
Autonomous Graph Partitioning for Multi-Agent

Patrolling Problems

Bernát Wiandt and Vilmos Simon

Budapest University of Technology and Economics

in Budapest

Magyar tudósok krt 2., Hungary

Email: [bwiandt,svilmos]@hit.bme.hu

Abstract—Patrolling algorithms are coordinating multiple
agents with the goal of visiting points of interest in a timely
manner. These algorithms play a major role in efficient use of
UAVs or other autonomous vehicles for precision agriculture,
large area monitoring or security use cases. These algorithms
are either centralized and in need of constant connection with
the agents or solve NP-hard problems to plan the routes of
individual agents on the graph. These requirements become
unfeasible when the number of agents or points of interest
grow or become dynamic. In this article we further elaborate
the performance characteristics of the Partition Based Patrolling
Strategy (PBPS) algorithm. The partitioning requires only local
interactions between agents, therefore it is scalable to a large
number of nodes and agents. On these subgraphs agents patrol
independently from each other, therefore the approach eliminates
interference between agents.

I. INTRODUCTION

P
ATROLLING is the task of visiting points of interest in

a timely manner. These points of interest can be selected

for security purposes (monitoring entry points of an area)

or points in space one would like to monitor[1] by making

photographs or measurements. Every problem that involves

points of interests distributed in space and limited possibilities

to move between them (modeled by a graph) is a patrolling

problem. When patrolling inside a building, points of interest

can be intersections or doors needed to be inspected in a

timely manner. When dealing with a large open area, like an

agricultural crop, the points of interest are locations where one

wants to make measurements, i.e. water level, infections, fruit

maturity, etc.

Points of interest are usually modeled as nodes of a graph,

where the edges represent the option to travel between them

directly and the length of the edges represent the distance or

cost of moving between them. Patrolling is usually performed

by physical agents, such as Unmanned Autonomous Vehicles

(UAVs) or robots[2], either on ground or in the air. In this

article we refer to these entities, without loss of generality, as

agents. Patrolling with a single agent is a matter of calculating

a sequence of points of interest for the agent to visit. Instead,

our focus is on multi-agent patrolling, where the task is to

efficiently coordinate an arbitrary amount of agents in order

to minimize some performance metric associated with the

patrolling task.

Coordinating multiple agents to perform patrolling can be

reduced to a multiple traveling salesman problem, therefore

it is an NP-hard problem[3]. Patrolling algorithms either plan

the routes for each agent ahead of time and feed those routes

to the agents as a priori information or try to coordinate the

agents in real time by allowing them to communicate through

some wireless medium and employing various heuristics in the

agents to decide on the next graph node to visit.

Patrolling on graphs is either implemented by allowing

every agent to visit all nodes in the graph or the graph is

partitioned into subgraphs[4], [5] and the agents work only on

their own subgraph without interfering with each other. The

first case involves interference between the agents that can

result in agents blocking each other on the way from one node

to another. When agents try to move in the same direction or

meet at an intersection, they inhibit each other from carrying

out their tasks as fast as possible. These interference events

can have a negative impact on the performance and scalability

of the patrolling algorithm. Since patrolling is usually a long

running task, these interference events will have a continuous,

most of the time unpredictable effect on the performance.

To counter this effect, researchers started investigating

partition-based patrolling. Currently partitioning is usually

done before patrolling starts, on a central entity, and the result-

ing partitions are assigned to the agents as a priori information.

This method is not always feasible as environments can be

dynamic: appearing or disappearing graph nodes and failing

or newly introduced agents can trigger the recalculation of

partitions. Therefore agents need the central entity throughout

the patrolling task and need synchronization at times of

partition changes. A self-organizing partition based strategy

is more desirable, because agents need less synchronization,

require only local information and it makes the whole system

more robust against agent failures.

II. RELATED WORKS

Patrolling strategies can be really simple heuristic based

approaches or complex learning algorithms that try to find

the optimal route for a multi-agent team. It is not always

clear whether a complex approach or a simple heuristic can

offer better performance. In [6] patrolling is cast into a multi-

agent Markov Decision Process and optimization techniques

are applied to efficiently find the optimal paths for agents

on the graph. However in the same article this solution is

compared to a simple reactive algorithm and performance

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 261–268

DOI: 10.15439/2018F213

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 261

differences with regards to the instantaneous idleness metric

were negligible. This experiment and the conclusion of [7]

suggest that computationally complex approaches are not

always justified and simple reactive algorithms can match the

performance of their more elaborate counterparts.

Agents can be restricted to their own subgraph or parti-

tion and perform patrolling alone in that region. An early

theoretical study [3] gives some insight into the performance

characteristics of the partition-based and cyclic approaches

(for example the previously mentioned SingleCycle). Authors

of this article claim that the optimal patrolling strategy for a

single agent can be obtained by finding a shortest closed walk

on the graph. This can be reduced to the Traveling Salesman

Problem for which good approximations exist (for example

the Christofides algorithm with O(n3) for a 3

2
approximation).

When multiple agents are considered, one strategy can be to

traverse the closed path with evenly distributed agents along

the path. The performance of such a strategy is bound by

the edge length distribution of the graph [3]. For example on

graphs with “long corridors" (edges connecting two distant

nodes) a partition-based strategy could be a better fit, because

those “long corridors" can be avoided by leaving them out of

the partitions assigned to the agents.

So far the solutions enumerated were dealing with the

multi-agent patrolling problem based on the assumption that

agents cannot interfere with each other. However, interference

can occur when two agents are too close to each other and

cannot proceed in the direction of their targets. Interference is

important when the algorithm is designed to be deployed on

physical agents and can render theoretically better algorithms

inferior in the real world. Accounting for interference results

in a much harder problem, because the theoretically best

results are no longer optimal if agents have to stop before

colliding with each other or possibly choose different targets.

Several new heuristic approaches are taking into account this

phenomena, for example in [8] authors implement Greedy

Bayesian Strategy (GBS) and State Exchange Bayesian Strat-

egy (SEBS). Both strategies require global communication

meaning that agents can communicate with all other agents

involved in the patrolling task. They employ reactive agents (so

the agents do not form plans ahead of time) and the decision

making algorithm that chooses the next graph node to visit

is based on Bayes’ rule. The latter strategy (State Exchange

Bayesian Strategy (SEBS)) aims to minimize the interference

between agents while patrolling, by communicating the agent’s

next node it is intending to visit. SEBS is able to achieve better

performance than any other heuristic studied in the article.

Interference minimalization and graphs with non uniform edge

length distributions contributed to the interest in partition

based strategies.

Numerous other approaches have been tried to address

the multi-agent patrolling problem, such as spanning tree[9],

[10] or graph partitioning based approaches[11], [12]. Others

involve task allocation based strategies[13] and evolution-

ary algorithms[14] or linear programming[15]. Auction based

strategies involve agents placing bids on nodes to patrol on the

graph. These kind of approaches implement a decentralized

task allocation, where the agents decide on the outcome and

able to reassign nodes or partitions of poorly performing

agents to others[16], [17].

III. THE MULTI-AGENT PATROLLING PROBLEM

In this article our goal is to further elaborate the perfor-

mance characteristics of our proposed PBPS algorithm [18].

In our model the only global knowledge the agents have is the

map they are patrolling on. They do not have the capability to

communicate globally with each other. Agents’ behavior will

result in solving the patrolling problem efficiently together,

without third party coordination.

In the model, the connected graph G(V,E) consists of

nodes v1, v2, ..., vn ∈ V and undirected edges ei,j ∈ E.

Nodes are the points of interest, they are visited by the agents

periodically. Each node has a counter that measures time

between the last visit to that node and the current time. This

counter is usually referred to as the instantaneous idleness of

the node at time t and is defined as Ivi(t) = t − I ′vi , where

I ′vi is the time at the last visit to the node and vi ∈ V . In

some use cases patrolling is done to measure some physical

quantity at the point of interest periodically and as frequently

as possible. Let us suppose that the measurement at each point

of interest takes the same amount of time for each agent.

Agents’ movement is restricted to the edges between con-

nected nodes. Agents have a priori knowledge of the graph

nodes and edges, and are capable of moving between nodes

along the edges with constant and uniform speed. Agents

are able to communicate with each other, therefore influence

each other’s decisions by broadcasting messages via a wireless

medium.

Patrolling algorithms have very different characteristics with

respect to the routes they take, the order in which they visit

certain nodes, etc. To be able to compare their performances,

we have to define metrics that represent the goodness of an

algorithm from a certain point of view. The metric used for

this task is usually the average idleness or the worst idleness.

Both of these metrics are based on the instantaneous idleness

defined before as Ivi(t). This basic metric can be averaged in

a window or throughout the simulation to obtain the average

idleness, defined as:

Ivi
(t) =

Ivi(tvi) · Ci + Ivi
(t)

Ci + 1
(1)

where Ci is the number of visits to vi. The average graph

idleness is the average of average idleness values, such that:

IG(t) =
1

|V |

|V |∑

i=1

Ivi
(t) (2)

A problem with the average graph idleness metric is that

there can be two patrolling algorithms with the same average

graph idleness but significantly different behaviors. Average

graph idleness masks important characteristics of patrolling

algorithms and as a consequence, its value can be misleading

262 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

when comparing different algorithms. The idleness times be-

tween visits are samples from an unknown distribution and to

reason about that unknown distribution based on the mean of a

limited amount of its samples can be misleading. Therefore in

this article we use the distribution of the worst idleness values

to compare performances. The worst idleness associated with

a node between times ta and tb is defined as the maximum

instantaneous idleness value:

WIvi
= max{Ivi

(ta), ..., Ivi
(tb)} (3)

The worst idleness times are the worst case scenario, there-

fore by gathering enough samples, one can be reasonably

sure of an upper bound of the idleness times that can be

observed during patrolling. Patrolling use cases like reading

measurements from sensors or taking photographs of certain

physical locations usually benefit from a known maximum

time between measurements. The worst idleness distribution

makes it possible to evaluate patrolling algorithms based on

this criteria. It also shows the fairness of the algorithm: the

difference between the minimum and maximum worst idleness

values on the graph over time. Moreover the distribution of

worst idleness can be easily visualized using box plots.

IV. PARTITION BASED PATROLLING STRATEGY (PBPS)

The patrolling strategy we use in this article follows the

partition based approach. Based on [3], [19], the performance

of such a patrolling algorithm is in theory inferior compared

to a cycle-based strategy on graphs without “long corridors".

However, if the model accounts for the effects of interference

between agents, this may no longer be true. Partitioning the

graph between the agents is not a new idea, authors in [8] and

[5] improved their patrolling algorithms by limiting the amount

of interference between agents. Partition based strategies take

this idea to the extreme as there is no interference between

agents, they patrol their own partitions independently.

PBPS was published in [18] along with the first results

obtained on well-known graphs. Here we give only a short in-

troduction to the algorithm. PBPS has two important assump-

tions about the environment: agents can localize themselves

and they know the structure of the graph a priori. It should be

noted, that these assumptions are not typical in self-organized

systems, because they require agents with greater knowledge

than usual. However the information requirement of PBPS

is the same as other patrolling algorithms, such as SEBS or

Greedy Bayesian Strategy (GBS). The problem of discovering

the environment and forming consensus about it among the

agents is not discussed in this article.

The goal of the algorithm is to partition the graph into non-

overlapping connected subgraphs and in the process create a

global partitioning that enables the efficient patrolling of the

graph. All agent’s partitions are empty in the beginning. A

partitioning of G is defined as P = {P1...Pk}, such that P1 ∪
... ∪ Pk = V and Pi ∩ Pj = ∅. {G1...Gk} refer to subgraphs

induced by the partitioning, thus Gi = (V ∩ Pi, E ∩ (Pi ×
Pi)). The partition growing process is self-organized, such that

there is no global coordination between agents and no global

T0

T1

T2

agent1 agent2 agent3

Fig. 1: Claiming of nodes between agents in order to achieve

a balanced partitioning.

state shared among them. Agents grow their own partitions by

claiming nodes from each other’s partitions and broadcasting

their new partition after claiming a new node. In the process

(see for example Figure 1) of growing partitions, there can

be local violations to the strict non-overlapping partitioning

introduced above, but these are temporary and will resolve

over time. The algorithm always reaches a state, where the

partitions are stable, i.e. no more changes made by the agents.

When agents arrive at a stable configuration, each partition

will belong to one and only one agent and each partition will

be a connected subgraph with no overlapping nodes with other

partitions. The resulting partitioning assigns a subgraph to each

agent to patrol with roughly equal number of nodes.

V. SIMULATION ENVIRONMENT

We have conducted numerous simulations to investigate the

performance characteristics of PBPS and compared patrolling

on the formed partitions to well-known patrolling algorithms.

First we describe the environment in which the experiments

were carried out as it was designed to resemble possible real-

world usage scenarios. We used the osmnx python library[20]

to download maps of two Hungarian cities: Budapest and

Komárom. We chose Budapest, since it is the capital of Hun-

gary and like large cities it has a lot of intersections and shorter

edges. Komárom on the other hand tends to have differently

distributed edge lengths and node degrees (as can be seen

on Fig. 2 and 3) as it is a smaller city on the countryside.

Node degrees tend to be lower for Komárom but edge lengths

are significantly longer than the ones for Budapest. We chose

two different real maps to model possible usage scenarios

and also to have environments with different characteristics.

Our partitioning strategy is based on the assumption that the

edge length distribution of the graph is more or less even.

The map excerpt from Komárom has a longer tail in its edge

length distribution, therefore more variety than the map excerpt

from Budapest. The downloaded maps were simplified as the

BERNÁT WIANDT, VILMOS SIMON: AUTONOMOUS GRAPH PARTITIONING FOR MULTI-AGENT PATROLLING PROBLEMS 263

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Node degree

d
e
n
s
it
y

Degree distribution for "Budapest"

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Node degree

d
e
n
s
it
y

Degree distribution for "Komarom"

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Node degree

d
e
n
s
it
y

Degree distribution for "Small world"

Fig. 2: Degree distributions of the maps used for the experi-

ments.

0.000

0.005

0.010

0.015

0.020

0 50 100 150 200

Edge length

d
e
n
s
it
y

Edge length distribution for "Budapest"

0.0000

0.0025

0.0050

0.0075

0.0100

0 50 100 150 200

Edge length

d
e
n
s
it
y

Edge length distribution for "Komarom"

0.00

0.01

0.02

0.03

0.04

0 50 100 150 200

Edge length

d
e
n
s
it
y

Edge length distribution for "Small world"

Fig. 3: Edge length distributions of the maps used for the

experiments.

original Open Street Map data contains a lot of short edges and

unnecessary nodes. The simplification step was done using a

built-in functionality in osmnx. A third map was introduced,

called Small World, which is a generated small world type

graph (Barabási-Albert graph) with a completely different

node degree distribution than the other two maps. This graph

has 50 nodes and was grown with 3 edges preferentially

attached to existing nodes using the networkx python library’s

built in graph generator. This third environment has some

really high degree nodes and claiming those nodes in the

partitioning phase can effect other partitions, as these high

degree nodes act as access points to the rest of the graph.

We carried out experiments in these graphs with three

different patrolling algorithms with parameters given in Table

I. First, Conscientious Reactive[21] was used as a baseline as

it is a greedy heuristic with no communication requirements

among the agents. The second algorithm tested was State

Exchange Bayesian Strategy[8], which is based on the idea that

agents can perform better if they exchange their intentions and

Parameter Value

Number of agents 1, 2, 4, . . . , 32
Double number of agents every 200000s
Number of iterations 10

Agent speed 1m/s

TABLE I: Simulation parameters for the local vs. global metric

experiment.

0

50

100

150

1 2 4 8 16 32

Number of agents

S
iz

e
 o

f
p

a
rt

it
io

n
s

Partition sizes for "Budapest"

Fig. 4: Partition sizes for Budapest

factor the intentions of other agents in when making a decision

which node they visit next. The third was PBPS, which forms

partitions on the map in a self-organized manner and agents

perform patrolling on their own partition only.

VI. PARTITIONING ALGORITHM RESULTS

The goal of this experiment was to gain insight into the

performance characteristics of the partition forming part of the

PBPS algorithm. To this end we have disabled the mobility of

the agents and tracked the partitioning events throughout the

simulation. Partitioning events are either node free or nonfree

node claims, or partition resets. In the beginning of every

simulation run, only one agent is on the map at a randomly

chosen node and it starts forming its partition. After this initial

agent claims the whole map as its partition there are no more

partitioning events occurring. The simulator waits until there

are no more partitioning events for 5000 time steps and then

doubles the number of agents on the map. The agents already

on the map retain their partitions and the new agents are

assigned a random starting node as their initial partition. This

mechanism for adding agents sometimes cause overlaps in the

partitioning, because the previous generation of agents claimed

the whole map together (every node belongs to one and only

one agent). However this is not a problem as the first time a

new agent broadcasts its initial partition, the overlaps will be

resolved by the old agent releasing that node from its partition.

The number of agents simulated on each map are exponen-

tially increasing (1, 2, . . . , 16). The exponential increment in

264 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

0

50

100

150

1 2 4 8 16

Number of agents

S
iz

e
 o

f
p

a
rt

it
io

n
s

Partition sizes for "Komarom"

Fig. 5: Partition sizes for Komárom

0

50

100

150

1 2 4 8 16

Number of agents

S
iz

e
 o

f
p

a
rt

it
io

n
s

Partition sizes for "Small world"

Fig. 6: Partition sizes for Small World

the number of agents can reveal the scalability characteristics

of the partition forming part of PBPS with respect to the

different maps. As a performance metric, the time to arrive

at a stable partitioning was measured for different number of

agents (1, 2, 4, . . . , 16) and at the same time the number of

nodes in each partition were tracked.

This was done in order to confirm whether a stable parti-

tioning is also a balanced one. A balanced partitioning in this

terminology is where the number of nodes in each agent’s

partition is close to the number_of_nodes
number_of_agents

number. In other

words, a balanced partitioning is where each partition has a

roughly equal amount of nodes. Depending on the structure of

the map this balanced property might not be achievable, since

the tested maps are not full graphs with an edge connecting

every node. Figures 4, 5 and 6 report the distribution of

Num. of agents 1 2 4 8 16 32

Budapest belváros

Mean 146.0 73.0 36.5 18.25 9.125 4.5625
Var 0.0 0.0 0.2564 0.3670 0.6383 0.3534
IDI 0.0 0.0 0.0070 0.0201 0.0699 0.0774

Komárom

Mean 59.0 29.5 14.75 7.3750 3.6875 N/A
Var 0.0 0.2631 0.5000 1.1487 0.3671 N/A
IDI 0.0 0.0089 0.0338 0.1557 0.0995 N/A

Small world

Mean 50 25 12.5 6.25 3.125 N/A
Var 0.0 0.0 0.2564 0.1898 0.1729 N/A
IDI 0.0 0.0 0.0205 0.0303 0.0553 N/A

TABLE II: Mean, variance and index of dispersion values of

resulting partition sizes for all three tested maps and different

number of agents.

Fig. 7: Times of last partitioning events for versus number of

agents for Budapest

partition sizes versus the number of agents. These are box

plots[22] where the box contains 75% of the observed values.

The blue curve shows the balanced partition sizes for differ-

ent number of agents, its value is number_of_nodes
number_of_agents

, where

number_of_nodes is constant and a property of the map. The

results here show that in all simulated experiments the parti-

tioning algorithm was able to arrive at solutions close to the

optimal. Some exceptions show up as outliers on the box plots

and indicate that the initial conditions have some influence

on the final partitioning. All simulations were done 10 times

with different starting positions for the agents, therefore each

box represents the distribution of 10 ∗ number_of_agents

different resulting partition sizes.

Additionally the mean, variance and index of dispersion[23]

metrics were calculated for the three different maps and for

the different agent numbers. These results are summarized in

Table II.

The next set of results discuss the time requirements of

the partitioning algorithm, paying attention to its scaling

properties. The question here is how does adding more agents

to a map influence the time needed to arrive at a stable

configuration? A stable configuration is one, where no more

BERNÁT WIANDT, VILMOS SIMON: AUTONOMOUS GRAPH PARTITIONING FOR MULTI-AGENT PATROLLING PROBLEMS 265

Fig. 8: Times of last partitioning events for versus number of

agents for Komárom

Fig. 9: Times of last partitioning events for versus number of

agents for Small World

partitioning events occur. One of the advantages of using a

self-organized approach is that in theory it is scalable and

can enable multi-agent patrolling on larger graphs for a larger

number of agents, than centralized algorithms. Figures 7, 8 and

9 show the distribution of time of the last partitioning event for

each different simulated agent population versus the number of

agents across all 10 iterations. Each group of values consists of

10 measurements and a curve is fitted to show the observed

general trend of the values. It is important to note that the

5000 time step period between agent additions is subtracted

from the values on the figures to show an ideal situation where

one could determine the exact moment when the partitioning

stops. The figures show that although the number of agents

increase exponentially, the time needed to partition the graph

increases only linearly. This indicates, that for the tested

maps, the algorithm behaves well with a large number of

agents and might be suitable to handle very large number

of agents partitioning the same graph simultaneously. The

variance of the values increase for larger number of devices.

This indicates that the intermediate resulting partitionings and

randomly assigned starting nodes for added agents (initial

condition for each addition step) has an increasingly large

effect when the number of agents are high. It is possible

that by carefully choosing the insertion point for new agents,

the observed variance might be decreased. However in this

analysis we were interested in the possible outcomes and was

aiming of getting a full picture of the dynamic behavior PBPS,

rather than optimizing its parameters for ideal performance.

VII. PATROLLING RESULTS

After investigating the different aspects of the partitioning,

we compared the PBPS algorithm with two other algorithms:

Conscientious Reactive (CR) and State Exchange Bayesian

Strategy (SEBS). Conscientious Reactive (CR) is a simple

greedy reactive algorithm, where the agent makes decisions

based only on the visits made by itself. Other agents are not

taken into account, therefore no communication is needed by

this algorithm. Upon arriving to a node it resets the node’s

idle timer in its own local data structure and evaluates the

node’s neighbors in the graph. For the next node to visit the

agent chooses the one with the largest instantaneous idle time

value. CR is a trivial algorithm that requires only an agent with

the capability to move and store the graph and timers in its

internal memory, therefore the algorithm is an ideal baseline

to compare other, more sophisticated algorithms to.

The State Exchange Bayesian Strategy (SEBS) strategy

takes into account the interference caused by other agents in

the same area. Agents can inhibit each others’ movements

by standing in the way or forcing other agents to move

slower to avoid collision. This effect can cause strategies

like CR and GBS to perform poorly in situations, where

the number of agents in an area becomes high. GBS and

SEBS builds on the idea of Bayesian decisions, where the

a priori probability to visit a neighbor node is offset by the

instantaneous idleness of the node known to the agent. This

way GBS can take into account priorities input by the designer

and the actual state of the system (instantaneous idleness of the

nodes). SEBS extends GBS by having agents broadcast their

intentions (the node they are intend to visit next) for their

immediate neighbors. This information is used in all agents

when evaluating the agent’s next node to visit. If one or more

agents intend to visit the same node, it is not beneficial to let

another one go in that same direction, even if the instantaneous

idleness value of the node is high. SEBS aims to lower the

amount of time an agent loses by executing collision avoidance

behaviors, causing them to slow down or chose a different

target node altogether.

In these simulation runs, each group size (number of agents)

ran for 200000 time steps, and after the number of agents were

doubled. This process was repeated until there were 16 agents

for Komárom and Small World, and 32 agents for Budapest on

the map. We ran 10 iterations for each algorithm-map pair with

random starting positions for every agent for every iteration.

The structure of the graphs and the starting position of the

agents can influence their measured performance, therefore in

266 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

0

20000

40000

60000

80000

1 2 4 8 16

Number of agents

W
o

rs
t

id
le

n
e

s
s

Strategies

CR

SEBS

PBPS

Fig. 10: Worst idleness time distributions for different strate-

gies versus number of agents for Budapest

0

10000

20000

30000

40000

50000

1 2 4 8 16

Number of agents

W
o

rs
t

id
le

n
e

s
s

Strategies

CR

SEBS

PBPS

Fig. 11: Worst idleness time distributions for different strate-

gies versus number of agents for Komárom

0

1000

2000

3000

4000

1 2 4 8 16

Number of agents

W
o

rs
t

id
le

n
e

s
s

Strategies

CR

SEBS

PBPS

Fig. 12: Worst idleness time distributions for different strate-

gies versus number of agents for Small World

order to gain as much information about the performances

of different algorithms as possible, random non-overlapping

starting points were chosen for the agents when they were

added to the team. In the case of CR and SEBS strategies

this means a random node from the graph and in the case of

PBPS, this results in a random node from the agent’s partition.

Partitioning strategies have a tendency to perform worse

when they start on a graph, because they base their decisions

on idleness times (and other agents’ intentions in the case

of SEBS), but in the beginning this data is not available for

them. Therefore the first 100000 time steps for each different

configuration were dropped in order to let the agents “warm

up" and the worst idleness times for each node were collected

for the last 100000 of each configuration. Figures 10, 11 and

12 report the worst idleness time distribution measured on the

whole map for different strategies and different number of

agents.

For one agent, CR and PBPS are almost identical, this is

caused by the fact that PBPS employs CR as the patrolling

strategy in the agents’ partitions. In all tested configurations

the performance of PBPS were better than the other tested

algorithms. Comparing worst idleness distributions between

SEBS and PBPS reveals that PBPS requires on average half

the amount of agents to achieve the same performance as

SEBS. In the case of map Komárom this effect is even more

pronounced as the required number of agents for PBPS is one

fourth of that for SEBS.

Another interesting facet is that SEBS tends to have a

distribution with a longer tail than CR and PBPS. This means

that the majority of values are larger than the mean for maps

BERNÁT WIANDT, VILMOS SIMON: AUTONOMOUS GRAPH PARTITIONING FOR MULTI-AGENT PATROLLING PROBLEMS 267

Budapest and Komárom (see in Figures 10 and 11), which

indicates that judging the performance of SEBS by the mean

of its worst idleness times can be misleading, by indicating

that the average time between visits to nodes in the map is

smaller than what can be interpreted from the distribution

of the values. This property means that performance metrics

reported in articles like [8] can be only part of the whole

picture as one cannot judge every aspect of the performance

of the algorithms accurately from the average idleness values.

VIII. CONCLUSION

We have elaborated on the performance characteristics of

the PBPS algorithm first published in [18]. The result of the

partitioning algorithm is a set of subgraphs formed by the

individual agents cooperating with each other that is used by

patrolling agents as their patrolling tasks. These subgraphs

are formed cooperatively by the agents on the graph without

any central help or control. Using subgraphs of the original

graph allows to completely avoid interference between agents,

therefore have them performing in a parallel and deterministic

manner. The cost function used in this article was the differ-

ence in number of nodes between partitions, but changing this

cost function opens up possibilities for designers of patrolling

systems to tailor the resulting partitions to their use case.

Simulations were performed on three different maps, rep-

resenting different environments: the inner city of Budapest

with shorter edges and more neighbors, part of the small

city Komárom with longer edges and fewer neighbors and

a random graph, which is a generated small world type

graph (Barabási Albert graph). PBPS arrived at a balanced

partitioning in every simulation run with low variance in the

number of nodes assigned to an individual agent. Moreover

PBPS scales well with the number of agents, meaning that

the time needed to finish partitioning increased sublinearly

with the number of agents tested. This property is in contrast

with planning approaches, that usually have worse scaling

properties, making it viable to employ this strategy on larger

graphs and with a larger amount of agents.

We compared the performance of agents using different

patrolling strategies, such as CR, SEBS and PBPS. Patrolling

performance was judged by the distribution of worse idleness

times for all nodes in the graph, represented as box plots. In

every tested case PBPS came out ahead, and on two maps the

necessary number of agents for PBPS were half of what was

required by CR and SEBS for the same performance. This

results in a tradeoff decided by the designer or implementor

later: either employ the same amount of agents and get lower

worst idleness times throughout the graph, or in a resource

constrained scenario, change the patrolling strategy and get

the same performance level with only half the agents required

by other strategies.

REFERENCES

[1] Gonçalo Cabrita, Pedro Sousa, Lino Marques, and A de Almeida.
Infrastructure monitoring with multi-robot teams. In Proceedings of

the 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems, IROS, pages 18–22, 2010.

[2] David Portugal and Rui P Rocha. Cooperative multi-robot patrol in an
indoor infrastructure. In Human Behavior Understanding in Networked

Sensing, pages 339–358. Springer, 2014.
[3] Yann Chevaleyre. Theoretical analysis of the multi-agent patrolling

problem. In Intelligent Agent Technology, 2004.(IAT 2004). Proceedings.

IEEE/WIC/ACM International Conference on, pages 302–308. IEEE,
2004.

[4] Talita Menezes, Patrícia Tedesco, and Geber Ramalho. Negotiator agents
for the patrolling task. In Advances in Artificial Intelligence-IBERAMIA-

SBIA 2006, pages 48–57. Springer, 2006.
[5] David Portugal and Rui Rocha. Msp algorithm: multi-robot patrolling

based on territory allocation using balanced graph partitioning. In
Proceedings of the 2010 ACM Symposium on Applied Computing, pages
1271–1276. ACM, 2010.

[6] Jean-Samuel Marier, Camille Besse, and Brahim Chaib-Draa. Solving
the continuous time multiagent patrol problem. In ICRA, pages 941–946.
Citeseer, 2010.

[7] Alessandro Almeida, Geber Ramalho, Hugo Santana, Patrícia Tedesco,
Talita Menezes, Vincent Corruble, and Yann Chevaleyre. Recent ad-
vances on multi-agent patrolling. In Advances in Artificial Intelligence–

SBIA 2004, pages 474–483. Springer, 2004.
[8] David Portugal and Rui P Rocha. Distributed multi-robot patrol:

A scalable and fault-tolerant framework. Robotics and Autonomous

Systems, 61(12):1572–1587, 2013.
[9] Pooyan Fazli, Alireza Davoodi, and Alan K Mackworth. Multi-robot

repeated area coverage. Autonomous robots, 34(4):251–276, 2013.
[10] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of

continuous areas by a mobile robot. Annals of mathematics and artificial

intelligence, 31(1-4):77–98, 2001.
[11] Tiago Sak, Jacques Wainer, and Siome Klein Goldenstein. Probabilistic

multiagent patrolling. In Brazilian Symposium on Artificial Intelligence,
pages 124–133. Springer, 2008.

[12] Ruben Stranders, E Munoz De Cote, Alex Rogers, and Nicholas R
Jennings. Near-optimal continuous patrolling with teams of mobile
information gathering agents. Artificial intelligence, 195:63–105, 2013.

[13] François Sempé and Alexis Drogoul. Adaptive patrol for a group
of robots. In Intelligent Robots and Systems, 2003.(IROS 2003).

Proceedings. 2003 IEEE/RSJ International Conference on, volume 3,
pages 2865–2869. IEEE, 2003.

[14] Oswaldo Aguirre and Heidi Taboada. An evolutionary game theory
approach for intelligent patrolling. Procedia computer science, 12:140–
145, 2012.

[15] Burcu B Keskin, Shirley Rong Li, Dana Steil, and Sarah Spiller.
Analysis of an integrated maximum covering and patrol routing problem.
Transportation Research Part E: Logistics and Transportation Review,
48(1):215–232, 2012.

[16] Charles Pippin, Henrik Christensen, and Lora Weiss. Performance based
task assignment in multi-robot patrolling. In Proceedings of the 28th

annual ACM symposium on applied computing, pages 70–76. ACM,
2013.

[17] Cyril Poulet, Vincent Corruble, and Amal El Fallah Seghrouchni. Work-
ing as a team: using social criteria in the timed patrolling problem. In
Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International

Conference on, volume 1, pages 933–938. IEEE, 2012.
[18] Bernát Wiandt, Vilmos Simon, and András Kőkuti. Self-organized graph

partitioning approach for multi-agent patrolling in generic graphs. In
Smart Technologies, IEEE EUROCON 2017-17th International Confer-

ence on, pages 605–610. IEEE, 2017.
[19] David Portugal, Charles Pippin, Rui P Rocha, and Helen Christensen.

Finding optimal routes for multi-robot patrolling in generic graphs. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-

tional Conference on, pages 363–369. IEEE, 2014.
[20] Geoff Boeing. Osmnx: New methods for acquiring, constructing,

analyzing, and visualizing complex street networks. Browser Download

This Paper, 2016.
[21] Aydano Machado, Geber Ramalho, Jean-Daniel Zucker, and Alexis

Drogoul. Multi-agent patrolling: An empirical analysis of alternative
architectures. In Multi-Agent-Based Simulation II, pages 155–170.
Springer, 2002.

[22] Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box
plots. The American Statistician, 32(1):12–16, 1978.

[23] DR Cox and PAWL Lewis. The statistical analysis of series of events.
1966.

268 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

