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Abstract—Rearranging cars of an incoming train in a hump
yard is a widely discussed topic. We focus on the train mar-
shalling problem where the incoming cars of a train are dis-
tributed to a certain number of sorting tracks. When pulled
out again to build the outgoing train, cars sharing the same
destination should appear consecutively. The goal is to minimize
the number of sorting tracks. We suggest a graph-theoretic
approach for this NP-complete problem. The idea is to partition
an associated directed graph into what we call pseudochains of
minimum length. We describe a greedy-type heuristic to solve
the partitioning problem which, on random instances, performs
better than the known heuristics for the train marshalling
problem.

I. INTRODUCTION

A
HUMP yard usually consists of a hump and a set of

classification or sorting tracks and one or more roll-in

and pull-out tracks [1]. In hump yards freight cars are arranged

or rearranged into a specific sequence of cars. The outgoing

trains will deliver goods to new destinations. A practical

introduction to hump yards with examples can be found in

the work of Hiller [2].

This can be very complex. For example the hump yard in in

Zürich-Limmattal (CH) consists of 18 roll-in tracks, 64 sorting

tracks with a length of 650-850 meters and 16 roll-out tracks,

see [2][3].

Every incoming car arriving at the hump yard will be

assigned to a sorting track. At the end of this process all cars

of every sorting track will be placed as a block on the roll-out

track. For an optimization approach the number and length of

sorting tracks, the number of roll-in and pull-out operations

can be minimized.

Hansmann provided a general class of Sorting of rolling

Stock Problems (SRSP) in [4]. We will focus on the Train

Marshalling Problem (TMP): using a minimum number of

tracks, rearrange the cars in a hump yard in such a way that

cars sharing the same destinations appear consecutively in the

rearranged train.

During the process only two movements are allowed: the

sorting of cars to the tracks and one pull-out movement for

all cars. The tracks are not limited in length, so we can think

of the tracks as stacks. We only allow one roll-in operation per

car and one pull-out operation per track. No further shunting

is allowed.

Apparently, TMP was first introduced by Zhu and Zhu [5] in

1983 who considered it under additional constraints and gave

first results and polynomial algorithms. In 2000, Dahlhaus et

al. [6] proved that TMP is NP-complete and introduced new

bounds. Brueggeman et al. show in [7] that the problem is fixed

parameter tractable. In another work by Dahlhaus, Manne,

Miller and Ryan [8] they described similar problems. More

bounds and algorithms can be found in the work of Beygang

[9] and Beygang et al. [1]. They introduced a graph-theoretic

approach by considering the interval graph of a given instance.

The problem also occurs in the works of Hansmann [4]. Other

approaches can be found in the work of Rinaldi and Rizzi [10]

who focused on dynamic programming and Haahr and Lusby

[11].

First of all we will give a short formal problem description

and all relevant definitions. After introducing pseudochains

and discussion splittable destinations we will derive a novel

greedy heuristic to solve the TMP. We will evaluate the results

on some random instances and finish with a conclusion.

II. PROBLEM DESCRIPTION

With every car i in the hump yard we associate a natural

number σi ∈ N
+ representing the destination of the car. A

train σ of length n then is a sequence

σ = (σ1, ..., σn)

of cars with σi ∈ {1, ..., d} for i ∈ {1, ...n}.

Example II.1. Let σ = (1, 2, 1, 3, 2). There are three destina-

tions, where the first and third car and, resp., the second and

the last have the same destination.

We want to rearrange the cars in a departing train such that

all cars are sorted in blocks according to their destination.

For this, only two shunting operations are permitted: the

roll-in movement of a car to one of the sorting tracks and

the pull-out of all cars on a sorting track. The goal is to

minimize the number of sorting tracks, denoted by K(σ).
Since only one shunting operation per sorting track is allowed

the minimization of shunting operations is equivalent to the

minimization of sorting tracks.

For a given sequence σ let Sk be the elements of σ with

destination k. Then we may describe the incoming sequence

by a partition S = {S1, . . . , Sd} of {1, 2, ...n}. Dahlhaus et al.
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Fig. 1: Illustration for example II.2.

[6] have shown that TMP may be rephrased as follows: find

the smallest number K(S) and a permutation π of 1, . . . , d
such that the sequence of numbers

1, 2, ..., n, 1, 2, ..., n, 1, 2, ..., n
︸ ︷︷ ︸

K(S)-times

contains the elements of Sπ(1) as a subsequence followed by

all elements of Sπ(2) and so on.

Example II.2. Let n = 7, d = 4 und S = {S1, S2, S3, S4}
with S1 = {1, 3}, S2 = {2, 7}, S3 = {4} and S4 = {5, 6}.

Then K(S) = 2 and π(1, 3, 4, 2), see figure 1 for an illustra-

tion:

1 2 3
︸ ︷︷ ︸

S1

4
︸︷︷︸

S3

5 6
︸︷︷︸

S4

7 1 2 3 4 5 6 7
︸ ︷︷ ︸

S2

We now define some necessary preliminaries following the

work of Beygang in [9].

III. PRELIMINARIES

Let Sn be the set of all problem instances of TMP with n
cars. For S ∈ S

n let d = d(S) be the number of destinations

in this instance. For an instance S ∈ S
n, a track assignment

is function tr : {1, ..., n} → N which assigns a track to every

car. A track assignment is feasible if it gives a feasible solution

for TMP.

For a given sequence σ and a destination k let first(k) de-

note the position of the first occurrence of k and last(k) be its

last occurrence. Let Ik = [first(k), last(k)] be the associated

interval. Then the intervals induce a partial order on the set

of destinations via i < j if last(i) < first(j). We consider

the associated comparability graph and its complement, the

interval graph.

Definition III.1. (Comparability Graph associated with an

Input Instance) For a given instance S of TMP, the associated

comparability graph graph is given by D(S) = (V,A) such

that V = (I1, ..., Id) and (Ik, Ij) ∈ A if k < j.

Definition III.2. (Interval Graph associated with an Input In-

stance) For a given instance S of TMP, the associated interval

graph is given by G(S) = (V,E) such that V = (I1, ..., Id)
and (Ik, Ij) ∈ E if Ik ∩ Ij 6= ∅.

Beygang already introduced some bounds and two im-

portant heuristics for the TMP. The deterministic SPLIT-

Algorithm was introduced in [9] and computes a feasible

solution by splitting destinations whenever possible in O(n).
The GREEDY-Algorithm was also introduced in [9]. It finds a

feasible solution by partitioning the interval graph G(S) into a

minimum number χ(GS) of stable sets, each assigned to one

track. Recall that this is equivalent to partitioning D(S) into a

minimum number of chains. We will generalize this approach

to partition D(S) into pseudochains.

IV. PSEUDOCHAINS

Let D = (V,A∪B) be a directed graph with a set B of blue

arcs, A ∩B = ∅. We allow that B = ∅ or A = ∅. Recall that

a chain in a transitively oriented graph is a subset v1, . . . , vk
of vertices such that (vi, vj) ∈ A for all 1 ≤ i < j ≤ k.

Definition IV.1. (Pseudochain) Let D = (V,A∪B) as above

such that the subgraph DA induced by the arcs in A is

transitively orientable. C ⊆ V is a pseudochain of length

ℓ(C) = k ≥ 1 if C can be written as

C = C1, b2, C2, b3, C3, ..., bk, Ck,

where the Ci’s are mutually disjoint chains in DA with last

element ai and first Element ci and (ai−1, bi), (bi, ci) ∈ B for

2 ≤ i ≤ k.

Figure 2 illustrates a pseudochain of length three.

C1 C2
b2 b3

C3

Fig. 2: A pseudostable chain of length 3. Transitive arcs are

omitted, dashed arcs correspond to blue arcs.

Now we can define the minimization problem as follows.

Definition IV.2. (minPC) Given a directed graph D = (V,A∪
B) with a set B of blue edges, A ∩ B = ∅ such that DA is

transitively orientable. Partition V into pseudochains P =
C1, . . . , Ck such that the total length ℓ(P ) =

∑k

i=1 ℓ(Ci) of

the partition is minimal.

Lemma IV.3. Given a directed graph D = (V,A∪B) with a

set B of blue edges such that DA is transitively orientable and

a minimum partition V into pseudochains P = C1, . . . , Ck.

Then there is a partition P ′ with ℓ(P ′) = ℓ(P ) such that for

all centers c(bi) of all blue paths bi in P ′ exist two nodes u in

Ci−1 and v in Ci so that (c(bi), v), (u, c(bi)) and (u, v) 6∈ A.

V. SPLITTABLE DESTINATIONS

Observe that we can always produce a feasible track assign-

ment by opening a track for each destination. But we may be

able to do better by distributing the cars of one destination

to two tracks. For this, we consider three destinations (a, b, c)
with Ia ∩ Ib 6= ∅ and Ib ∩ Ic 6= ∅. Thus we need at least two

tracks for S(a)∪S(b) and two tracks for S(b)∪S(c). We call

the destination b splittable with predecessor a and successor c
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Fig. 3: A pseudochain partition found in example VI.1

if there is a feasible track assignment which assigns b to two

different tracks. For short, we say that a triple (a, b, c) with

the properties above is splittable.

In order to be feasible, some cars of S(b) must then form

a block at the end of one track containing the cars of S(a)
and a block at the beginning of some other track containig the

cars of S(c). It is easy to show the following Theorem:

Theorem V.1. (Splittable Destinations) Given an instance S ∈
S
n of TMP. Let (a, b, c) be a triple of destinations with Ia ∩

Ib 6= ∅ and Ib ∩ Ic 6= ∅. Then the triple (a, b, c) is splittable if

and only if there is no car of destination b between first(c)
and last(a).

Proof. Given a feasible track assignment and a destination

b which is assigned to two tracks. We may assume that

both tracks contain cars of other destinations. Let a be the

destination preceding cars of b on the first track and c the

destination following the cars on the other track. Then it is easy

to see, that in the incoming train either last(a) < first(c) or

no car of destination b occurred between first(c) and last(a).
Conversely, let (a, b, c) a triple of destinations (a, b, c) as

above. We start by assigning S(a) to an open track, track 1

say, and cars of S(c) to track 2. Cars of destination b will

also be assigned to track 2 if they occur before last(a), and

to track one track 1 otherwise. All other cars are assigned to

a destination-specific track. By assumption, either last(a) <
first(c), and the assignment is feasible. In the other case,

after the first car of S(c) is assigned to track 2, all remaining

cars of S(b) are assigned to the end of track 1. So in both

cases the assignment is feasible.

Observe that splittable triples cannot be read off from the

comparability graph D itself. So in the next section we will

enhance D to capture this extra information.

VI. MINPC AND TMP ARE EQUIVALENT

Let D be the comparability graph of the intervals given by

an instance S ∈ S
n and (a, b, c), a splittable triple. Observe

that by definition Ib overlaps both Ia and Ic. So (a, b), (b, c) /∈
A. Let B = {(a, b), (b, c) | (a, b, c) is a splittable triple} and

D∗ = D∗(S) = (V,A ∪ B) be the extended comparability

graph of S.

Example VI.1. Given an instance S ∈ S
50 with 16 destina-

tions and

σ = (1, 1, 2, 1, 2, 3, 3, 3, 4, 2, 2, 1, 5, 3, 3, 4, 2, 1, 1, 6,
6, 2, 5, 7, 8, 1, 9, 10, 8, 11, 12, 13, 2, 5, 8, 10, 14, 14, 15, 16,

16, 12, 7, 4, 10, 5, 7, 8, 13, 11)

A partition P of the extended comparability graph D∗(S) in

pseudochains is given by

• C1 = {14, 15, 16} with ℓ(C4) = 1.

• C2 = {1, 9, 10} with ℓ(C2) = 1.

• C3 = {2, 5, 7} with C1 = {2}, b2 = 5, C2 = {7} and

ℓ(P1) = 2.

• C4 = {3, 4, 6, 8, 11, 12, 13} with C1 = {3, 13}, b2 = 11,

C2 = {12}, b3 = 4, C3 = {6, 8} and ℓ(P3) = 3.

See Figure 3. The weight is ℓ(P ) = 7.

Lemma VI.2. Let S ∈ S
n and P , a pseudochain partition of

the extended comparability graph D∗(S). Then P induces a

feasible track assignment using ℓ(P ) tracks.

Proof. It suffices to show that we can assign a pseudochain

C = C1, b2, C2, b3, C3, ..., bk, Ck of length k to k tracks. Let

chain Ci begin with ci and end with ai. Let B′

i = {c ∈ bi : c <
last(ci−1)} and B′′

i = {c ∈ bi : c > last(ci−1)}. We claim

that, for 1 ≤ i ≤ k−1, we can schedule the pseudochain such

that track i contains B′

i−1 followed by Ci again followed

by B′′

i . Suppose this is true for some 1 ≤ j < k. Since, by

definition, the triple (aj , bj+1, cj+1) is splittable, we may fill

track j with B′′

j+1, open track j + 1 with B′

j and fill it with

Cj+1.

Lemma VI.3. Let S ∈ S
n and tr, a feasible track assignment

using k trains. Then tr induces a pseudochain partition P of

the extended comparability graph with ℓ(P ) = k.

Proof. Since tr is feasible, the cars of a destination d are

assigned to at most two tracks and form a consecutive subse-

quence on their tracks. If they are assigned to two tracks they

must be placed at the end of one track and at the beginning

of some other track. Define a directed graph H on the set

of destinations. Two destinations i, j are linked by an edge

(i, j) if cars of i are placed immediately before cars of j
on the same track. Then each connected component of H
induces a pseudochain C of D(S). Since ℓ(C) corresponds

to the number of tracks used by the component, the claim

follows.

Example VI.4. Consider the instance of example VI.1. The

pseudochain partition P induces the following track assign-

ment:

Track 1 : 23, 233 534, 551
Track 2 : 51, 523 724, 747
Track 3 : 11, 126 927 1028, 1045
Track 4 : 36, 315 1332, 1349 1150, 1151
Track 5 : 111, 1130 1231, 1242 444, 451
Track 6 : 49, 416 620, 621 825, 848
Track 7 : 1437, 1438 1539 1640, 1641
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Here, the lower indices represent the position of the car in

the input sequence. It is a feasible track assignment using

ℓ(P ) = 7 tracks.

Theorem VI.5. Let S ∈ S
n and D∗(S), the extended

comparability graph. Then minPC on D∗(S) is equivalent to

TMP.

Proof. Follows from Lemma VI.2 and VI.3.

Thus for every optimal solution of an instance S ∈ S
n of the

TMP using K(S) tracks, there exists a corresponding partition

of the extended comparability graph D(S) into pseudochains.

VII. A NEW GREEDY-APPROACH: GREEDY-PC

This greedy approach is based on the above observations

on pseudochain partitions. Let S ∈ S
n be an instance of TMP

and T = (t1, ..., ttS ) be the list of all splittable destination

in S sorted increasingly by their left boundary. Our approach

will return a partition of D∗(S) into pseudochains.

Given a splittable destination (a, b, c) ∈ T , the function add
applied to a pseudochain P returns true if the triple can be

added to P and false otherwise. We follow the idea to have

the best solution within this chain P and try to add every

possible splittable triple in T to a pseudochain. We will redo

this as long as nodes remain in S .

The worst-case runtime of this heuristic is f(n) = ( 12n
3 +

n2) = O(n3). See algorithm 1 for an implementation in

pseudocode.

VIII. EXPERIMENTAL RESULTS

We used Python 3.4 with NetworkX for creating random

instances and implement the greedy heuristic as well as the

Linear Programming relaxation introduced by Beygang [9].

Four 2.4 GHz processors and 8 GB RAM were available

running Linux Kernel 3.10. We used GLPK (GNU Linear

Programming Kit) 4.52 to solve the linear program. To get

comparable results, we followed [9] to create random in-

stances. This function takes the number n of cars and computes

uniform and independent problem instances.

The greedy heuristic introduced by Beygang et al. ([9] and

[1]) leads to the upper bound denoted by Coloring. It is

equivalent to a graph coloring approach for the interval graph

G(S). The runtime is O(n2). Algorithm 1 has also polynomial

runtime in O(n3).
We approximate the optimal solution according to the

bounds ulp and llp, the upper and lower bound given by

the solution of the linear program introduced by [9]. It was

observed in [12] that the lower bound very often coincides

with the value of the optimal solution.

Figures 4 and 5 summarize the output of the heuristics on

50 random instances with a fixed number of cars. For a small

number of cars the distance between Coloring and ugreedy is

small, but notable, see figure 4. We notice the greedy approach

can lead to solutions using more tracks than the Coloring

approach. The situation changes significantly for instances

with more cars. Figure 5 shows that Greedy-PC performs

better than Coloring on instances with 300 cars.

Algorithm 1 GREEDY-PC

Require: Extended comparability graph D∗(S) with its max-

imal stable set S in D(S) and a list T = (t1, ..., ttS ) of

splittable destinations in S .

Ensure: Partition of D∗(S) in pseudochains

1: visited = ∅
2: count = 0
3: while |T | > 0 do

4: count++
5: P.add(pseudochain Pcount)
6: for every (a, b, c) = ti ∈ T do

7: if Pcount.add(a, b, c) = true then

8: visited.add a, b, c
9: end if

10: end for

11: for every v ∈ visited do

12: delete every ti containing v from T
13: end for

14: end while

15: for every node v ∈ V (G) do

16: if v /∈ visited then

17: for i = 1, ..., count do

18: if Pi.add(v) = true then

19: visited.add v
20: exit
21: end if

22: end for

23: count++
24: P.add(pseudochain Pcount)
25: Pcount.add(v)
26: end if

27: end for

28: return P

IX. CONCLUSIONS

We have introduced and discussed pseudochain partitions

and their relation to the Train Marshalling Problem. There

is only little discussion about TMP in the literature, but the

problem has an intimate relationship to other sorting problems

of rolling stock, see [4]. Thus it is an important step to

provide a better understanding of the underlying graph struc-

tures. Pseudochain partitions directly lead to a new heuristic

providing a improved upper bounds for optimal solutions of

TMP. We could proof that every optimal solution of TMP

is equivalent to a minimal partition of the corresponding

extended comparability graph D∗(S) into pseudochains.

The greedy approach has been evaluated for 2 instances

with 100 and 300 cars, each consisting of 50 random instances

each. The computational results show that the model is useful

and the proposed Greedy-approach performs in general signif-

icantly better than other state-of-the art approaches.

To sum up, although we achieved encouraging results, there

are still questions which are not answered or even discussed

in this paper. For example, can the inherent structure of
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Fig. 4: Results for random instances with n = 100 cars. Colouring is a Greedy-approach introduced by Beygang, ulp and

llp are upper and lower bounds of the integer linear program approach, see [9]. The lower bound lps was introduced in [12].

ugreedy shows the results of our novel algorithm 1.

Fig. 5: Results for random instances with n = 300 Colouring is a Greedy-approach introduced by Beygang, ulp and llp are

upper and lower bounds of the integer linear program approach, see [9]. The lower bound lps was introduced in [12]. ugreedy

shows the results of our novel algorithm 1.

pseudoschains be used to find even better heuristics than those

discussed in this paper? Are there any instances of the TMP

that can be solved in polynomial time?

The results encourages the further improvement on heuris-

tics to solve minPC and the application of this method to other

sorting of rolling Stock Problems.
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JENS DÖRPINGHAUS, SCHRADER RAINER: A GRAPH-THEORETIC APPROACH TO THE TRAIN MARSHALLING PROBLEM 231


