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Abstract—Physical exercise is widely recognized as beneficial
to the cardiovascular system. However, intense exercise may
also carry fatal risk. Investigation of this phenomenon is one
of the primary purposes of the North Sea Race Endurance
Exercise Study (NEEDED). This paper describes analysis of
electrocardiograms (ECG) and heart rate signals collected from
amateur athletes, participants of the race, to facilitate non-
invasive estimation of the level of cardiac troponin I (cardiovas-
cular risk biomarker) and detection of coronary artery disease
(CAD). It was demonstrated that the combination of ECG and
heart rate parameters can predict CAD with high specificity
(up to 98%) and relatively good sensitivity. Moreover, while
troponin level assessment is unlikely to be reliably performed
using regression techniques, it might be possible using a new,
probabilistic classification-based model. Further evaluation of the
latter requires the use of additional data, which is one of possible
directions for the future work.

I. INTRODUCTION

C
ARDIAC troponins T and I (cTnT, cTnI) are protein

subunits involved in contraction of the heart muscle.

Their increased blood levels are widely associated with an

occurrence of damage to the myocardium of diverse etiologies,

including coronary artery disease (CAD) [1], [2], [3]. Nonethe-

less, recent studies have reported increase in cTnT and cTnI

levels incident to prolonged, high-intensity physical exercise

in presumably healthy individuals, predominantly recreational

athletes [4]-[9].
This phenomenon was observed also in the frame of the

North Sea Race Endurance Exercise Study (NEEDED) con-

ducted at the University of Stavanger and Stavanger University

Hospital in Norway [10], [11]. Aiming to explore the impact of

long-term physical effort on the physiology of the cardiovascu-

lar system, the study recruited its participants from recreational

cyclists competing in Nordsjørittet (the North Sea Race) - an

annual cycling competition, organized in Rogaland, Norway.

In 2014, over a thousand study subjects were examined

i.a. for blood levels of cardiovascular biomarkers (including

cTnI) and electrocardiograms (ECG). Supplementary data was

retrieved from some of the participants’ sports watches. Herein

described research work was concerned with analysis of the

abovementioned data. The main hypothesis stated that blood

level of cTnI and presence of CAD can be predicted based

on parameters of ECG and heart rate (HR). In particular, the

prediction might be guided by physical effort-induced changes

in not explicitly pathological ECG.

II. STUDY POPULATION AND THE DATASET

The investigated population comprised 160 presumably

healthy individuals. A total of 53 individuals were assessed

by coronary computed tomography angiography, 6 of whom

were diagnosed with CAD. In these 6 and further 14 cases,

at least one cTnI level was elevated (>190 ng/l [10]). The

analyzed data included:
• blood levels of cTnI, measured at: 24 h before, 3 h after,

and 24 h after the race;

• 10-second 12-lead ECG recordings, collected at the same

measuring time points as the cTnI data;

• clinical data: participants’ age and BMI;

• formerly processed [12] HR data from sports watches.

III. DATA PREPARATION

A. ECG preprocessing and segmentation

The ECG was preprocessed by: filtering (band-pass Butter-

worth infinite impulse response filter, order: 5, cut-off frequen-

cies: 1 and 40 Hz) and baseline offset removal. Subsequently,

the signal was segmented into heartbeat templates using tools

implemented in BioSSPy toolbox. Key points of the ECG

(vertices, onsets, and endpoints of P, S, and T waves) were

determined based on averaged beat templates from lead I

similarly to our previous work [13]. Onsets of positive waves

(P, T) were searched for within a window preceding the

maximal ascending slope of the wave (nms): [nms−w, nms−s],
with w - window size, s - additional spacing to compensate

for a possible ’M pattern’. Onset candidates were points

n ∈ [nms−w, nms−s] satisfying conditions:

Nc = {n : |y′(n)| 6 |k · y′(nms)| ∧ y′′(n) > 0} (1)

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1065–1068

DOI: 10.15439/2018F247

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 1065



TABLE I: Parameters of detection of M and W patterns.

Wave Pattern Lead k l

P M I, II 0.2 3
R M and W V1, V5, V6 0.2 2
S W I, V6 0.3 2

where: y - the signal; k - a threshold factor. Selection criterion,

depending on point type, was of form:

1) arg min
n∈Nc

g(n), g(n) = |y(n) · y′(n)|, or

2) arg max
n∈Nc

y′′(n)

Detection P and T waves endpoints was performed analog-

ically on the descending slopes of the waves. For S wave

(negative wave) endpoint, the respective segment was inverted.

The parameters: w, s, and k were tuned separately for each

point type based on standard durations of the waveforms.

IV. FEATURE EXTRACTION

A. ECG signal

ECG features described below were defined in three areas:

time domain, frequency domain, and correlation analysis.

1) Features from lead-I signal measurements: basic time-

domain features, including:

• heart rate,

• QT interval duration corrected for HR (according to the

formula of Fridericia [14]),

• ST segment duration,

• ST elevation,

• P wave shape coefficient, i.e. the ratio of width and

amplitude of the wave.

2) M and W patterns: notches in P, R, and S waves1(see

Fig. 1). An M pattern was deemed to be present in the signal

if a sufficient number l of samples n of given wave satisfied

the following criteria:
{

y′(n) < 0 ∧ y(n) > k · y(nmax) for non < n < nmax

y′(n) > 0 ∧ y(n) > k · y(nmax) for nmax < n 6 nend

(2)

where: non, npeak, nend - indices of onset, peak, and endpoint

of the given waveform; y - signal values; k - threshold

factor: minimal portion of the peak amplitude. For detection of

W patterns, the signal was inverted. Parameters k and l were

determined empirically for each wave type, as summarized in

table I.

3) Heart axis: direction2 estimated using a pair of perpen-

dicular leads: I and aVF:

θ = arctan

(

Vnet,aV F

Vnet,I

)

(3)

1Depending on wave and lead of their manifestation, M and W patterns
might be symptoms of atrial hypertrophy, left or right bundle branch block,
and other conditions [15].

2The mean direction of the electric field vector (in the coronal plane)
throughout an ECG cycle. Its significant deviation may be a symptom of
disorders affecting the conduction system (e.g. bundle branch block) [16]

Fig. 1: Exemplary averaged beat templates: (left) M pattern in

a lead-I P wave; (right) W pattern in a lead-V1 R wave.

Vnet denotes net QRS potential in a lead, calculated as:

Vnet =

{

max(VQRS) if min(VQRS) > 0

max(VQRS)− |min(VQRS)| otherwise
(4)

where VQRS(t) - voltage of the QRS complex [17].
4) Lead-I QRS templates correlation: used to assess inter-

nal morphological consistency of a recording. The parameter

was calculated as the mean value of the upper-triangle ele-

ments (excluding the diagonal) of correlation matrix of QRS

templates from a single lead-I signal.
5) Frequency-domain features: derived from power spectra

of the QRS complexes. QRS-only signal was extracted by a

mask: QRS selection windows (rectangular with half-Gaussian

slopes), replicated at locations of the R peaks. Parameters

derived from power spectrum of the masked signal included:

• two slopes characteristic for log-transformed low-

frequency moiety of the signal, calculated over frequency

ranges: [3 Hz, 8 Hz] and [15 Hz, 19 Hz] (as in [18]),

• the mean of power spectral density signal over frequency

range [150 Hz, 300 Hz] (upper half of the range).

B. Heart rate

HR signal from sports watches, resampled and processed

in the previous works, was a base for calculation of two

parameters:
1) HRp99: mean of 99th percentile HR samples:

HR p99 =
{hr ∈ HR : hr > P99(HR)}

HRmax

(5)

where: HRmax - maximal predicted age-dependent HR:

HRmax = 208− 0.7 ·Age [19].
2) HR90 time: a portion of the race time in which partici-

pant’s HR was above 90% their individual HR reserve:

tHR90 =

∑n

i=1 i [HRi > (HRrest + 0.9 ·HRreserve)]
∑n

i=1 i
(6)

where: n - the number of samples, HRrest - resting HR

(from ECG prior to the race), and HRreserve - individual HR

reserve: HRreserve = HRmax −HRrest [4].

C. Clinical data and parameters from the previous work

• participants’ age and BMI,

• max and mean HR from Tinghaug hill segment (a major

steep climb of the race, associated with substantial effort

and strain to the heart) [12], normalized by HRmax.

Following the hypothesis on the importance of changes

versus momentary state, parameters from days 2 and 3 were
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expressed as ratio (for HR) or difference with respect to day

1. To sum up, there were: 14 parameters from the ECG (each

day), 4 from the HR, and 2 from the clinical data - in total, 48

features. A general assumption was to use data gathered prior

to, or simultaneously with collection of blood for troponin

assay. Thus, there were three sets of input parameters for cTnI

level assessment, with 16, 34, and 48 features. CAD detection

was performed on two sets: one with the 48 features and the

second, additionally including cTnI levels (51 features).

V. EXPERIMENTS SETUP

The data analysis had two main objectives: cTnI level

estimation (separately for each day) and CAD prediction -

together, four problems. The small size and strongly nonuni-

form distribution of the data motivated the use of leave-one-out

cross-validation (LOOCV) approach.

A. CAD detection

Two methods were applied for this binary classification task:
1) Automatically optimized classification: a search for the

best classifier launched with the use of TPOT - genetic

programming-based software providing tools for model se-

lection and tuning [20]. The number of generations and

population size were set to 7 and 70 respectively.
2) Grid-search-optimized decision tree classifier: the clas-

sifier was optimized in terms of i.a. class weights and maximal

depth. The best estimator instance was passed to LOOCV loop.

The results were evaluated using two types of metrics:

confusion matrix and the area under the receiver operating

characteristic (ROC) curve, weighed by counts of true positive

(TP) and true negative (TN) observations.

B. cTnI level estimation

Due to a strong bias towards the lowest values and vast

dispersion of the highest readings, the cTnI values were log-

transformed before analysis. Estimation of the cTnI level - as

a continuous variable - was approached using two techniques:
1) Automatically optimized regression approach: determi-

nation of an optimal regression model with the TPOT software

(7 generations and population size of 70).
2) Probabilistic classification-based approach: an interme-

diate class definition was obtained by stratification of the log-

transformed cTnI levels for a given day into 2 to 10 layers

of equal breadth. Test samples were classified using a logistic

regressor with probabilistic classification output. Next, in the

LOOCV scheme, the cTnI level for each test sample was

estimated by computing a weighted average of the class centers

(medians, ccTnI) with class probabilities vector p as weights:

cTnI = 10 (pT
· ccTnI) (7)

VI. RESULTS AND DISCUSSION

A. CAD detection

The results of CAD prediction are summarized in Table II.

Results were influenced by a random component (randomly

seeded decision tree classifier; obtaining a deterministic output

is possible, but might introduce a bias to the results). The

TABLE II: Summary of the results of CAD prediction; TP =

true positive, TN = true negative, FP = false positive, FN =

false negative (given in counts of observations).

Dataset Approach
Model Confusion ROC

specification matrix area

TPOT gradient boost. TN 154, FP 0,
0.42

Without optimization classifier FN 6, TP 0
cTnI data Decision tree number TN: 152, FP: 2,

0.74
+ grid search of features: 5 FN: 3, TP: 3

TPOT gradient boost. TN 154, FP 0,
0.83

With optimization classifier FN 6, TP 0
cTnI data Decision tree number TN: 151, FP: 3,

0.91
+ grid search of features: 5 FN: 1, TP: 5

information on the true cTnI levels significantly influenced

the results, in particular in terms of the false positive (FP) de-

tections. When the cTnI data was included, all FP results were

from the elevated cTnI group; otherwise, all FPs belonged to

the low cTnI class.

Formerly [12], CAD detection based on the HR and clinical

data with the best true positive rate (TPR) of 0.86 (6/7 cases)

and the same true negative rate (TNR). Herein described

experiments were performed with a greater scope of param-

eters (from the ECG signal), but with reduced number of

CAD-positive observations (by one sample, i.e. 14%). TPR

decreased to 0.5 (3/6 cases). However, TNR was noticeably

higher, reaching 0.98 (152/154 cases). With the cTnI data, TPR

increased to 0.83 (a single undetected case). Most significant

factor contributing to TPR decrease is the depletion of the

positive class strength.

The results do not unambiguously prove that features de-

rived from the ECG signal improve CAD prediction rate

(compared to HR only). However, they clearly demonstrate

the value of ECG in excluding otherwise suspected CAD in

healthy individuals.

B. Troponin level determination

1) Regression approach: this approach failed to establish

a reliable prediction model. In none of the cases, the scores

reached positive values (while 1 denotes a perfect prediction,

and 0 - a constant model). One of possible explanations lies

in the physiology of the circulatory system: the differences

in ECG and HR parameters between the individuals did

not sufficiently correlate with differences in cTnI level over

the range of the values. Indeed, it should not be assumed

that e.g. the duration of the QT segment would increase

proportionally to the increase in the extent of CAD, associated

with elevation in cTnI. The negative conclusion was confirmed

by an independent team at the University of Stavanger [21].

2) Probabilistic classification-based approach: exemplary

results (for day 3) are presented in Fig. 2. The highest

true value was excluded from the plot to provide a better

plot scale for analysis of the results. The estimation was

strongly biased towards the lowest level, containing majority

of the observations. Additionally, there are some false high

predictions. However, there is a group of observations actually
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Fig. 2: cTnI level determination with probabilistic classifi-

cation: results for day 3; horizontal: true, vertical: predicted

values; (left) full set, (right) zoom at the lower range.

following the diagonal of the plot. Although they constituted

minority of the set, these predictions were fairly accurate.
There were multiple factors hindering the prediction. The

number of samples (160) was low. This effect was escalated

by data imbalance. In day-1 data, 39% of the samples had

the same cTnI level of 1.6 ng/l, and 86% did not exceed the

level of 5 ng/l (mean ± standard deviation: 2.2 ± 0.8). In

the remaining 14% of the dataset, the values spread between

4.9 and 284.8 ng/l (mean ± standard deviation: 26.9 ± 55.8).

On the remaining days, there were additional substantial, but

isolated peaks (5025.9 ng/l for day 2 and 7918.5 ng/l for day

3 - the latter being more than 33-fold larger than any other

in the set). Excluding a single high-cTnI sample (in LOOCV)

further amplified the imbalance.

VII. CONCLUSIONS

The herein reported project was concerned with analysis

of data from the NEEDED research program with two main

objectives. First of all, the level of circulating cTnI follow-

ing prolonged, strenuous exercise was to be estimated using

information derived from ECG and HR signals. The main

conclusion to this problem was negative, though meaningful

for the future research: the correlation between cTnI and

parameters derived from HR and ECG was not found suf-

ficient to establish a continuous, regression-based model for

estimation of the level of the former. However, it is possible

that the alternative classification-based approach is more likely

to correspond to the underlying physiological mechanisms

governing the exercise-induced cTnI response. Nevertheless,

both conclusions need to be validated on a greater dataset.
The second goal was improvement of the rate of detection of

CAD compared to previously achieved results. ECG was not

found to increase the sensitivity of the prediction. However,

this refers to a decrease in TP detections by 1 observation

with lowered strength of the positive class. On the other

hand, the ECG features notably enhanced the detection in

terms of its specificity - from 86% to 98%. Best results

of prediction of CAD could be achieved by including the

cTnI level information into the analysis. The two types of

information appear to be complementary - cTnI improves

sensitivity of the model (a single undetected case), while ECG
and HR data promote its specificity by effectively excluding

non-CAD cases of cTnI elevation.
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