mitigate attacks on

lower layers and WAF to detect and mitigate attacks on

application layer. Both groups of mentioned attacks can have

similiar consequences such as Denial of Service. DoS attacks,

well known from lower layers[7], can also be performed on the

application layer[5]. In [9] authors analyze 63 other articles

about HTTP-GET flood attacks.

However, the application layer introduces a wide range of

new threats to be detected and removed by WAF. OWASP

Top Ten [10] is a powerful awareness document for web

application security which represents a broad consensus about

the most critical web application security flaws. The OWASP

Top Ten list includes flaws, such as injections, cross-site script-

ing, cross-site request forgery, insecure session management,

insecure direct object references, security misconfiguration,

using components with known vulnerabilities and others. Most

of web application firewalls focus on the technical attacks

such as injections, cross-site scripting or cross-site request

forgery while it is hard to detect other types such as insecure

direct object references or business logic flaws because they

are strictly application-dependent.

We are going to use request forgery attacks as an example

of successful business attacks to present our new approach

to detect and mitigate malicious requests. The most popular

type of request forgery attacks are cross-site request forgery

attack (CSRF) which makes a logged-on victim’s browser send

a forged HTTP request, together with the victim’s session

cookie and any other automatically attached authentication

information to a vulnerable web application. In other words,

the attacker forces the victim’s browser to generate requests,

which from the vulnerable application’s perspective are legit-

imate. For this reason, on the server side we are not able to

detect this only based on the technical attributes of the query.

Although this is not a sophisticated attack, it indicates that the

key players (Facebook, LinkedIn, etc.) had suffered from it.

Another type of request forgery attack is server-side request

forgery (SSRF) and request forgery generated by malicious

software. The SSRF differs from CSRF that the attacker forces

a vulnerable application server to send a request. In the second

type the attacker installs malicious software of victim’s device

which later sniffs the authentication data (eg. SMSes on the

smartphone) and sends authenticated requests. According to

reports by Symantec [11] and Kaspersky Lab [4] the malicious

software is a significant problem with more than 30% of user

computers subjected to at least one Malware-class attack and

more than 170 mobile applications for credentials stealing in

2016. The financial Trojan threat landscape is dominated by

three malware families: Ramnit, Bebloh (Trojan.Bebloh), and

Zeus (Trojan.Zbot), responsible for 86 percent of all financial

Trojan attack activity in 2016. Most anti-malware solutions is

based on the detection of their presence.

Many commercial WAFs use signature-based techniques,

attempting to find the malicious inputs appearing in the

signature database. One can enumerate known WAFs, such

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 391–395

DOI: 10.15439/2018F208

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 391



as F5, Juniper, Modsecurity and many others. In the scope of

request forgery attacks the defense technique is to tokenize the

requests. Such solutions are not only used by WAFs but many

application frameworks provide such middleware as well.

Unfortunatelly, the use of tokens as the factor, which

authenticate the requests is not sufficient in the malicious

environemnt. In this paper, we are focused on a popular case

of request forgery attack performed by malicious software

installed on clients device (eg. mobile phone) and propose

a mechanism to detect such attacks. The current Web Ap-

plication Firewalls assume that the clients’ devices is free

from malicious software. This assumption in times of common

malware can not take place.

The major contributions of the presented results can be

summarized as follows:

• We present a successful request forgery attack on the

application defended by classic WAF when client has

malware installed.

• We propose new architecture for protecting web ap-

plications against request forgery attacks performed by

malicious software.

• We extend our WAF proposal to include Two-Factor

Authorization mechanism and user’s history analysis.

The content of this paper is structured as follows. We

discuss the related work in Section II. In section III we

introduce the notation and describe the successful request

forgery attacks leading to authorization bypass. Section IV de-

scribes our approach to detect and mitigate malicious business

actions such as requests performed by malware. It includes the

description of architecture, the detection algorithm. Finally,

section V concludes this paper and describes the futher work.

II. RELATED WORK

In the literature method of protecting web applications

are not widely discussed. Researchers focus on non-standard

attacks that can not be detected on classic firewalls and design

new mechanisms for detecting these specific attacks.

In [3] authors propose an automatic method of HTTP attacks

signature generation. Their approach relies on the use of

a service-specific, semantic-aware anomaly detection scheme

that combines stochastic learning with a model structure based

on the HTTP protocol specification. The proposed soluction

assume that the clienct is free from malicious software.

The article [8] proposes an approach that uses ontology

models to detect web application attacks in HTTP protocol.

Authors created three models of correct request, correct re-

sponse and an attack. The HTTP requests are analyzed for

compliance with the model and marked as a potential attack

when forbidden values are found. This approach is similar to

the whitelist approach, which is time-consuming and leads to

many false positive alarms.

The authors in article [6] concentrate on SQL injection

attack and propose the detection mechanism employing graphs

and Support Vector Machine. The algorithm converts SQL

query to the graph and uses previously trained SVM to detect

SQL injection. The drawback of this algorithm is that it

focuses only on the detection of tautology which is the first

phase of the attack. When the mechanism blocks such query

it can be considered as the presence of vulnerability.

In [1] authors conducted a review of the literature on

popular web application attacks from OWASP Top 10 list, such

as injections, access control or session management. Among

the analyzed mechanisms were source code static analysis,

dynamic detection of forbidden values and more complex such

as comparison of responses which dropped responses outlying

from the norm. The most popular solutions were based on the

detection of forbidden values and authors stated that there does

not exist a solution that is capable of detecting all injections,

even in only one category such as cross-site scripting, because

of many special cases of such flaw. All the discussed protection

mechanisms assume that the client is free from malicious

software.

III. AUTHORIZATION BYPASSS WITH REQUEST FORGERY

ATTACKS

The aim of authorization bypass attacks is to perform an

unauthorized action on behalf of authroized user. There exist

many attack vectors and scenarios. In this section we describe

four examples of such attacks, beginning with the simplest one

employing social engineering techniques, to more complicated

which uses malicious software.

A. Notation

We are going to use the following notation to describe the

attack flows. The steps described correspond to the numbers

in square brackets on matching figures.

• Actors:

– Client - the mobile or web client of the system,

– WAF - web application firewall,

– Server - system endpoint server (reverse proxy),

– Attacker - an attacker (eg. malware).

• Messages:

– CREDENTIALSClient - Client’s credentials,

– SESSClient - Client’s session created by Server,

– EMAILMAL - malicious e-mail message with ma-

licious link,

– REQBA - a request to obtain form for business

action BA,

– RESPFORM :BA - a response that contains the form

of business action BA,

– DATAFORM :BA - form data to performa a business

action BA,

– MODDATAFORM :BA - modified (by malware)

form data to performa a business action BA with

malicious result,

– RESPBA - a response that confirms the execution

of business action BA,

– RESPMODBA - a response that confirms the exe-

cution of modified business action BA,

– CSRFTAG - a anti-CSRF tag,

– 2FAOTP - one time password from 2FA device,

mandratory to authorize business action,

392 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



• Actions:

– ClickLink(EMAILMAL) - user clicks the link

from malicious e-mail,

– V erify(CREDENTIALSClient) - Server verifies

Client’s credentials and creates new session for him,

– WafV erify(Data) - WAF verifies the correctness

of Data,

– CreateUser(DATAFORM :USER) - Server creates

user record with form data,

– FormTag(RESPFORM :BA) - WAF creates a form

tag to prevent CSRF attack,

– DoBA(DATAFORM :BA) - Server executes busi-

ness action BA using form data,

– Intercept(Data) - Attacker intercepts data,

– ModifyBA(DATAFORM :BA) - Attacker modifies

business action attributes (form data),

– AdditionalAuthRequired(Data) - WAF checks

whether additional authorization is required for given

action described by data,

– Send2FARequestForData(MODDATAFORM )
- WAF sends challange to 2FA device for given

business data for additional authorization,

– AbortForSecurityReason() - Client aborts opera-

tion (hacking attempt found).

B. The CSRF attack using a malware to bypass RSA Token

and WAF

In this example we present an attack which bypasses the

RSA Token and Web Application Firewall with the use of

financial Trojan like ZEUS. RSA Token is a two-factor au-

thentication device which generate a cryptographically-secure

token to authorize the business action. ZEUS malware, on the

other hand, allows to change the bank transfer data in online

banking system. The attack is hard to detect by user because

the browser displays valid transfer data and data is changed to

the thieves’ account number during the communication. Two-

factor authorization, which does not user a device that displays

the decription of operation to be authorized, is not effective

for this type of attack.

The case background is the following. The Client has a

bank account in the bank which requires that the transactions

commissioned on the online service must be confirmed using

one time password (OTP) generated by RSA Token. Client’s

device is infected with malware that is specialized in stealing

money from the bank transaction system (eg. ZEUS).

The scenario of the attack is presented on figure 1.

(1) The Client logs in to the bank system.

(2) WAF performs static analysis if request is technically

correct.

(3) Request was validated and pass to the banking system.

(4) The system validated the data entered.

(5) System created the session and returned it to the client.

(6) He wants to transfer money to his contractor.

(7) WAF verifies request.

(8) Pass it to the banking system.

(9) WAF receives form.

(10) WAF tags it with CSRF token.

(11) WAF sends it back to the user.

(12) The account number to which he wants to transfer the

money is not added to any trusted transfer templates - the

system will require authorization and one time password

(OTP) code from the RSA Token.

(13) Malware detects an attempt to perform a transfer and, at

the communication stage.

(14) Malware swaps the contractor account to the Attacker’s

account.

(15) A malicious request is sent to the system.

(16) WAF validates modified request.

(17) Pass it to the system.

(18) System performs transfer to Attacker’s account.

(19) Malware, on the summary screen of the transfer, presents

the Client with the account number of the contractor. The

unaware Client gives the OTP code and authorizes the

transfer to the Attacker’s account.

IV. THE NEW ARCHITECTURE FOR PROTECTING WEB

APPLICATIONS AGAINST REQUEST FORGERY ATTACKS

PERFORMED BY MALICIOUS SOFTWARE

In this section we describe our approach to extend WAF

security with behavioral analysis. The solution we want to

propose increases the security and usability of the application

that the WAF protects. It reduces the risk of a successful attack,

even if your device is infected with malware.

We introduce behavioral analysis and user action history.

The user request is analyzed by WAF before it reaches

the target system. The WAF analyzes whether the user has

performed similar actions in the past and whether they have

been successfully commissioned. The similarity is calculated

on the base of technical and business attributes describing

actions. When the requested action is similar, the WAF does

not require additional authorization. If not, the WAF asks for

additional authorization to confirm the operation for the data

entered. It would speed up the use of the target system and

minimize the risk that the user confirms the operation with

input altered by the Attacker.

A. History analyze and the similarity function

The added value of our solution to the classic Web

Application Firewall is the Hisotry Analyzer module. With

this module we are able to detect potencial abuse using

cross-site request forgery. The key element of the proposed

solution is the similarity function. We are going to use the

following model to describe the proposed solution. In order

to implement historical analysis, we need to introduce a

concept of action. Actions, ie, business orders that a user has

performed on a system that protects the WAF. The module

checks to see whether similar operations have been performed

by the user in the past. Similarity is calculated using an

algorithm 1. If the action is similar to past operations,

additional authorization is not required.

Definition 1. Technical attributes.

MICHAL SROKOSZ ET AL.: A NEW WAF-BASED ARCHITECTURE FOR PROTECTING WEB APPLICATIONS AGAINST CSRF ATTACKS 393



2FA

2FA

Cient

C

Malware

M

WAF

W

Server

S

[1]{CREDENTIALSClient} [1]{CREDENTIALSClient}

[2]WafV erify(CREDENTIALSClient)

[3]{CREDENTIALSClient}

[4]V erify(CREDENTIALSClient)

[5]{SESSClient})[5]{SESSClient}[5]{SESSClient}

[6]{REQBA} [6]{REQBA}

[7]WafV erify(REQBA)

[8]{REQBA}

[9]{RESPFORM:BA}

[10]FormTag(RESPFORM:BA)

[11]{RESPFORM:BA, CSRFTAG}[11]{RESPFORM:BA, CSRFTAG}

[12]{2FAOTP }

[13]{DATAFORM:BA, 2FAOTP }

[14]ModifyBA(DATAFORM:BA)

[15]{MODDATAFORM:BA, 2FAOTP }

[16]WafV erify({MODDATAFORM:BA, 2FAOTP })

[17]{MODDATAFORM:BA, 2FAOTP }

[18]DoBA({MODDATAFORM:BA, 2FAOTP })

[19]{RESPMOD_BA}[19]{RESPMOD_BA}

[19]{RESPBA}

msc Attack using a malware to bypass RSA Token and WAF

Fig. 1. Attack using a malware to bypass RSA Token and WAF.

T = {t1, t2, ..., tn}
V T = {vt1, vt2, ..., vtn}

The T set is a set of technical attributes and the V T

set contains all of possible values of technical attributes.

Technical attributes are not directly related to business data;

they are rather a description of where and from what machine

the action was initiated. This can be an ip address, browser

fingerprint, country, time zone, and so on.

Definition 2. Business attributes.

B = {b1, b2, ..., bn}
V B = {vb1, vb2, ..., vbn}

The B set is a set of business attribute, the V B set

represents all of possible values of business attributes.

For example, the account number of the destination, the

amount of the transfer for the service that executes the transfer.

Definition 3. Other variables.

Boolean = {true, false},
R,

T ime

The Boolean set is a set of boolean values, the R - set

represents real numbers and T ime is a set of all possible

timestamps

Definition 4. Actions and set of all possible actions.

A = {a1, a2, ..., an}
an = (T,B, V T, V B,Boolean,Boolean, T ime)

The A set is a set of all possible actions and the an
represents an action. This is a collection of all actions

provided by a WAF-protected system with information about

the actions taken by the user at a specific time along with

the specific business effect. An action is defined by sets of

technical and business attributes along with their values,

two boolean values which states whether an action has been

authorized with additional mechanisms and whether it has

been allowed, and action’s timestamp.

Definition 5. Function additionalAuthRequired

additionalAuthRequired(A× 2A)→ Boolean

Function additionalAuthRequired returns whether

additional authorization is required for given action.

Definition 6. Return elements.

The functions attrs, values, time and passed are return the

elements of an action tuple ai passed as an argument.

Definition 7. History.

The function history is defined as follows:

history(ai, Am) → An, where ai ∈ A, Am ⊂ A and

394 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



An ⊆ Am : aj ∈ An ⇐⇒ (passed(aj) ∧ (time(aj) <=
time(ai)))

Definition 8. actionSimilarityThreshold function.

actionSimilarityThreshold(ai) =
max(similarityThreshold(vbti),
∀vbti ∈ 2V B∪V T : vbti ⊆ values(ai))

Function actionSimilarityThreshold returns similarity

threshold for given action based on its attributes. It is

calculated as the maximum similarityThreshold for all

possible subsets of action’s values of attributes

Definition 9. additionalAuthRequired function

additionalAuthRequired(ai, Am) =










true, similarity(ai, Am) <=

actionSimilarityThreshold(ai)

false, otherwise

The function similarity depends on the method to be

used to compare actions. The algorithm of calculating the

similarity of action is presented in Alg. 1. In this state of

study we are using simply algorithm based on weighted

wage. The values of the similarity function are taken later in

the verification (additionalAuthRequired) that the action is

similar enough to those previously performed that no further

verification is needed.

Algorithm 1: Function that returns the similarity be-

tween the action and the history

SIMILARITY (ai, An)
inputs : Action and Action set

output: Similarity factor

tmpSum← 0
tmpWage← 0
foreach aj ∈ history(ai, An) do

foreach attri ∈ attrs(aj) do

if value(attri, ai) ≈ value(attri, aj) then
tmpSum← tmpSum+ wage(attri)

tmpWage← tmpWage+ wage(attri)

if tmpWage = 0 then

return 0;

return tmpSum÷ tmpWage;

V. CONCLUSIONS

In the article we presented the weaknesses of Web Applica-

tion Firewalls which use signature-based and rule-based static

analysis. We presented a successful request forgery attack

on the application defended by classic WAF when client has

malware installed.

To protect against such attacks we introduced an approach,

based on historical and behavioral analysis of user requests,

which reduces the need for additional forms of authorization.

After sufficiently collecting and analyzing user’s history, the

additional authorization appears only in the situation that ac-

tually requires it. Such approach increases the responsiveness

and general feel of the application.

In the future work, we plan to implement the proposed

system and check the efficiency and accuracy of it.

REFERENCES

[1] Deepa, G., Thilagam, P.S.: Securing web applications from injection
and logic vulnerabilities: Approaches and challenges. Information and
Software Technology 74, 160 – 180 (2016), http://www.sciencedirect.
com/science/article/pii/S0950584916300234

[2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T.: Rfc 2616, hypertext transfer protocol – http/1.1 (1999),
http://www.rfc.net/rfc2616.html

[3] Garcia-Teodoro, P., Diaz-Verdejo, J., Tapiador, J., Salazar-Hernandez,
R.: Automatic generation of {HTTP} intrusion signatures by selective
identification of anomalies. Computers & Security 55, 159 – 174 (2015),
http://www.sciencedirect.com/science/article/pii/S0167404815001297

[4] Garnaeva, M., Sinitsyn, F., Namestnikov, Y., Makrushin, D., Liskin,
A.: Overall statistics for 2016. Special report, Kaspersky Lab (De-
cember 2016), https://kasperskycontenthub.com/securelist/files/2016/12/
Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf

[5] Jazi, H.H., Gonzalez, H., Stakhanova, N., A.Ghorbani, A.: Detecting
http-based application layer dos attacks on web servers in the presence
of sampling. Computer Networks 121, 25 – 36 (2017), http://www.
sciencedirect.com/science/article/pii/S1389128617301172

[6] Kar, D., Panigrahi, S., Sundararajan, S.: Sqligot: Detecting {SQL}
injection attacks using graph of tokens and {SVM}. Computers &
Security 60, 206 – 225 (2016), http://www.sciencedirect.com/science/
article/pii/S0167404816300451

[7] Mazur, K., Ksiezopolski, B., Nielek, R.: Multilevel modeling of dis-
tributed denial of service attacks in wireless sensor networks. Jour-
nal of Sensors 2016 (2016), https://www.hindawi.com/journals/js/2016/
5017248/

[8] Razzaq, A., Anwar, Z., Ahmad, H.F., Latif, K., Munir, F.: Ontology for
attack detection: An intelligent approach to web application security.
Computers & Security 45, 124 – 146 (2014), http://www.sciencedirect.
com/science/article/pii/S0167404814000868

[9] Singh, K., Singh, P., Kumar, K.: Application layer http-get flood {DDoS}
attacks: Research landscape and challenges. Computers & Security
65, 344 – 372 (2017), http://www.sciencedirect.com/science/article/pii/
S0167404816301365

[10] Wichers, D.: OWASP Top Ten Project. https://www.owasp.org/ (2013),
[Online; accessed 12-March-2017]

[11] Wueest, C.: Istr financial threats review 2017. Special report, Syman-
tec (May 2017), https://www.symantec.com/content/dam/symantec/docs/
security-center/white-papers/istr-financial-threats-review-2017-en.pdf

MICHAL SROKOSZ ET AL.: A NEW WAF-BASED ARCHITECTURE FOR PROTECTING WEB APPLICATIONS AGAINST CSRF ATTACKS 395


