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Abstract—In recent years, deep learning has shown promising
results when used in the field of natural language processing
(NLP). Neural networks (NNs) such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) have
been used for various NLP tasks including sentiment analysis,
information retrieval, and document classification. In this paper,
we the present the Supreme Court Classifier (SCC), a system
that applies these methods to the problem of document clas-
sification of legal court opinions. We compare methods using
traditional machine learning with recent NN-based methods. We
also present a CNN used with pre-trained word vectors which
shows improvements over the state-of-the-art applied to our
dataset. We train and evaluate our system using the Washington
University School of Law Supreme Court Database (SCDB). Our
best system (word2vec + CNN) achieves 72.4% accuracy when
classifying the court decisions into 15 broad SCDB categories
and 31.9% accuracy when classifying among 279 finer-grained
SCDB categories.

I. INTRODUCTION

Legal court opinions are lawful statements written by a

judge providing the justification and legal reasoning for a court

ruling. This paper describes an automated document classi-

fication model implemented as our Supreme Court Classifier

(SCC) system. In theory, SCC could make obsolete many time-

consuming manual tasks requiring legal experts. A legal expert

would need to read hundreds or thousands of documents in

order to place opinions into subject categories, whereas an

automatic system like SCC could do this with little or no

human effort.1

Some document classification efforts, particularly, those

using unsupervised approaches, evaluate output based on hu-

man evaluation of automatically derived categories. However,

when automatic document classification is based on human-

defined categories, the results are, arguably, more "natural."

Evaluation tends to be more straightforward with human-

annotated classifications because it is usually easy for a

human being to tell whether or not a document belongs to

a human-defined category. In contrast, this determination is

harder to make with purely unsupervised methods (e.g., topic

modeling [1]), unless a manual component is added. For

1SCC can be downloaded from https://github.com/samir1/web_of_law_
scotus_classification/ under an Apache 2.0 license (https://www.apache.org/
licenses/LICENSE-2.0). In addition to computer code, the repository includes
our training/development/test split of the SCDB data, ensuring that our results
are both reproducible and comparable to future work.

example, aligning automatically defined categories with some

set of human categories will produce clearer results. Human-

defined categories have names and notional definitions such as

Criminal Procedures, Civil Rights, and Federal Taxation [2].

In contrast, automatically classified categories are usually

defined as sets of keywords or other more oblique definitions

using words in the corpus. For instance, the case Roe v. Wade,

410 U.S. 113 (1973)2, may fit into a class labeled by a set of

keywords like abortion, reproduction, medical, .... Although

these words describe the case, they do not correctly encap-

sulate the legal significance of the case. Roe v. Wade would

be classified under the Privacy legal issue and the abortion:

including contraceptives sub-issue [2]. Unfortunately, it may

be difficult for a human to decide what the boundaries of

the classes are defined by these keyword sets. On the other

hand, it may be possible to align the output of unsupervised

classification with a manual set of categories. In fact, we do

this for our baseline system that uses latent Dirichlet allocation

(LDA) to model documents and then a logistic regression (LR)

[3] model to align the results with the manual categories (see

Section IV-A).

While categories can be extracted in many ways, we believe

that some sort of human validation is preferable. Moreover,

the legal domain often requires documents to be aligned with

human-defined legal categories for a majority of legal tasks.

For this reason, we have implemented a system that uses pre-

defined document categories (from human evaluators) to train

a model for classifying legal texts. Specifically, SCC automat-

ically classifies legal opinions from cases seen by the Supreme

Court of the United States (SCOTUS), manually classified

into topics as part of the Supreme Court Database (SCDB) by

Washington University School of Law [2]. Henceforth, we will

refer to these as the SCDB categories. The SCDB categories

are defined in Section III-A.

Our work systematically tests the application of a variety

of machine learning (ML) techniques to automate semantic

classification of SCOTUS legal opinions. Our most successful

systems are based on neural networks (NNs). NNs are used

to solve a variety of natural language processing (NLP) tasks

because of their ability to extract relevant information from

2Roe v. Wade is a supreme court case that is famous in the United States
for causing abortion to become legal.
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text without having to specify features for any particular

domain [4]. We examine two common NN architectures: the

convolutional neural network (CNN) [5] and the recurrent

neural network (RNN) [6], much like the medical text clas-

sification experiments using CNNs conducted by Hughes et

al. [7]. Initially used for classifying images, variations of the

original CNN architecture are used for NLP tasks [8]. Two

main variations of the RNN, long short-term memory (LSTM)

[9] and gated recurrent unit (GRU) [10], have recent successful

results in their application to sequence modeling [11], [12].

We compare a series of different CNN and RNN architec-

tures to documents represented by word embeddings. We show

that our CNN performs better with the legal corpus than the

other models implemented. SCC uses neural networks to select

one of the SCDB categories for each supreme court case in

our validation corpus.

In this paper, we use CNNs and RNNs to classify legal

documents with minimal pre-processing, in contrast to other

machine learning approaches (e.g., support vector machines)

that require manually specifying features for classification

or manually determining key words [13]. Any additional

pre-processing that could potentially improve performance

requires manual editing since each document contains slightly

different formatting resulting from OCR errors from scans of

printed documents. We measure the efficacy of NN classifica-

tion techniques applied to our corpus and show that our CNN

outperforms RNNs for legal text classification based on SCDB

categories (see Table I in Section V). In order to apply our

classification models to text, we first represent each word in

our corpus as a word embedding (vector representations of

words were generated using an unsupervised learning method

from Mikolov et al. [14]). We use the publicly available pre-

trained word vectors trained on about 100 billion words from

part of the Google News dataset.3 We use 300-dimensional

word2vec vectors trained using the skip-gram architecture with

negative sampling by Mikolov et al. [14]. We map each word

to a word vector and use neural network classifiers on the

dataset. Additionally, we present results from using two other

word embedding models, fastText [15] and GloVe [16], with

our CNN (our best system). We describe the neural neural

network models in Section IV and results in Table I.

II. RELATED WORK

We have found a relatively small body of previous work

about automatic text classification of legal documents. For

example, support vector machines (SVMs) have been used

to classify legal documents like legal docket entries [17] and

to classify non-English legal texts [4]. Although our work

also examines the application of machine learning to a corpus

written in the legal context, we focus on classifying SCOTUS

legal opinions without significant pre-processing. For example,

the Nallapati and Manning [17] system includes several steps

of pre-processing before using an SVM to classify documents

with human-selected features and labels. We explore more

3https://code.google.com/archive/p/word2vec/

recent automated document classification techniques that do

not rely on significant pre-processing and human interaction.

Moreover, we present a comparison of different machine

learning techniques in order to determine methods with the

highest performance for our task.

Our work on SCC is similar to the approach of Wood et

al. [1] for classifying medical summaries in that we model

our corpus using LDA and classify with pre-defined labels

(see Section IV-A). In that study, an initial topic model was

derived from some training documents. Then the topic model

was modified with pre-labeled data in order to classify the new

data. Likewise, we use a combination of LDA and pre-labeled

legal opinions to create our baseline classification system. We

compare the results of our NN-based classification results to

our application of LDA and an LR classification.

Domain-specific automated document classification has

been applied to several fields, including electronic medical

records. Hughes et al. [7] use convolutional neural networks

to detect features for sentence-level classification of medical

texts, resulting in a much smaller input compared to our exper-

iments. Unlike SCC, in which we feed an entire document into

a neural network, the Hughes et al. [7] model classifies texts

by first transposing each document into a matrix of sentences

with fixed lengths. Their model also differs from ours in that

their model is essentially two sets of two stacked convolutional

layers followed by a pooling layer, whereas our model does

not have any consecutive convolutional layers. Additionally,

one of our experiments (following Hughes et al. [7]) tests

the effectiveness of using doc2vec embeddings with an LR

model as the classifier. Similarly, Weng et al. [18] use medical

texts as the subject of their classification task, although they

use a different neural network architecture to classify health

documents. Weng et al. [18] apply a complex combination of

CNN and RNN architectures to clinical note text classification;

their model is summarized by three convolutional and pooling

layers followed by a bidirectional LSTM [18]. Moreover, Yin

et al. [19] present a comparison of different neural network

architectures used to complete a variety of NLP tasks. Such

tasks include sentiment analysis, document classification, and

part-of-speech tagging. In their text classification experiment,

Yin et al. [19] use a pre-labeled set of 10,717 sentences

evenly distributed over 19 labels, compared to our unevenly

distributed dataset, in which a third of the categories have

under one hundred examples and four classes have over 1,000

documents. In contrast, our experiments aim to solve the

specific problem of document classification applied to legal

texts. Moreover, Kim [20] describes a general CNN used to

classify sentences with word2vec word embeddings. Similar to

the model we propose, Kim’s model also includes three con-

volutional and pooling layers. We optimize hyperparameters

and experiment with a combination of different convolutional,

pooling, and dropout layers. We compare applications of the

Kim [20] and Hughes et al. [7] models to our legal corpus.

We ultimately obtain improved results by using the customized

CNN on the SCOTUS legal opinion corpus.
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III. EXPERIMENTAL SETUP

A. Dataset

Fig. 1: 15 legal issues

Fig. 2: 279 subtopics

We train and test our system on the manually-categorized

SCOTUS legal opinion (Supreme Court Database or SCDB)

corpus, from Washington University School of Law [2]. The

dataset consists of 8419 US Supreme Court court opinions

from "modern" cases (1946-2016), organized into 15 legal

categories (Figure 1), which are further divided into 279

subtopics (Figure 2). We chose the modern dataset because

both court opinions and pre-defined labels were available

through the textacy Python package.4 Textacy provides a for-

matted version of modern cases from FindLaw’s US Supreme

Court legal opinions database. The 8419 documents were

randomly divided into training, validation, and test sets with a

80%/10%/10% split. Although the SCDB labels also covered

"legacy" cases (1791-1945), FindLaw’s database only reliably

provided case text from the "modern" era of US law.

B. Initial Processing

Our system first removes (as noise) special characters that

refer to footnotes. We also removed a number of characters

used in formatting the original printed document. Next, each

word in the corpus was mapped to a word2vec vector before

being fed into a neural network for classification.

4http://textacy.readthedocs.io/en/latest/_modules/textacy/datasets/supreme_
court.html

IV. METHODS

A. LDA + Logistic Regression

Before the widespread use of neural networks for NLP

tasks, probabilistic methods like LDA [21], [22], were used

as a standard for a variety of NLP tasks including text

classification. We use LDA as a baseline to compare the results

of the NN-based classification models. Our process involves

using LDA to represent each of the heavily pre-processed

legal documents as a series of latent feature vectors. LDA

is most commonly used to generate a collection of latent

topics for a corpus, and then calculate the probability of a

document belonging to a topic. We use the Gensim5 library

to create and train the LDA model. We classify vectors from

the implementation of this model using LR.

The LDA Bayesian probabilistic model is an unsupervised

machine learning method used to organize documents through

topic modeling. In this model, each document is represented

as a probability distribution over latent topics. These topics

are derived from the assumption that the document’s words

themselves, modeled as a term frequency-inverse document

frequency (tf-idf) matrix, with words represented using the

bag-of-words (BoW) model, are distributed over latent topics

as defined by the distribution of words in the corpus.6

After latent feature vectors are generated to describe each

of the documents, we apply an LR to classify the documents

into 15 legal issues and 279 legal subtopics. As in Wood et al.

[1], we use a combination of LDA and pre-defined labels with

corresponding documents to create our baseline classification

system.

B. Doc2vec + Logistic Regression

Our first method of document classification using deep

learning involves a higher-level application of word2vec. As

described in [23], paragraph vectors, often referred to as

doc2vec or document vectors, can be used to map semantic

meaning from a variable-length document to a fixed-size vec-

tor. As in the word2vec learning method, a word is predicted

by its neighboring words. The significant difference between

the Distributed Memory Model of Paragraph Vectors and other

similar learning techniques is that an additional paragraph

token (treated like an additional word in the document) is

used when learning the paragraph vector. Next, we classify

the documents into both 15 and 279 classes using a logistic

regression.

C. Bag-of-Words + Support Vector Machine

As another baseline, we represent documents using the BoW

model and apply an SVM using Scikit-learn’s SVM package7

with default parameters. We chose SVM as a baseline because

it is one of the highest performing traditional ML methods,

5https://radimrehurek.com/gensim/
6In order to find the ideal number of topics for the LDA-based classification,

we conducted the experiment with different numbers of topics ranging from
100 to 600 in steps of 100 and and chose 300 topics because there was not
a noticeable improvement in performance with more than 300 topics.

7http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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used for lots of different tasks. Similarly, Kim [20] also uses

an SVM benchmark.

D. Word2vec + CNN

For our neural network classification approach, we designed

a multi-layer model similar to the one described by Kim [20],

but with additional layers and modified hyperparameters.

Our model first creates an embedding layer using pre-trained

word2vec word embeddings, and then creates a matrix of

documents represented by 300-dimensional word embeddings.

We include three sets of the following: a dropout of 0.25, a

convolution layer of 128 filters with a filter size of 5, and max

pooling layer with a pooling size of 5. We also add a dense

layer consisting of 128 units between two dropouts of 0.5 to

prevent overfitting. The last layer is a dense layer with size

equal to the number of labels for the test (15 or 279).

E. Other Embeddings

In addition to using word2vec embeddings with the CNN,

we conduct the same experiments with two other pre-trained

word embeddings: fastText vectors8 from Facebook AI Re-

search (FAIR) [15] and GloVe vectors9 from Pennington et

al. [16]. The pre-trained 300-dimensional fastText vectors are

trained on Wikipedia using the skip-gram model described in

Bojanowski et al. [15]. The pre-trained 300-dimensional GloVe

vectors are trained on Wikipedia and the Gigaword 5 dataset

using GloVe model [16].

We use the publicly available pre-trained word vectors

trained on about 100 billion words from part of the Google

News dataset.10 We use 300-dimensional word2vec vectors

trained using the skip-gram architecture with negative sam-

pling by Mikolov et al. [14].

F. Word2vec + LSTM

One of the RNN-based networks we used to classify our

legal corpus is the LSTM, which is defined by these equations:

it = σ(xtU
i + ht−1Wi + bi) (1)

ft = σ(xtU
f + ht−1Wf + bf ) (2)

ot = σ(xtU
o + ht−1Wo + bo) (3)

ct = ft ◦ ct−1 + it ◦ tanh(xtU
c + ht−1Wc + bc) (4)

ht = ot ◦ tanh(ct) (5)

In this model, xt represents an input x at time t. The three

gates of the LSTM are the input gate it, forget gate ft and

output gate ot. ct is the memory cell state. ht is the hidden

state. The input weights are defined by W, recurrent weights

by U, and bias by b.

Our implementation of the LSTM consisted of the em-

bedding layer formed with pre-trained word2vec vectors, an

8https://github.com/facebookresearch/fastText/blob/master/pretrained-
vectors.md

9https://nlp.stanford.edu/projects/glove/
10https://code.google.com/archive/p/word2vec/

LSTM layer consisting of 128 units, and a dropout of 0.5 to

prevent overfitting. Lastly, we had a dense layer representing

the number of labels for the experiment.

G. Word2vec + GRU

Our last experiment involves the memory-enhanced GRU

[10], a variation of the RNN. The GRU is described by the

following equations:

z = σ(xtU
z + ht−1Wz) (6)

r = σ(xtU
r + ht−1Wr) (7)

st = tanh(xtU
s + (ht−1 ◦ r)W

s) (8)

ht = (1− z) ◦ st + z ◦ ht−1 (9)

where xt represents an input vector x at time t, r is

the reset gate, and z is the update gate. The input weights are

defined by W and recurrent weights by U.

As with our CNN and LSTM models, our application of

the GRU begins with a word2vec embedding layer. Next, we

include a GRU layer of size 128 and a dropout of 0.5 before

the final dense layer for classification.

H. Hyperparameters and Regularization

In our experiments, we tested our model with a series of

different hyperparameters and found that our best NN systems

use 128 units for the RNNs and 128 filters for each of the

convolutional layers in the CNN. For both these settings, we

tried values of 32, 64, 128 and 256 and 128 gave the best

results. Basically, the 128 gave better results than the lower

settings and it turned out that the 256 setting could not be

run effectively when training with an Nvidia GPU. It seems

that additional GPU memory would be required (or a more

efficient algorithm) to use 256 units. It is probable that 128 is

simply the largest (power of 2) setting that is practical to use

given the available equipment. This seems to be supported by

the fact that many other NN systems (e.g. Kim [20]) use a

value around 100.

Additionally, each of the models are regularized with a

dropout [24], which works by "dropping out" a proportion

p of hidden units during training. We found that a dropout of

0.5 before the final dense layer and batch size of 32 worked

best for the LSTM, GRU, and CNN. We also found that the

Adam optimizer [25] worked best for both the for CNN and

RNN networks.

V. RESULTS

Our goal is to determine the best method for applying

automated document classification to legal texts with the

hopes of facilitating legal experts in their classification of

court documents. Our experiments look not only at comparing

existing networks, but also at developing our own superior

network. As shown in Figure I, our CNN model achieves the
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highest accuracy, both for the 15-label and 279-label tasks

(72.4% and 31.9% accuracies, respectively). We present an

analysis of our results.

TABLE I: Classification Accuracy Results on the Test Set

Model 15 labels 279 labels

Word2vec + CNN 72.4 31.9

fastText + CNN 67.3 25.1
GloVe + CNN 67.1 17.7
Word2vec + GRU 68.6 14.5
Word2vec + LSTM 43.8 6.5

Word2vec + CNN (Kim [20]) 65.9 14.7
Word2vec + CNN (Hughes et al. [7]) 54.7 19.8
LDA + LogR [21] 40.3 13.4
Doc2vec + LogR [23] 54.1 28.6
BoW + SVM 64.0 30.5

The accuracy results of correctly classifying documents with our
CNN, LSTM, and GRU models compared to other classification methods.
Our CNN best overcomes the problem of an uneven distribution of classes,
as shown in Figures 1 and 2.

TABLE II: CNN Results on the Development Set by Category

Label Precision Recall F-Score # of Docs

0 - None 0.33 0.33 0.33 3
1 - Criminal Procedure 0.82 0.91 0.86 182
2 - Civil Rights 0.72 0.70 0.71 138
3 - First Amendment 0.87 0.79 0.82 84
4 - Due Process 0.45 0.33 0.38 30
5 - Privacy 0.56 0.62 0.59 8
6 - Attorneys 0.33 0.40 0.36 5
7 - Unions 0.73 0.76 0.75 29
8 - Economic Activity 0.72 0.72 0.72 172
9 - Judicial Power 0.57 0.56 0.56 116
10 - Federalism 0.41 0.41 0.41 34
11 - Interstate Relations 0.67 0.67 0.67 6
12 - Federal Taxation 0.90 0.79 0.84 33
13 - Miscellaneous 0.50 0.50 0.50 2
14 - Private Action 0.00 0.00 0.00 0

Avg/Total 0.71 0.72 0.71 842

The relation between frequency and f-measure for the development
set.

TABLE III: CNN Results on the Test Set by Category

Label Precision Recall F-Score # of Docs

0 - None 0.20 1.00 0.33 1
1 - Criminal Procedure 0.81 0.85 0.83 183
2 - Civil Rights 0.77 0.81 0.79 121
3 - First Amendment 0.79 0.88 0.83 56
4 - Due Process 0.48 0.30 0.37 33
5 - Privacy 0.57 0.44 0.50 9
6 - Attorneys 0.80 0.73 0.76 11
7 - Unions 0.77 0.70 0.73 33
8 - Economic Activity 0.72 0.74 0.73 145
9 - Judicial Power 0.56 0.54 0.55 102
10 - Federalism 0.48 0.33 0.39 33
11 - Interstate Relations 0.50 0.40 0.44 5
12 - Federal Taxation 0.86 0.96 0.91 25
13 - Miscellaneous 0.00 0.00 0.00 1
14 - Private Action 0.00 0.00 0.00 0

Avg/Total 0.72 0.72 0.72 758

The relation between frequency and f-measure for the test set.

Tables II and III show the CNN’s (our best system) perfor-

mance on individual classes. Although the details are slightly

different (e.g., a different number of documents for each

category), the relative scores are about the same. We now do

a more detailed analysis on the development set results, rather

than the test set because we do not want to examine the test

results too closely and bias our future work. It is clear that

the model’s accuracy tends to be higher for the most frequent

categories. Categories 1, 2, 3, 8 and 9, all of which are labels

on more than 50 documents, mostly have f-measures of over

70%, with one outlier at 56%. It is difficult to generalize about

the least frequent categories (frequency < 10), including labels

0, 5, 6, 11, 13 and 14, as there is too little data to analyze.

Some of these have f-measures of 0 or near 0, and on average,

they do much worse than the high-frequency categories. This

is expected since the high-frequency categories have more

training data and thus provide more evidence for the model

to build on. Thus, as expected, cases with correct labels of 1,

2, 3, 8 and 9 tend to be classified correctly and the categories

with little to no training data (0, 5, 6, 11, 13, 14) are most

often misclassified.

On the other hand, category labels 4, 7, 10, and 12 each

have a similar moderate number of test documents (around 30

documents), but have very different results: the model achieves

relatively high results for labels 7 and 12 and relatively poor

results for 4 and 10. Thus it would seem that the results for

labels 4, 7, 10 and 12 cannot be explained purely on the basis

of frequency. Figure 3 is a confusion matrix for our CNN

results on the development/validation set. We observe some

patterns which may help us understand these results. For labels

7 and 12, where the model performs well, the correct category

clearly dominates–no other category is marked for more than

4 documents. However, the poorly performing categories, each

have a second (or third) dominant category in addition to the

correct one. Label 4 (Due Process) is applied to 10 true Due

Process cases and incorrectly classifies 7 as Civil Rights cases,

6 as Economic Activity cases and 4 as Criminal Procedure

cases and another 3 miscellaneous erroneous labels. To the

extent that a case may be given multiple classifications (Due

Process and Civil Rights) or (Due Process and Economic

Activity), these errors are understandable and may even reflect

a defect in the experiment–perhaps cases should have multiple

classifications and the one classification per case assumption

is unrealistic. Similarly, label 10 (Federalism) is applied 14

times correctly to Federalism cases and 11 times incorrectly

to Economic Activity cases (and rarely to other categories). It

is expected that some federalist issues (issues about the power

of the federal government) will overlap with economic issues.

So these may also be understandable errors.

We now attempt to better understand these errors, focusing

our error analysis on Federalism classification. We examine

three samples from our development set, each sample con-

sisted of four cases. We look at 4 cases that are correctly

classified by our CNN as Federalism cases (True_Fed); 4

cases that were correctly classified as Economic Activity cases

(True_Eco); and 4 Federalism cases that our system misclassi-

fied as Economic Activity cases (False_Fed). We compare the

False_Fed cases to both True_Fed and True_Eco. Our goal is

to understand the sort of factors that might cause a human

or a machine learning algorithm to mis-classify the False_Fed
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documents.

The True_Fed cases include Testa et al. v. Katt; Bethlehem

Steel Co. et al. v. New York State Labor Relations Board;

Rice et al. v. Santa Fe Elevator Corp. et al.; and Rice et al. v.

Board of Trade of the City of Chicago. These all involved the

interaction of state and federal authorities and laws, including

questions of whether a state authority should be compelled

to enforce a federal law or whether a state agency/law takes

precedence over a federal agency/law.

The 4 True_Eco cases included Halliburton Oil Well Ce-

menting Co. v. Walker et al.; Champlin Refining Co. v. United

States et al.; United States v. Howard P. Foley Co., Inc.;

and Richfield Oil Corp. v. State Board of Equalization. The

Halliburton case is a patent dispute. The Foley case is about

the government’s liability in a contract dispute. The Champlin

case examines whether the Interstate Commerce Commission,

a federal entity, could require information from an oil refining

company operating across several states. While similar to the

True_Fed cases in some ways, there is no conflict between a

state and a federal authority. The Richfield case is a dispute

about whether a state sales tax applies to a sale to a foreign

government. This seems similar to Federalist concerns, but

there is no conflict between a state and federal authority.

Rather the concern is whether or not a state sales tax effects

a possibly-foreign transaction.

The False_Fed cases include Phillips Chemical Co. v. Du-

mas Independent School District; Panhandle Eastern Pipe Line

Co. v. Michigan Public Service Commission et al.; Wyeth v.

Diana Levine; and North Dakota v. United States. These cases

all involve financial transactions, state authorities and federal

authorities. The topics covered includes: the legitimacy of state

taxes on federal land leased to a company; state regulation

of alcohol and other goods procured for sale on a federal

military base; liability of a drug company (in state civil court)

for damages from harm by their drug, even though the FDA,

a federal agency, granted them clearance for the drug; and

whether the sale of natural gas was subject to state regulation,

in spite of a federal law licensing the sale. While some of

these issues seem to include federal/state authority conflicts,

those conflicts are not as clearly articulated as in the True_Fed

cases. So it is clear how experienced annotators may be able to

consistently distinguish the Federalism and Economic Activity

classes. However, we would imagine that inexperienced an-

notators may have trouble.11 Similarly, machine learning may

require more evidence (more documents) to correctly classify

these cases.

The sparsity and imbalanced classes of the dataset presented

itself as the most challenging obstacle for training the neural

networks. For instance, nearly three fourths of all documents

fell under 4 of the 15 legal area categories (Criminal Pro-

cedure, Civil Rights, Economic Activity, and Judicial Power).

Not only was there not an even distribution of documents over

each of the labels, many of the classes had little to no training

data. Furthermore, our input sequence length was several

11We would expect lower inter-annotator agreement on these sort of cases.

Fig. 3: Confusion Matrix for CNN Development Corpus

Fig. 4: Normalized Confusion Matrix for CNN Development

Corpus
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orders of magnitude larger than the inputs in experiments

conducted by Kim [20] and Hughes et al. [7].

Due to adjustments we made for the dataset and config-

uration changes (see Section IV), our CNN performs better

than other CNN models (see Table I). The adjusted parameters

include dropouts to account for overfitting that occurs earlier

in training and the addition of extra layers.

After generating a model for each of our NN-based tests,

we use them for our entire corpus and analyze the documents

that are misclassified in order to find patterns in the way each

of NN architectures complete the classification task. Figure

5 shows a combination of the normalized confusion matrices

resulting from classifying our entire corpus with our CNN

and the simple RNN models, and each of the true label rows

describe the fraction of documents classified per predicted

label. As in Figure 5, the CNN performs the best for each

of the categories, not just the top four labels (although a small

number of errors made by the CNN were with documents

from these classes). Unlike our CNN, the classifications from

the GRU (our second best system) are more scattered. Fig-

ure 5 shows some of labels the GRU most frequently mis-

classifies. In contrast to the CNN and LSTM, the GRU tends

to significantly mis-classify documents from both frequent and

infrequent categories, as in the frequent category of Criminal

Procedure and the uncommon category of First Amendment.

The GRU also does not classify entire categories correctly,

whereas the CNN had high classification accuracy for every

category. For example, the GRU mis-classifies every legal

opinion in the categories: Interstate Relations, Miscellaneous,

and Private Action. Additionally, there was no single label L,

such that our GRU system correctly classified more documents

in class L than our CNN system.

It seems that the relatively low frequencies of some of the

categories is more of a challenge to some of the learning

algorithms than others. In particular, CNN and GRU appear

to be somewhat more resilient to this effect, than LSTM,

as evidence by the merged confusion matrices shown in

Figure 5. The LSTM incorrectly classified a majority of the

documents to one of the two most frequent labels (Criminal

Procedure and Economic Activity), as shown in Figure 5.

Despite categorizing almost all of the documents to only two

legal issues, the LSTM did not have a higher accuracy for

those two labels. In fact, the LSTM did worse than our LDA

baseline system (see Table I). This was somewhat surprising

considering that LSTMs often perform similarly to GRUs for

a given task. We plan to investigate this further in future

research, possibly trying additional models.

As in Chung et al. [11], we test the performance of LSTMs

and GRUs. While we apply these models to categorizing legal

text, their application was music transcription. Our results

show that the structure of the simpler GRU leads to greater

accuracy compared to the LSTM when classifying a relatively

small number of documents over a large number of labels.

The GRU performs better than the LSTM with document-

length sequences. The LSTM tends to remember the wrong

information needed for the classification because of the small

Fig. 5: Merged Confusion Matrix for CNN, GRU, and LSTM

size of the dataset.

Our results also show that the simple BoW+SVM model

performs very well for both classification tasks. As Nallapati

and Manning [17] mention, "the SVM assigns high weights to

many spurious features owing to their strong correlation with

the class" [17, p. 442]. In other words, even very infrequent

words that have very high correlations with certain classes

would help the SVM associate certain words with uncommon

classes. This aspect of the SVM seems to explain why the

SVM performed well with the 279-label classification task

(nearly as well as the best system), in which only a few

documents define each category.

In our results, the word2vec model out-performs the simpler

bag-of-words model. With more statistical information, the

classifiers find common features and patterns to describe

categories with higher accuracy. The positive results from our

experiment in which we apply an LR to paragraph vectors

(doc2vec) show how well the embeddings capture the meaning

of the documents (refer to Table I).

The simple GRU network has promising results compared

to the CNNs because the GRU is designed to handle long

sequences. While a word may carry a large weight in most

contexts, the GRU allows for a word’s weight to diminish

based on specific examples. Yin et al. [19] shows that the

accuracy of the CNN decreases as sequence length increases

and eventually falls under the accuracy of the GRU. Since

our experiments involve inputting entire documents instead of

sentences, sequence lengths are orders of magnitude larger

than than those used in the experiments conducted by Yin et

al. [19], Kim [20], and Hughes et al. [7].
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VI. CONCLUSION AND FUTURE WORK

In this paper, we find the best method for automated legal

document classification is the SCC system that uses a CNN

(72.4% accuracy for 15 general categories and 31.9% accuracy

for the 279 more specific categories). On the other hand,

the GRU architecture shows promising results compared to

our tuned CNN (nearly as high for the 15 category task).

We believe that a tuned GRU-based network can potentially

complete the task with higher accuracy.

The SCC system uses word embeddings from a general

domain (Google News). It is possible that embeddings from

the legal domain would improve results. Accordingly, we plan

to compile a much larger corpus of US legal opinions from

appellate and local courts in order to generate domain-specific

word embeddings for our model. We will conduct experiments

using these embeddings instead of the Google News embed-

dings used for the results reported here, or possibly in addition.

In future work, we plan to investigate the reasons behind the

substantial difference between the performance of the LSTM

and GRU. Moreover, we believe that an application of transfer

learning as shown in [26] could be used to train classifiers

for more specific topics and different subdomains of the legal

field.
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