

Abstract—The paper compares the advantages and

disadvantages of a variety of Graphics Application

Programming Interfaces (APIs) from the perspective of

obtaining stereoscopy in applications written for a CAVE

virtual reality environment. A number of problems have been

diagnosed and an attempt has been made to solve them using

OpenGL, DirectX 11 and 12, Vulkan, as well as the Unity

Engine which can internally use DirectX, OpenGL and

Vulkan, but has problems and limitations of its own.

I. INTRODUCTION

TEREOSCOPY (stereo imaging) is a technique for pro-

ducing an illusion of depth by delivering two different

2D images (generated from two different points of view) to

each of the viewer's eyes. It is based on predator (and hu-

man) way of 3D perception by means of binocular vision

(stereopsis). Stereoscopy can rely on direct delivery of two

images on separate screens mounted in front of each eye

(stereoscope, HMD – Head-Mounted Display) or displaying

two images on a common screen visible for both eyes and

using special filtering glasses separating images (3D cin-

ema, CAVE – CAVE Automatic Virtual Environment). Fil-

tering glasses can use various technologies: active (separa-

tion in time by shutter glasses) and passive (spectrum sepa-

ration or polarization separation) [1, 2, 4].

S

The Immersive 3D Visualization Lab (I3DVL) located at

the Faculty of Electronics, Telecommunication and Infor-

matics of the Gdańsk University of Technology contains

three CAVEs of various sizes: closed BigCAVE with six

screen-walls, open MidiCAVE with four screen-walls and

MiniCAVE based on four 3D monitors [3, 5, 7]. Immersive

3D visualization in these CAVEs requires stereoscopy and

This work was supported in parts by Entity Grant to Finance the
Maintenance of a Special Research Device (SPUB) from the Ministry of
Science and Higher Education (Poland) and DS Funds of the Faculty of ETI at
the Gdańsk University of Technology

its synchronization on all screen-walls. The popular game

engine Unity serves as the basic development tool in

I3DVL. Unfortunately, it offers limited support for the cre-

ation of software for CAVEs and needs some adaptation.

CAVE systems put a number of unique requirements on

applications, such as the need to synchronize a large num-

ber of screens or projectors, or the need to support active

and passive stereoscopy, preferably at the same time. This in

turn may necessitate the use of a quadbuffer (a screen buffer

with room for four screen-sized pictures) or similar solu-

tion, if graphical artifacts are to be avoided. Rendering has

to happen at the correct frequency (120 Hz for our Big-

CAVE system), or else frame skipping may happen – or

worse, stereoscopy is disrupted if frames intended for one

eye are displayed to the other eye. Latency should also be

minimized, as delays in rendering are known to induce dis-

comfort and dizziness in viewers, sometimes preventing

them from extended use of virtual reality.

Most of the applications run on our CAVE system have

been developed in the Unity engine, using a third party, pro-

prietary library to achieve synchronization and stereoscopy.

However the library had major limitations, including unsat-

isfactory performance and inability to work with Unity ver-

sions past 5.0.2. We also wanted a solution where we’d have

access to the source code, so that students and researchers

could implement not only applications, but also make

changes to or expand the library itself if necessary. This

forced us to start working on a new library, since the exist-

ing ones were either outdated or had proprietary licenses.

For a long time, the Unity Engine itself had no native

support for stereoscopy, while also limiting direct access to

the underlying graphics APIs – particularly during the ini-

tialization stage. Thus, the only way to achieve synchroniza-

tion and stereoscopy was to render the scene to a texture,

then use a separate rendering context – created outside of

Unity – to display the resulting image. Since the contexts

Stereoscopy in Graphics APIs for CAVE Applications

Jerzy Redlarski
Dept. of Intell. Inter. Systems,

Faculty of Electronics, Telecomm-
unication and Informatics,

 Gdańsk University of Technology,
G. Narutowicza 11/12,
80-233 Gdańsk, Poland

Email: jerredla@pg.edu.pl

Robert Trzosowski
Dept. of Intell. Inter. Systems,

Faculty of Electronics, Telecomm-
unication and Informatics,

 Gdańsk University of Technology,
G. Narutowicza 11/12,
80-233 Gdańsk, Poland

Email: robtrzos@pg.edu.pl

Mateusz Kowalski
Dept. of Intell. Inter. Systems,

Faculty of Electronics, Telecomm-
unication and Informatics,

 Gdańsk University of Technology,
G. Narutowicza 11/12,
80-233 Gdańsk, Poland

Email: matkowa1@pg.edu.pl

Błażej Kowalski
Dept. of Intelligent Interactive Systems,

Faculty of Electronics, Telecomm. and Informatics,
Gdańsk University of Technology,

G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Email: blakowal@pg.edu.pl

Jacek Lebiedź
Dept. of Intelligent Interactive Systems,

Faculty of Electronics, Telecomm. and Informatics,
Gdańsk University of Technology,

G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Email: jacekl@eti.pg.edu.pl

were separate, it was possible to use different graphics APIs

for each task, so our testing included using DirectX 11 and

OpenGL in Unity to render images for both eyes, while us-

ing OpenGL, DirectX 12 or Vulkan in another window to

display those images at the correct frequency and synchro-

nized between projectors and with active glasses.

II. SINGLE CAMERA STEREOSCOPY

One of our attempts involved the simplest way to achieve

stereoscopy in Unity – by alternating the placement of the

camera every other frame. To achieve fluid stereoscopic ani-

mation, the camera is synchronously (on all client comput-

ers) moved back and forth between points A and B, repre-

senting the position of left and right eye respectively. This

needs to happen exactly 120 times per second (for our

setup), each frame shown for the exact same time. It also

needs to be synchronized with the active 3D glasses, which

alternate between darkening left and right LCD shutters at

the same rate.

While alternating the camera’s position between frames

is trivial, implementing the synchronization with glasses in

Unity is problematic. Even when configured to keep a fixed

frame rate of 120 frames per second, it’s common for

frames to vary in length, depending on unpredictable

changes in rendering times. This results in the viewer often

seeing either two overlapping pictures, or reversed pictures,

where the left eye sees the picture intended for the right eye

and vice versa – a (dizzying for the viewer) occurrence re-

ferred to as a desynchronization.

Attempts to reduce the issue by increasing the frame rate

to 240 Hz didn’t solve the problem, even when the number

of frames between switching camera positions was adap-

tively adjusted based on the amount of time a frame actually

took to render. Increasing the frame rate further (360 Hz)

was barely possible, since even an empty scene in Unity,

with no running scripts, physics or camera movement, typi-

cally oscillates around 300 to 330 frames per second.

In best cases, using this method resulted in stereoscopy

that would switch between correct and reversed pictures ev-

ery few seconds, and after less than a minute resulted in

complete desynchronization. Most likely the problem lies in

the fact that the Unity Engine is not designed with constant

frame rates in mind. Additionally, this method is useless in

applications that – due to their complexity – suffer from oc-

casional or frequent drops in frame rates. Such applications

would need to be better optimized and tested – which most

applications don’t do sufficiently for this method to work.

This is especially true if they don’t normally (for use with-

out stereoscopy) need a constant frame rate of 120 frames

per second – such as when the movement is very slow.

III. STEREOSCOPY SUPPORT IN UNITY

To properly display stereoscopic graphics in a CAVE in-

stallation, a number of tasks needs to be done. Each screen

requires two images rendered from two points – represent-

ing the left and right eyes. Each of the viewer’s eyes can

view any part of any screen at any time, in contrast to HMD

(head mounted display) devices which split the display into

parts visible by one eye only. In a CAVE, the left and right

eye images need to use the same area of the display screens.

To obtain correct perspective, the position of the eyes in re-

gard to the display surface is crucial – it is calculated using

the head tracking system. The interpupillary distance is

then used to position both cameras correctly in eye posi-

tions. The images on screens that share an edge need to be

consistent. This is achieved by correctly setting the projec-

tion matrices and view matrices, achieving an asymmetric

frustum with edges passing through the corners of the dis-

play. The display surface is where the images for both eyes

converge. Unlike in HMD devices, the frustum does not fol-

low the rotation of the viewer’s head, but rather is always

facing the same direction. If the technology used (such as

active shutter glasses) requires the left and right eye images

to alternate, it is crucial to synchronize this between all

screens, so that they all display images intended for the

same eye at the same time – especially if each screen is gov-

erned by a separate instance of the application. To achieve

this, the usual solution is to prepare two images every appli-

cation update, then pass the task of displaying the correct

one to synchronized graphics cards such as NVIDIA

Quadro Sync (used in I3DVL).

When OpenGL is used to write software, one can use

quadbuffers to achieve stereoscopy [9]. Firstly, one needs to

set the PFD_STEREO flag in the PIXELFORMATDE-

SCRIPTOR structure using the SetPixelFormat func-

tion [11]. This can only be done during context initializa-

tion. This in turn makes it possible to render to the left and

right backbuffers, switching between them using glDraw-

Buffer(GL_BACK_LEFT) and glDrawBuffer(

GL_BACK_RIGHT) calls.

In the Unity3D engine, rendering is done with the Cam-

era component. To configure it for each CAVE screen the

projectionMatrix and worldToCameraMatrix

fields have to be set with appropriate matrices. We tried to

use quadbuffering in Unity, but it proved impossible due to

the lack of low-level access to the graphics device during

the initialization step. It was not possible to set the afore-

mentioned flag. We found two workarounds to this problem.

The first one was to inject a modified DLL library during

application launch. The library would intercept the Set-

PixelFormat function call and set the PFD_STEREO

flag, resuming with normal initialization afterwards. A pro-

gram launched this way could use two cameras, switching

between the target back-buffers in the OnPreCull camera

event from the native plugin level. A native plugin in Unity

is one that is compiled from non-virtual machine languages

such as C and C++. The disadvantage of this solution is that

it's hard to implement and requires a separate piece of soft-

ware for injecting the DLL at application launch.

The other workaround is to create a separate OpenGL

window (from a native plugin) which is only tasked with

displaying the images, while the Unity application renders

those images to a virtual texture and passes them to the

OpenGL window. When launched, the Unity application

would create the window (which needs to belong to the

same process) with a new graphics context initialized with

the PFD_STEREO flag. Using the wglShareLists func-

tion we can enable the Unity context and the OpenGL win-

dow context to share a single display-list space. On the

Unity side the two cameras create RenderTexture ob-

jects, the virtual textures, which are set as targetTex-

ture of the cameras. This results in Unity rendering the

image for left and right eye to those textures. The GetNa-

tiveTexturePtr function gives us pointers to these tex-

tures which can be passed to the OpenGL window. Thanks

to resource sharing, the window can then bind those tex-

tures with the glBindTexture function. All that is left to

do is for the window to draw those textures to the correct

backbuffers.

This workaround has a number of disadvantages. One is

the slightly lowered performance because the main unity ap-

plication is now considered by the operating system to be

running in the background, while the OpenGL window

which does almost no work is in the foreground. This can

result in suboptimal assignment of processing power to the

threads, since modern operating systems tend to prioritize

foreground windows. Another problem is that input from

devices such as keyboard and mouse will be directed to the

foreground window, which may require redirecting the in-

put events to the Unity application.

Unity3D has been offering support for VR (virtual reality)

applications for a while, but their focus is on HMD devices

[8]. Since 5.4 version, they extended support to include

stereoscopy-capable flat panel displays. The newly added

"Stereo Display (non head-mounted)" option makes it possi-

ble to obtain stereoscopic images which can be rendered us-

ing a variety of graphic APIs – OpenGL, Vulkan, Direct3D

11 and Metal. At the time of this writing, it doesn't work

with Direct3D 12 yet. The Camera object can be set to ren-

der images for both eyes or we can use two Camera objects

each responsible for one eye. The matrices for these cameras

are set using the SetStereoProjectionMatrix and

SetStereoViewMatrix functions. We can also set in

the project options whether rendering should alternate be-

tween left and right images or if we want to render both im-

ages simultaneously (known as the Single-Pass Stereo ren-

dering optimization [10]).

Using Unity's engine for stereoscopy has a number of ad-

vantages. The engine unifies the implementation of stere-

oscopy for the different graphics APIs and operating sys-

tems. The engine itself also performs a multitude of opti-

mizations (such as the aforementioned Single-Pass Stereo

rendering) [8]. Creating and launching the application is

easier – no need for injecting libraries or intercepting con-

trol devices input from the second window. However, there

are also drawbacks. The main one is that (non-HMD) stere-

oscopy support in Unity is fairly new and a niche need, and

thus software bugs and instability are common. Common

problems include the random freezing of rendering for one

of the eyes, especially with HDR (High Dynamic Range) or

MSAA (Multi-Sample Anti-Aliasing) on. Other problems

were encountered with Reflection Probes and

Fig 1. Improperly displayed tree shadows in Unity,
as seen through active glasses.

Terrain objects (such as trees) improperly displaying

shadows, which were rendered to the wrong eye or not at

all, as shown in (Fig. 1).

IV. DIRECTX 12 AND VULKAN IN SEPARATE CONTEXT

Vulkan is a modern 3D graphics API, released in 2016.

Its main goal is to provide a low-level alternative to

OpenGL as a multiplatform API, and thus offer better effi-

ciency and more direct control over computations [12].

Compared to older APIs it excels at using multiple CPU

cores in parallel (through support for multithreading), and

the CPU load at runtime is reduced greatly by precompiling

shaders to SPIR-V, an intermediate form that allows drivers

to be much simpler [6].

Despite its advantages, Vulkan has a few drawbacks too.

It is more verbose, requiring more code, and thus work, to

get it to do things that are easier done in higher-level lan-

guages. This also means more room for bugs and harder

maintenance. Another problem is the novelty, which means

the API might see frequent changes as it matures. People

looking to learn the API may have fewer options compared

to older APIs that have hundreds of books and tutorials

available. People who run into problems are less likely to

find solutions on the internet. Few development tools, third-

party libraries and game engines have support for Vulkan.

For our purposes, Vulkan would offer a few significant

advantages – the ability to run linux-based applications on

the CAVE being the primary one. This would be a benefit

for applications that intend to use the Triton supercomputer

which is connected to our CAVE and runs Linux (having

both the front-end and back-end run on Linux isn’t strictly

necessary, but might be beneficial for some applications, es-

pecially if using the high-speed Infiniband connection

and/or distributing computations between Triton and the

client computers in our CAVE). However, at the moment

most applications developed for our CAVE use the Unity

engine and thus run on both Windows and Linux, with Win-

dows having better support. Additionally, not all of our util -

ity software (for managing projectors, tracking, and man-

agement of virtual reality applications themselves) are

available for Linux. Other advantages of Vulkan, such as

lower latency and better performance, are shared with Di-

rectX 12. Thus, for applications that want to push graphics

quality as far as possible, or use very complex scenes, while

still maintaining the high frame rates necessary for comfort-

able VR experience and stereoscopy, either of those two

APIs can be used.

Microsoft DirectX is a collection of APIs for multimedia

functionality in applications, such as games and video, on

Microsoft platforms: the Windows operating system and

Xbox gaming console. Direct3D – the component dealing

specifically with the rendering of 3D scenes, is the flagship

part of DirectX and thus names DirectX and Direct3D are

often used interchangeably. The DirectX software develop-

ment kit (SDK), which is now a part of the Windows SDK,

contains binary libraries, header source files and documen-

tation. The latest edition of Direct3D is version 12, sharing

many similarities with Vulkan – such as the low level ap-

proach, lowered CPU utilization and better support of mul-

tithreading [13].

Unity Engine allows rendering to texture, a mechanism

which can be used to display a stereoscopic image with a

separate application – e.g. using DirectX 12 or Vulkan. It is

crucial to keep the latency low, because otherwise virtual re-

ality can cause discomfort for users. Thus, to speed up com-

munication between the Unity application and the window

used for display, shared memory can be used. The Unity En-

gine would write rendered images to the shared memory,

while the window would read and display them on the

screens, properly synchronized with the active glasses. The

engine offers the Camera object, which gives us control

over rendered images. From the Camera, we can retrieve a

TargetTexture and assign it to a RenderTexture

object. This creates a new Texture2D object with the

Camera’s texture. Calling the GetNativeTexturePtr

method results in a resource address, which we can use to

retrieve all the necessary data that needs to be shared with

the DirectX 12 or Vulkan process. The process takes the raw

data and needs to recreate the resource objects. Once the re-

source objects have been created, they need to be updated

every frame. The resource objects need to be linked with the

previously written Shader, which is tasked with separat-

ing the left and right eye pictures into appropriate ‘back-

buffers’. Using a Quadbuffer allows for fluent rendering

of stereoscopic images, since the engine can render two im-

ages (back left and back right) at the same time, while two

other (front left and front right) are beings displayed – ei-

ther one after the other (in case of active stereoscopy) or si-

multaneously if passive stereoscopy is used.

V. CONCLUSIONS

We found out that the Vulkan and DirectX 12 APIs of-

fered enough low-level control to serve for our purposes,

while also offering possible performance benefits. Vulkan is

also supported on more platforms, which might make it the

best choice for applications that require the computing

power of a supercomputer – such as the Tryton cluster con-

nected to our CAVE, which runs on Linux. However, these

APIs have disadvantages as well – due to their low level de-

sign and novelty, maintaining a library based on them

would require extra work.

The Unity Engine, over time, began to support different

stereoscopy technologies and other virtual reality technolo-

gies. Their main focus were HMD (Head-Mounted Display)

devices, but it was also possible to use these new features

for CAVE systems. However, unlike HMDs which are now

mass-produced to a few specifications, CAVE systems vary

a lot, each being a unique installation, with different resolu-

tions, sizes, projector positioning, tracking systems, etc.

which means many parameters have to be set by hand (such

as projection matrices, viewports). Nevertheless, using

Unity’s native support mechanisms has many benefits – the

engine unifies the implementation of stereoscopy for the dif-

ferent graphics APIs (DirectX 11, DirectX 12, Vulkan,

OpenGL Core, Metal) and operating systems. There’s also

no need to share textures between two rendering contexts –

thus speeding up and simplifying the application. The en-

gine itself also performs a multitude of optimizations (e.g.

Single-Pass Stereo rendering). Support of control devices is

also easier – especially now that there was no need for a

second rendering window.

In conclusion, using the Unity Engine as basis for our li -

brary proved to be the easiest solution, offering many ad-

vantages in terms of simplicity and ease of use, both from

library and application developer point of view. The main

drawback is that it forces applications to be developed in

Unity, which may not be the preferred development environ-

ment for all developers. It also has other limitations, and we

may have to eventually expand our library to directly use

graphics APIs, likely Vulkan or Direct3D 12, when the need

to develop applications using other engines (such as the Un-

real Engine or VBS engine) arises in our CAVE.

REFERENCES

[1] S. Gateau, D. Filion, “Stereoscopic 3D Demystified: From Theory to
Implementation in Starcraft 2,” Game Developers Conference GDC
2011, http://www.nvidia.com/content/PDF/GDC2011/Stereoscopy.pdf .

[2] S. Gateau, S. Nash, “Implementing Stereoscopic 3D in Your
Applications,” GPU Technology Conference GTC 2010,
https://www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf .

[3] I3DVL, “Immersive 3D Visualization Lab,” https://eti.pg.edu.pl/i3dvl .
[4] J. Lebiedź, “3D visualization,” Proceedings of the Polish Conference on

Computer Games Development WGK 2013 (in Polish), vol. 3, Gdańsk
2013, pp. 105-115.

[5] J. Lebiedź, J. Redlarski, “Applications of Immersive 3D Visualization
Lab,” 24th International Conference on Computer Graphics,
Visualization and Computer Vision WSCG 2016 – Poster Papers
Proceedings, Plzeň 2016, pp. 69-74.

[6] P. Łapiński, Vulkan Cookbook, Packt Publishing 2017.
[7] A. Mazikowski, J. Lebiedź, “Image projection in Immersive 3D

Visualization Laboratory,”.18th International Conference in Knowledge
Based and Intelligent Information and Engineering Systems KES 2014,
Procedia Computer Science 35, 2014, pp. 842-850,
http://dx.doi.org/10.1016/j.procs.2014.08.251

[8] Unity Documentation, "How to do Stereoscopic Rendering," 2018,
https://docs.unity3d.com/Manual/StereoscopicRendering.html .

[9] “NVIDIA 3D Vision Pro And Stereoscopic 3D,” 2010,
http://www.nvidia.com/docs/IO/40505/WP-05482-001_v01-final.pdf

[10] Unity Documentation, “Single-Pass Stereo rendering,” 2018,
https://docs.unity3d.com/Manual/SinglePassStereoRendering.html

[11] Microsoft Developer Network, “OpenGL on Windows”, 2018
https://msdn.microsoft.com/en-us/library/dd374293(v=vs.85).aspx

[12] The Khronos Group, Inc. 2018, https://www.khronos.org/vulkan/
[13] Microsoft Developer Network, “Direct3D 12 Programming Guide”,

2018, https://msdn.microsoft.com/en-
us/library/windows/desktop/dn899121(v=vs.85).aspx

