
 

 

 

 

 

Abstract—This paper describes an algorithm for creating hash 

function, resistant for quantum computer. The given approach 

is based on the problem of solving a system of polynomial 

equations in integers, where the number of equations is less than 

the number of unknown parameters. The developed algorithm 

is parameterized so the result of the hash function depends on 

several parameters, therefore, it will take considerably longer to 

select the solution of the task. The avalanche effect is about 50%, 

collision is impossible because the task to find a solution of the 
described system of equations with a degree greater than 3 is 

algorithmically unsolvable. This hash function was developed 

for blockchain to ensure its integrity, but it can also be used in 

any application where a hash function is needed. 

I. INTRODUCTION 

INCE Peter Shor has been demonstrated the solvability of 

the problem of discrete logarithm factorization using 

quantum computer in 1995 [1], there was become actually a 

post-quantum cryptography. It was necessary to develop such 

algorithms that could not be solved with the help of quantum 

computers. 

 Blockchain technology become popular for different kinds 

of applications: in banking, gambling, registries and etc. It 

uses hash function – cryptographically primitive for 

supporting invariability and consistency of data. 

Hashing in blockchain is the process of converting an array 

of input data of arbitrary length into an output bit string. Hash 

function uses for making a digest of blocks or some another 

data, stored not only in blockchain. Hash functions guarantee 

the "irreversibility" of data. 

 But inventing quantum computers will force to develop a 

hash function resistant to the quantum computers. 

In developing the hash function algorithm for the 

blockchain technology, some requirements is important: hash 

function should be resistance to collisions of first and second 

kind and it should have a high avalanche effect.  

A. Motivation 

At present, post-quantum cryptography is based on four 

approaches that guarantee resistance to quantum computers 

These are Code-based cryptography, Hash-based Digital 

Signature Schemes, Multivariate Public Key Cryptography, 

Lattice-based Cryptography [2]. 

Our algorithm is based on problem where the number of 

equations is less than the number of unknown parameters. 

                                                           
 This work was not supported by any organization 

B. Algorithm Idea 

As already mentioned, post-quantum cryptography is based 

on algorithmically unsolvable problems. We describe two 

complexity problems (we call it A and B) that are suitable for 

us. Our approach is constructed on Problem B, Problem A is 

its particular case. The work of Aitai [3] is equivalent to 

Problem A. In this section, we will show the transition from 

problem A to problem B and justify using of these 

computational problems. 

Problem A. It is needed to find the solution of a system of 

linear Diophantine equations in integers. 

Strongly underdefinished system of equations or a system 

where the number of equations is substantially less than the 

number of unknowns is given: 

∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑑𝑖𝑛
𝑗=1 𝑎𝑖𝑗 , 𝑑𝑖 ∈ Ζ, 

𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 𝑛 > 𝑚 

If there are restrictions, such as 𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛 or 𝑥𝑗 ∈ {0, 1}, 𝑗 = 1,2, … , 𝑛  - this task becomes the task of 

integer programming. Particularly interesting for encryption 

is the case where 𝑛 > 𝑚 (it is a strongly underdefinished 

system of linear equations). In particular, if 𝑚 = 1 and 𝑥𝑗 ∈{0, 1}, 𝑗 = 1,2, … , 𝑛, then this task is the task of the knapsack 

problem or subset-sum problem. 

The scheme of the hash function, described by M. Aitai in 

1996, is a special case of problem A. In the original article it 

tells about the lattice theory, but we show that the problem on 

lattices is equivalent to the described problem A.  

Let us describe the scheme of the hash function of M. Aitai. 

A randomly selected matrix Α ∈ Ζ𝑝𝑛×𝑚of dimension 𝑛 × 𝑚 

is chosen, where 𝑛 < 𝑚. Vector x ∈ Ζ𝑝𝑚(𝑑 < 𝑝) will be 

hashed.  

For this the system Α𝑥 = 𝑚𝑜𝑑(𝑝) ∈ Ζ𝑝𝑛 is calculated, 

where Α𝑥 is the hash of the vector x. 

Note, that the parameters are set: n, m, q, 𝑑 > 1, 𝑛 < 𝑚, 𝑞 > 𝑑, Α ∈ Ζ𝑝𝑛×𝑚. 

We note that the solution of equation Α𝑥 = 𝑚𝑜𝑑(𝑝) ∈ Ζ𝑝𝑛 

is a problem A, which is guarantees a solution. Consequently, 

the solution of the system of linear equation where the number 

of equations is less than the number of unknowns is 

equivalent to the problem on lattices. 
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Problem B. It is necessary to find a solution of a system of 

polynomial equations in integers. 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = 0, 𝑖 = 1,2, … , 𝑚 

Problem B is algorithmically unsolvable. In addition, if the 

degrees of polynomials  ≥ 3 and 𝑛 > 𝑚, then the problem is 

algorithmically unsolvable in integers. This conclusion 

follows from solution of 10th Hilbert problem. 

In this paper, we consider a variant of constructing a hash 

function based on the problem B. In this type of hash function, 

a set of parameters can be used to enhances the persistence of 

the hash function. If you build a set of hash functions that 

depends on a large number of parameters, you get an object 

of the Universal hash type [4]. 

II. ALGORITHM DESCRIPTION 

As our algorithm is parametric, first we need to choose 

parameters. In based version the parameters is: module p, size 

of dimension 𝑚 × 𝑛, set of starting coefficients ∝1, ∝2, … , ∝𝑛, size of block b, rules of forming summands ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥). 

Let us consider algorithms parameters. We also have 

developed requirements for parameters for the better result. 

All calculations will be performed on the module p. The 

module should be a sufficiently large prime number. 

We will generate some set of vectors according to special 

rules derived from the parameters ∝1, ∝2, … , ∝𝑛,  ∝𝑖∈ 𝛧𝑝𝑛 , 𝑖 =1,2, … , 𝑛, where n - is an arbitrary integer. The dimension of 

these vectors is n. 

Suppose that some hashed document is described by a set 

of numbers 𝑥 = (𝑥1, 𝑥2, … ). Each number is a certain number 

of bits, assembled into a conditional block. Our block can be 

8, 10, 12, etc. bit. The size of the block in bits b is another 

parameter of our algorithm. 

A rule of generation of functions ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥) 

should be defined as a parameter. It will determine the order 

of formation of the terms of our hash function.  

The computation procedures of the proposed algorithm are 

illustrated as following. 

Step 1: data preparation.  

On this step, we prepare a string of decimal integers 𝑥 =(𝑥1, 𝑥2, … , 𝑥𝑚) according to the input file.  

Next, we prepare a matrix A = (𝑎1, 𝑎2, … , 𝑎𝑚), forming on 

the set of starting coefficients ∝1, ∝2, … , ∝𝑛. Vector 𝑎𝑖 
construct as a recurrent sequence according to the formula 𝑎𝑖 =∝1 𝑎1 +∝2 𝑎2+. . . +∝𝑛 𝑎𝑛 

Step 2: constructing a hash function. 

Then the following vector will be a hash: 𝐻(𝑥) = [𝑎1ℎ1(𝑥) + 𝑎2ℎ2(𝑥) + ⋯ + 𝑎𝑚ℎ𝑚(𝑥)]𝑚𝑜𝑑(𝑝) 

Functions ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥) in hash function can be 

implemented as follows, but we can choose any rule for 

forming ℎ𝑖(𝑥): 𝐻(𝑥) = [𝑎1𝑥1𝑥2 + 𝑎2𝑥2𝑥3 + ⋯ + 𝑎𝑚𝑥𝑚𝑥1]𝑚𝑜𝑑(𝑝) 

The size of the output string of the hash function is 𝑛 × 𝑚.  

Step 3: modifications. 

On the large file we have a high probability when some 

terms will be a zero. The main cause of it is a rule of forming 

a recurrent sequence, when zero in some terms is cumulated. 

To avoid it in a base version of algorithm we use a cyclic shift. 

In another version, we can use replacing on zero-component 

to fixed number which can be a parameter too.  

Thus, we have constructed a hash-scheme with parameters, 

where the parameters are: module p, vector dimension n, 

block size b, terms generation rules ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥). 

III. THE TOY EXAMPLE 

On the first step parameters is chosen. It is a simple number 

p, which will be a module; for example here p = 4049, the 

dimension of the vector n = 4, m = 4, the size of the block is 

b = 6 bits, the rule of generating multipliers in the term is 𝑥𝑖𝑥i+1, window size is 2, coefficients ∝1, ∝2, ∝3, ∝4 = 

(3174,3507,860,1294). 

On the first step, we preparing a data.  

Data from the file represented as decimal integers is 𝑥1, 𝑥2, …, where each x is 6 bits. We separate 32 bits file on 

block of 6 bit and convert to decimal integers and the result is 

(34, 16, 23, 63). 

Next, we need to generate coefficients A from starting 

coefficients ∝1, ∝2, … , ∝𝑚=  (3507,860,1294,3174)  

(∝1∝2∝3∝4) , ∝𝑖∈ Ζ4049, 𝑖 = 1,2,3,4  
Each 𝑎𝑘 is calculate using recurrent sequence. On first step 

it will be 𝑎𝑘 = 3507𝑎𝑘−1 + 860𝑎𝑘−2 + 1294𝑎𝑘−3 +3174𝑎𝑘−4. 

Let 𝑎𝑖 is: 

𝑎0 = (1000) ; 𝑎−1 = (0100) ; 𝑎−2 = (0010) ; 𝑎−3 = (0001) 

Consequently: 

𝑎1 = (350786012943174) 

When we read the elements of a file by 2 items and 

calculate the product, it can turned to 0, if any one term turns 

to 0. Therefore, it is necessary to provide a decision of this 

problem in this case. We make a cyclic shift of numbers in 

vector 𝑎𝑖 on 1 positions. 

Next step we need to construct and calculate hash function: 𝐻(𝑥) = [𝑎1𝑥1𝑥2 + 𝑎2𝑥2𝑥3 + 𝑎3𝑥3𝑥4 + 𝑎4𝑥4𝑥1]𝑚𝑜𝑑(𝑝) 

Let us construct the first term for the hash 𝑎1𝑥1𝑥2: 

(350786012943174) × 34 × 16 = ( 729220534591782) 𝑚𝑜𝑑(4049) 
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Now the next vector according to the recurrence sequence 

should be calculated: 

𝑎2 = 3174 ( 729220534591782) + 3507 (1000) + 860 (0100) + 1294 (0010) 

= (1325285833213664) 𝑚𝑜𝑑(4049) 

We calculate the product from the document data to the 

generated vectors: (1325285833213664) × 16 × 23 = (17203053337935 ) 𝑚𝑜𝑑(4049) 

Modify the first two terms of hash: 

( 729220534591782) + (17203053337935 ) = (2449121027691817) 𝑚𝑜𝑑(4049) 

 

And so on by induction. The final result of hash function  

will be (1679, 1137, 1883, 213). 

IV. POSSIBLE MODIFICATIONS 

The described algorithm can be modified as follows. 

Modification 1.The nonlinear case of the formation of terms 

for the hash function should be considered. 

We need to define a rule where the data from the input file 

will be combined and be distributed according to the hash 

function. 

For example,  𝐴𝑥 = [𝑎1𝑥1𝑥2𝑥3 + 𝑎2𝑥2𝑥3𝑥4 + ⋯ + 𝑎𝑚𝑥𝑚𝑥1𝑥2]𝑚𝑜𝑑(𝑝) 

The operations of multiplication are made on modulo p. 

Thus, we can consider other types of polynomials for the 

nonlinear case. 

Modification 2. The nonlinear case should be considered 

when multiplications are made according to some 

multiplication table. 

This table can be generated according to the hashed data. 

V. SECURITY PROOF 

C. Theoretical Foundation 

For a hash function 𝑓 will be cryptographically stable, it 

must satisfy the follow three basic requirements which most 

hash functions are based in cryptography:  

1. Irreversibility or resistance to restoration of the prototype: 

for a given value of a hash function y, a data block x for 

which 𝑓(𝑥) = 𝑦 must not be computed. 

2. Resistance to collisions of the first kind or restoration of 

the second inverse images: for a given message x it must 

be computationally impossible to find another message z 

for which 𝑓(𝑥) = 𝑓(𝑧). 

3. Resistance to collisions of the second kind: it must be 

computationally impossible to select a pair of messages x, 

z having the same hash. 

These requirements are not independent: 

1. An invertible function is unstable to collisions of the first 

and second kind. 

2. A function that is unstable to collisions of the first kind is 

not resistant to collisions of the second kind; the converse 

is not true. 

Let us consider how the collision for our variant of the hash 

function will look. Let the same hash function be given for 

two different x and z documents: 𝐻(𝑥) = [𝑎1ℎ1(𝑥) + 𝑎2ℎ2(𝑥) + ⋯ + 𝑎𝑚ℎ𝑚(𝑥)]𝑚𝑜𝑑(𝑝) 𝐻(𝑧) = [𝑎1ℎ1(𝑧) + 𝑎2ℎ2(𝑧) + ⋯ + 𝑎𝑚ℎ𝑚(𝑧)]𝑚𝑜𝑑(𝑝) 

Collision means that if  𝑥 ≠ 𝑧, but 𝐻(𝑥) = 𝐻(𝑧). 

Suppose for our algorithm the source document is known. 

Then, taking into account that the vectors 𝑎1, 𝑎2, … , 𝑎𝑚 are 

formed according to the parameters and the special rules to 

the function ℎi(𝑥), 𝑖 = 1,2, … , 𝑚 calculations, the attacker is 

aware of the following information: vectors 𝑎1, 𝑎2, … , 𝑎𝑚, 𝛼𝑖 = ℎi(𝑥), 𝑖 = 1,2, … , 𝑚 and 𝑣 = ∑ 𝛼𝑖𝑎𝑗𝑚𝑗=1 𝑚𝑜𝑑(𝑝). The 

vector v is a hash of the document. 

We need to solve equation 𝐻(𝑥) = 𝑑 to find collisions, but 

this problem is equivalent to problem B, described in the 

section I.B of this article. 

Thus, we demonstrated that a collision is theoretically 

possible. However, we affirm that there is no sense to find a 

collision for our algorithms, since the problem is 

algorithmically unsolvable if there are polynomials in the 

system of equations with a degree greater than 3. 

For cryptographic hash functions it is also important that 

with the slightest change in the argument, the value of the 

function changes greatly (avalanche effect). In particular, the 

value of a hash should not give a leak of information, even 

about individual bits of the argument. This requirement is the 

key to the crypto-stability of algorithms for hashing user 

passwords to obtain keys. 

D. Implementation Details 

Describing algorithm was implemented in Python 3.3 for 

testing; measurements were made on a computer with an Intel 

Core i5-4210U of 2 cores, operating at 2.4Ghz. The PC 

contains 8 Gb RAM. 

For testing avalanche effect, we calculated the hash function 

from the source file, changed an arbitrary bit in the source file 

and calculated the hash function from the modified file. Then 

a bitwise comparison was made. In the case of any documents 

of any size, when changing 1 bit in the source file, the hashes 

of the primary and modified files coincide only by 47-50% 

with a bitwise comparison.  

Moreover, the best parameters at which the maximum 

number of discrepancies is reached is a sufficiently large 

prime number and the large dimension of the vector K is about 

100. 

The speed of the algorithm is about 0.007 sec for a 1 kb 

file, an average of 70 seconds for a 500 kb file, an average 
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500 seconds for a 1 mb file. The algorithm works both with 

text data, and with photo, video and audio content. Obviously, 

realization of this algorithm should be optimized to reduce the 

processing speed of the file.  

VI. CONCLUSION 

In this article is proposed an algorithm of hash function 

resistant to quantum computer. This algorithm uses 

algorithmically unsolvable problem of finding a solution to a 

system of polynomial equations in integers. Our algorithm is 

parametrized, which increases the decision-making time. It is 

resistant to collisions, because the problem on which the 

algorithm is built is algorithmically unsolvable (in the case 

where the degree of the polynomial is greater than 3). The 

avalanche effect is about 47-50% with a bitwise comparison. 

The algorithm can work both with text data, with photo, video 

and audio contents. 

This algorithm was developed for blockchain technology 

to increase its resistance to attacks by quantum computer. It 

can also be used in any application where a hash function is 

needed. 
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