
Improving pseudorandom generator on cellular
automata with bent functions

Mukhamedjanov Daniyar∗, Ryaskin Gleb†, Levina Alla‡ and Kaplun Dmitrii§
∗ITMO University

49 Kronverksky pr., St. Petersburg, 197101, Russia Email: danmd.info@gmail.com
†ITMO University

Email: ryaskingleb20@gmail.com
‡ITMO University

Email: alla_levina@mail.ru
§Saint-Petersburg Electrotechnical University "LETI"

Email: dikaplun@etu.ru

Abstract—Nowadays the practice of researching pseudoran-
dom number generators (PRNG) becomes more scalable because
of its spreading in many spheres of computer science and,
especially, cybersecurity. The problem is that existing generators
are still have many disadvantages in terms of velocity, complexity
or flexibility. Thus, the area of researching new algorithms of
generating pseudorandom sequences is more than just applicable
method, but the target for multiplying cybersecurity from the
hardware to application level.

This leads to make the set of available and useful PRNG
larger and better by their features, like velocity, performance,
simplicity in realization. These features match PRNG, based
on cellular automata (CA), but not all rules, used in CA are
appropriate for their transition functions. Bent functions are
perfectly complement statistical weakness of some rules because
of their non-linearity without loss of other features.

I. INTRODUCTION

M
ODERN society is vulnerable enough for hacking at-
tacks, which are very large-spectered, from hardware

attacks (on microchips) to web hacking (or application level
hacking). Since, the first thing for computer science society
and cybersecurity itself, is to protect personal data of users,
which is the main aim for hackers. When we say "protect
personal data", it comes cryptography methods in the first
sight, like ciphers or lightweight cryptography, or coding
theory. The basement of majority of cryptographical methods
is generating random numbers, which can be both physically
processed and mathematically. This paper is about second
one, to be more exact, about pseudorandom number generator,
based on homogenous structures using bent functions.

A. Homogenous structures overview

Lets take the set of k-dimensional vectors Zk, set of
1 and 0 − En, ordered set V = (α1, α(h−1)), where αi

is k dimensional vector from Zk. Besides, lets determine
a function φ = φ(x0, x1, , x(h−1)), φ : (En)

h → En,
additionally (φ(0, 0, ..., 0) = 0). As the result we’ll get "four"
σ = (Zk, En, V, φ). That will be formal determinition of
Homogenous structures (HS) [7], where En set of states of
one cell in φ - local transition function.

Generally, HS are usually represented by ordered set of
many Moore automata [13], which have states of other au-
tomata as input. To understand which of automata can influ-
ence on another one special scheme or neighborhood template
can be used. There are several schemes, that are usually used in
HS, like Moore’s scheme (2 dimensional scheme, where target
cell, surrounded by square of cells 3x3 if radius r = 1, or 5x5
if radius r = 2) or Neuman’s one (2 dimensional scheme,
where non diagonal cells surrounding the target one)

HS can be determined as dynamical discrete systems, where
time and space are discrete. Changing of states of cells is
conditioned by function φ, which is also included in rule. The
rule is like a finite automaton with input, transition function
and output.

Without loss of formalization and main idea, here and
further term HS will be replaced by Cellular automata (CA),
as this term is more widespread. Sharing CAs by complexity
feature, it can be seen that there are two types of them:
uniform CA (when all the grid have one rule and only one
neighborhood template) or non-uniform CA (several neighbor-
hood templates or(and) several rules). From this, perfomance
features of both CA types are almost the same, besides
memory (non-uniform needs more memory space for keeping
rules and neighborhood templates). To save boards of the grid
of CA, we will consider, that 2-dimensional grid is about
toroidal form (without distortion in sizes).

Time spacing is a method of producing sequences with
periodically interruptions in reading bits for one or several
evolutions (iterations). That means, that only several iterations
will influence on resulting bit sequence.

Site spacing is a method of producing sequences with
periodically skipping of some bits in the grid in every iteration.

Widely spread so-called Wolfram’s notation [17] for the
rules. Firstly, lets call configuration the set of ones and zeros
(two-state CA, where the sequence is considered as random
number) at particular discrete moment of time. Further rule
numbers are also suggested by Wolfram. Wolfram’s rule 30 as
an example:

How Wolfram’s rules can be encoded goes further. For

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 381–385

DOI: 10.15439/2018F234
ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 381

example, f(111) = 0, f(110) = 0, f(101) = 0, f(100) =
1, f(011) = 1, f(010) = 1, f(001) = 1, f(000) = 0, is
denoted rule 30.

B. Pseudorandom number generators (PRNG) overview

Random numbers are needed in different applications, i.e.
in the cryptography area and coding theory. A number of
algorithms need repeatable random numbers, based on de-
terministic algorithms, it is more correct to call such num-
bers pseudorandom, since they differ from the true random
sequences obtained as a result of natural physical process.

Random number generators should have a number of prop-
erties if they are to be successfully applied in long stochastic
models, like those used in computational physics. The most
important properties from this point of view are good results
in standard statistical tests for randomness, computational
efficiency, a long period (the minimum number between rep-
etitions) and the reproducibility of the sequence, e.g. NIST
Test Suite. Considering several examples of PRNG, let’s pay
attention to Linear Congruential method and LFSR. They
are quite simple, but perfectly describe the main idea of
pseudorandom numbers.

C. Bent function

Bent functions are boolean functions with an extreme value
nonlinearity. The measure of nonlinearity is an important
characteristic boolean functions in cryptography. Linearity and
properties close to it testify to the simple structure of this
function and, as a rule, represent a large source of information
about many other of its properties.

The nonlinearity of a function f is the distance from f to
a class of affine functions. We denote the nonlinearity of the
function f in terms of Nf :

Nf = d(f,A(n)) = min
g∈A(n)

d(f, g)

where A(n) is class of affine functions.
The formula for calculating Nf by the Walsh-Hadamard

transform:

d(〈a, x〉, f) = f̂(a) = 2n−1 −
1

2
max
a∈Zn

2

|f̂(a)|

Let f ∈ P2(n), write for it the Parseval equality:

Σa∈Zn
2
f̂2(a) ≥ 2n

We have 2n non-negative summands whose sum is 22n.
Consequently max

a∈Zn
2

f̂(a) ≥ 2n, from which it follows that

max
a∈Zn

2

|f̂(a)| ≥ 2
n
2 . Therefore

Nf = 2n−1 −
1

2
max
a∈Zn

2

|f̂(a)| ≤ 2n−1 − 2
n
2
−1

The function f ∈ P2(n) is called maximally nonlinear if
Nf = 2n−1 − 2

n
2
−1

Definition: A bent function is a Boolean function with an
even number of variables for which the Hamming distance

from the set of affine Boolean functions with the same number
of variables is maximal.

The properties of bent functions:

1) bent functions exist only for even n;
2) bent functions depend statistically on all their arguments;
3) let f be a bent function, and h belong to the class of

linear functions. Then f⊕h belongs to the class of bent
functions;

4) Let (f ∈ P2(n), g ∈ P2(m) - be functions of disjoint
sets of variables. Then f ⊕ h is a bent function if and
only if f and g are bent functions.

We give examples of bent functions of a different number
of variables.

for n = 4 :

f(x0, x1, x2, x3) = x0x1 + x2x3

f(x0, x1, x2, x3) = x0x1 + x2x3 + x0 + x1

for n = 6 :

f(x0, x1, x2, x3, x4, x5) = x0x1 + x2x3 + x4x5

f(x0, x1, x2, x3, x4, x5) = x0x1x2 + x1x3x4 +
x0x1 + x0x3 + x1x5 + x2x4 + x3x4

for n = 8 :

f(x0, x1, x2, x3, x4, x5, x6, x7) = x0x1x2 +
x1x3x4+x2x3x5+x0x3x6+x2x4+x1x6+x0x4+
x0x5 + x3x7

From the point of view of cryptography, the important
criteria that a Boolean function f of n variables must satisfy
are the following :

• equilibrium - the function f takes values 0 and 1 equally
often;

• the propagation criterion PC(k) of order k - for any
nonzero vector y ∈ Zn

2 weight at most k, the function
f(x+ y) + f(x) is balanced;

• the maximum nonlinearity - the function f is such that
the value of its nonlinearity Nf is maximal;

II. ALGORITHM OF GENERATING PSEUDORANDOM

NUMBERS ON CA USING BENT FUNCTIONS

The main idea of algorithm is in using CA Rules and
bent functions to generate pseudorandom sequences of bits by
usage of simple XOR operation to improve statistical features
of CA sequences. Unique features of bent functions, like
non-linearity and simplicity allows to generate quite random
sequences in the grid of CA. Also, in terms of hardware or
software implementation bent functions are simple enough to
realize. As a result, we will get deterministic bent function
output with n inputs of CA cells with Wolfram’s notation rules.

A. Grid

From the point of view of geometry grid in our algorithm is
represented by 2-dimensional parallelogram with sizes p and q,
divided by equal cells, which contains only one of two possible
states 0 or 1. Actually, the grid can be chosen with random
sizes, but it is strongly recommended to create the grid, where
p and q are prime numbers. It can improve periodical feature of
output sequence. Let’s divide this grid into two blocks, where

382 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

one block is for CA rule and another one is for bent function
sequence. Every block bi is 2 dimensional parallelogram with
sizes lbi and wbi . Obviously, each block consists of lbi ∗ wbi

cells. But result output sequence will be only from block with
CA rule.

The matter is the fact, that the grid should be filled with
initial states to produce next evolutions. For this reason there
are a number of ways to do it. As we need deterministic
algorithm and minimum of memory usage, it must be simple
way to fill the grid. The method, describing below is called
NESW (NESW- North, East, South, West). Formally, we take
a result of size multiplication lbi ∗ wbi of each block bi and
start filling it cyclically from the South-West corner of block
with the bits of received number, moving to the North till
the edge of block or almost filled cell, then moving to the
East, South and West, repeating conditions. This method also
reminds spiral moving to the center of the grid of the block.
The whole process is demonstrated on the Fig. 1

Fig. 1: bi block grid view with NESW scheme of filling

B. Bent functions

As it mentioned before, traditional pseudorandom gener-
ators on CA use rules by Wolfram’s notation, e.g. Rule30
or Rule90 and Rule150 together for better results. Another
option is using some Boolean functions for changing states
of cells in the grid, but these functions were linear. In this
paper we research possiblity of using non-linear functions
(bent functions as denoted before). But bent functions exist
only for even number of arguments. And standard templates
of neighborhood don’t match for this condition. Fortunately,
we can choose neighborhood template for the CA. Actually,
we can choose as many templates as a number of blocks is and
use different bent functions with only one restriction - possible
lack of memory. Other sides of this method is flexible enough
for realization.

So, we have m blocks in the grid and can choose tn ≤
m templates of neighborhood and tf = tn number of bent
functions. We define target cell as a cell, which next state
would be defined by bent function output.

Defining conditions for templates and bent functions:

1) number of cells in each i−th template. including target
cell, must be even;

2) obviously number of cells is equal to number of argu-
ments of appropriate bent function in the same block;

3) each bi block has abstract toroidal form without size
distortions;

4) target cell could be chosen anywhere in neighborhood
template.

Now, using bent function f(x0, x1, x2, x3) = x0x1+x2x3+
x0 + x1 lets see how our target cell will change on the next
iteration (other cells should be changed also, but we want to
check the output of function).

Fig. 2: How bent function works

C. Result

As we defined before the first block is our clasical CA
with its own rule, but not all the rules produce statistically
strong sequences. To improbe this scenario, we propose the
second block in the grid, which would be producing by bent
function. After needed number of evolutions block b1XORing
with block b2 bit by bit, with appropriate size of sequence. So
far, it can be concluded, that resulting sequence in block b1
would be much more statistically strong. Thus, we can increase
the set of rules, which produces strong, random and flexible
sequences of bits.

D. Repeating

As our algorithm is deterministic, that leads to repeating
evolution of CA with the same input and initial states. For
this aim it can be generated abstract key to pass it through
the channel for checking identity. So, the key K may be
interpreted like the following sequence of bits. We use symbol
| to mark concatenation.

K = p|q|lb1 |wb1 |...|lbm |wbm |tv1

1

|tv2

1

|...|tv1
m
|tv2

m
|V1|...|Vm|T

where t
v
j

i

is the size of template parallelogram, including all
possible cells in the template. And Vi are sent like the sequence
of bits, where each bit, if it is 1 than cell is in the template,
and when it is 0, than out of template.

Here are numbers of cells, instead of which should placed
1 or 0. T is bit sequence for determining all of bent functions,
using in algorithm and other needed meta information. Thus,
in spite of the fact that we must send such a long sized key,
we can put some data in the boundary cells, placed around our
main grid in order to save correct transition of state in case
of software realization.

ALLA LEVINA ET AL.: IMPROVING PSEUDORANDOM GENERATOR ON CELLULAR AUTOMATA WITH BENT FUNCTIONS 383

III. TEST RESULTS

Our algorithm was tested with the help of NIST Test
Suite, which developed for testing RNG and PRNG. The
process of test involved: generation sequences of bits by our
algorithm (1000000 bits), testing .txt file with sequence with
NIST Test Suite. We tested various numbers of bent functions
up to 16 arguments with different neighborhood templates
appropriately, NESW method of filling the grid with initial
states. Results of tests are averaged for all the experiments.

Head parameter of NIST Test Suite, showing the quality of
sequence is P − value, which shows the difference between
testing sequence and random sequence. The test statistic is
used to calculate a P − value that sumarizes the strength of
the evidence against the null hypothesis. For these tests, each
P−value is the probability that a perfect random number gen-
erator would have produced a sequence less random than the
sequence that was tested, given the kind of non-randomness
assessed by the test. If a P − value for a test is determined
to be equal to 1, then the sequence appears to have perfect
randomness. A P − value of zero indicates that the sequence
appears to be completely non-random. A significance level
(α) can be chosen for the tests. If P − value ≥ α, then the
null hypothesis is accepted; e.g., the sequence appears to be
random. If P−value < α, then the null hypothesis is rejected;
e.g., the sequence appears to be non-random. The parameter
α denotes the probability of the TypeI error (if the data is, in
truth, random, then a conclusion to reject the null hypothesis
(e.g., conclude that the data is non-random) will occur a small
percentage of the time) [10]. α is equal to 0.01.[10]

Here is the table (Fig. 3), which shows the difference on the
NIST Test Suite between "clear" usage of Rule30 - rule30
column, with bent function of 4 arguments - bent4 column
and bent function of 6 arguments - bent6 column. All bent
functions were balanced: f(x) + f(x + y) form, where x

denotes vector of arguments, and y - random vector.
For bent4 variant we used the following function:

f(x0, x1, x2, x3) = x0x1 + x1x2 + x2x3

and as random vector was y = 1011
For bent6 variant we used the following function:

f(x0, x1, x2, x3, x4, x5) = x0x1 + x2x3 + x4x5

and as random vector was y = 101110
There will be represented results of average tests on about

100 rules without bent functions and with them of 4 and 6
arguments of Proportion criteria (Fig. 4) and P-value criteria
(Fig. 5)

IV. CONCLUSION

In spite of the fact, that not all the rules in classical CA
can’t be strongly recommended for generating pseudorandom
sequences and numbers, we can find a way to increase
statistical features up to hundred times with only using bent
functions without loss of velocity and simplicity. Thus, the
main advantage of this idea is that the set of using rules

Fig. 3: Statistical results of P-value for 3 variants of Rule30

Fig. 4: Graph of difference between average test results
(Proportion)

Fig. 5: Graph of difference between average test results (P-
value)

enlarges and can be used in a different way with results near
needed distribution.

V. REFERENCES

ACKNOWLEDGMENT

The research is supported by the grant of the Russian
Science Foundation (Project 17-71 -20077)

384 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

REFERENCES

[1] Stephen Wolfram “Random sequence generation by cellular automata”,
Advances in Applied Mathematics, 1986

[2] Andrew Ilachinski “Cellular Automata: A Discrete Universe”, World

Scientific, 2001.
[3] M. Tomassini, M. Sipper, and M. Perrenoud “On the generation of high-

quality random numbers by two-dimensional cellular automata” IEEE

Transactions on Computers, 49(10):1146 - 1151, Oct 2000
[4] M. Tomassini, M. Perrenoud “Cryptography with cellular automata”,

Appl. Soft Comput., 1(2):151 - 160, 2001
[5] Mads Haahr “True random number service” www.random.org, 1998
[6] M. Tomassini, M. Sipper, M. Zolla, M. Perrenoud, “Generating high-

quality random numbers in parallel by cellular automata”, Future

Gener.Comput. Syst., 16(2 - 3):291 - 305, December 1999.
[7] V. B.Kudryavtsev, A.S.Podkolzin, “Cellular automata”, Intellectual sys-

tems 1 - 4(10):657 - 692, 2006
[8] Ferguson, Niels; Schneier, Bruce; Kohno, Tadayoshi, “Chapter 9: Gener-

ating Randomness”, Cryptography Engineering: Design Principles and

Practical Applications., Wiley Publishing, Inc. 2010
[9] Richard Brent “Uniform random number generators for supercomputer-

s”, 1992
[10] A. L. Rukhin, “A statistical test suite for random and pseudorandom

number generators for cryptographic applications”, U.S. Dept. of Com-

merce, Technology Administration, National Institute of Standards and

Technology, rev. edition, 2010

[11] M. Tomassini, “Spatially Structured Evolutionary Algorithms: Artificial
Evolution in Space and Time”, Springer, 2005

[12] Toru Sasaki, Hiroyuki Togo, Jun Tanidaa and Yoshiki Ichiokab “Stream
cipher based on pseudo-random number generation using optical affine
transformation”, Applied Optics, 39(14):2340 - 6 Âů June 2000

[13] Moore, Edward F “Gedanken-experiments on Sequential Machines”,
Automata Studies, Annals of Math. Studies. Princeton, N.J.: Princeton

University Press, (34): 129 - 153, 1956
[14] Weisstein, Eric W. “von Neumann Neighborhood”, MathWorld–

A Wolfram Web Resource, http://mathworld.wolfram.com/
vonNeumannNeighborhood.html

[15] Weisstein, Eric W. “Moore Neighborhood” MathWorld–A Wolfram Web

Resource, http://mathworld.wolfram.com/MooreNeighborhood.html
[16] Alberto Dennunzio, Enrico Formenti, Julien Provillard Non-uniform

cellular automata:Classes, dynamics, and decidability Journal of Infor-

mation and Computation, Elsevier, 2012
[17] Wolfram S. “Cellular Automat” Los Alamos Science 9: 2 - 21, 1983
[18] Dobbertin H., Leander G. , “A survey of some recent results on bent

functions” Sequences and their applications. , SETA, 2004.
[19] N. N. Tokareva, “Bent functions and their generalizations”, Prikl. Diskr.

Mat., 2009, supplement 2, 5 - 17
[20] Carlet C., “On the higher order nonlinearities of Boolean functions and

S-boxes, and their generalizations ” The Fifth Int. Conf. on Sequences

and Their Applications , SETA, 2008 P. 345 - 367 (Lecture Notes in
Comput. Sci. V. 5203).

ALLA LEVINA ET AL.: IMPROVING PSEUDORANDOM GENERATOR ON CELLULAR AUTOMATA WITH BENT FUNCTIONS 385

