
Visualization of logical formulas

Radosław Klimek

AGH University of Science and Technology

Al. Mickiewicza 30, 30-059 Krakow, Poland

Email: rklimek@agh.edu.pl

Abstract—Visualization of logical formulas for classical propo-
sitional calculus gains a new meaning in the context of a huge
development of SAT solvers which find solutions of satisfiability
problems of bigger and more complex tasks including the ones
of industrial meaning. The aim of this work is to create, using
modern IT tools, a coherent and widely accessible system in
a form of web application, which will be able to provide a
coopertive system, as well as will help to visualize, analyze and
transform logical formulas. The system itself is now in the initial,
however, mature implementation phase. It is open for new ideas
and methods. New functionalities have already been introduced
but there are plans to create the new ones.

Index Terms—SAT; visualization; graph.

I. INTRODUCTION

S
ATISFIABILITY problem is the classical and fundamental

problem of theoretical computer science in which there

can be encoded many other problems [1]. Satisfiability prob-

lem is a testing whether exists of a logical value assignment

(true/1, false/0) to variables in a particular formula which will

satisfy it, namely its logical value will be true. Those types of

problems can be applied to many branches and are commonly

used, for example in combinatorial optimization [2], graph

theory, automated theorem proving, verification of software

models [3], [4], [5], [6], and artificial/ambient intelligence [7],

[8], [9].

Tools which solve satisfiability problem are called SAT

solvers. Their rapid development and routine solving of tasks,

which consist of many thousands of variables and clauses,

enables practical implementation of reasoning engines which

are quite common and easily accessible [10], [11]. There was

created a standard of input files recording, known as DIMACS

CNF format or simply DIMACS, where the base DIMACS

relates to the name of the research center where it was created,

namely The Center of Discrete Mathematics and Theoretical

Computer Science, and CNF is a reference to the conjunctive

form of the normal formula (Conjunctive Normal Form). This

form is used to save logical formula in leading solvers based

on CDCL method where problem is enclosed in this form in

a particular file having DIMACS form. Thanks to using one

format it is easy to compare existing SAT solvers and to see

new possibilities of creating new, interesting tools based on

the same input files which can be related to SAT or similar

concepts.

Nowadays, SAT solvers are commonly used in a formal ver-

ification of designed systems, especially embedded systems,

cyber-physical systems and software drivers. Solvers become

more and more popular. Their widespread use is visible

in the processes described as Electronic Design Automation

(EDA) because designing processes of those sets, especially

embedded sets, need to be analyzed carefully as the errors

done during their design and production can have detrimental

effects and be very costly. The similar situation appears when

we talk about drivers which unstable work can interfere with

the working of the system core.

Visualization of logical formula can also be a useful, and

to some extend helpful, tool in solving satisfiability problem

as well as in analysis and preprocessing of formulas as input

data for SAT solvers. The graphic form of formula, its shape,

regularity or irregularity, consistency or inconsistency can

provide us with many valuable pieces of information about the

encoded problem, see for example [9, Table 11]. It can also

suggest recommended formula preprocessing methods which

can speed up the process of searching for a satisfiable solution.

That is why visualization helps us to understand the encoded

problem better and gives us an opportunity of carrying an

additional and quicker analysis of the problem before our

attempt to solve it. Last but not least, visual image of a formula

can have an aesthetic meaning. The generated visualizations

create interesting visual effects which may be attractive for

people who have not dealt with SAT topic so far.

The aim of this work is to create widely accessible service

in form of web application, built on the basis of modern IT

tools, easy to handle and enabling the visualization of logical

formulas of propositional calculus which are the input data for

SAT solvers based on CDCL method (Conflict Driven Clause

Learning). The present system is based on work [12], however,

it has been adjusted to the web requirements1.

The development of solvers which work on the basis of

this method needs to be acknowledged as a spectacular one.

Every formula can be visualized and analyzed before we

start looking for its solution. Although in this work there

were presented the well-known visualization methods but there

also were proposed new functionalities of the system. The

existing program called DPvis created by Carsten Sinz, see

seminal and fundamental work [13], enables crating different

types of graphs on the basis of formulas describing SAT

problems. However, this program is hardly accessible and

not compatible with demands of the modern and dynamic IT

market which can discourage the present and potential users.

Under those circumstances, creating the fully web application,

see [12], which enables cooperative work in client-server

1The planned website for this service is http://forvis.agh.edu.pl.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 419–424

DOI: 10.15439/2018F264

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 419



architecture, built on the basis of modern IT tools and offering

SAT problems visualizations, may encourage new users or

specialists and provide them with tools which simplify their

everyday work.

In the future the service will be extended to provide fluent

transition between different methods of formula visualizations

or different methods of encoding logical formulas. There are

also plans to open the service for related problems according to

classical SAT, namely MaxSAT (finding the maximal number

of clauses, if not all, of the entire formula to be satisfied) and

weighted MaxSAT (finding an assignment that maximizes the

total weight of the satisfied clauses), Partial MaxSAT(some

clauses are deemed hardinfinite weights, clauses with finite

weight are soft), and other problems, which will enable the

analysis of fragmentary problem solutions in the context of

the whole problem.

II. PRELIMINARIES

Supported file format is a commonly recognized DIMACS

CNF format. System should offer a possibility of storing saved

files and exporting created visualizations to graphic files within

a wide range of formats.

Logical formula F is in CNF form because it is built

from conjunction of clauses, which can be presented as

F =
∧m

i=1
Ci that is a conjunction of clauses C1, C2, . . .,

Cm and every clause is built from disjunction of literals

Ci =
∨n

j=1
li, j where literal l can be a variable x or its

negation ¬x. The example of logical formula in CNF form is

the formula:

(x ∨ ¬y) ∧ (z ∨ y ∨ ¬x)

DIMACS CNF file is saved as ASCII text file which enables

easy transmission between different operational systems or

working environments. The file can have lines of comments,

so-called line of problem, but its most important part are the

following clauses, whereby every of them finishes with number

0. Every clause is built from a sequence of natural numbers

where every number clearly identifies one variable (can be

from thesaurus of variables). Moreover, every number may be

predeceased by minus or not be predeceased, where symbol

of minus signifies negation of this variable. Therefore, the

particular numbers signify literals. The following file is an

example of that:

c

p cnf 212 118098

-169 -177 -184 -182 -174 -187 -196 -201 -199

-191 -17 -26 -32 -28 -23 -35 -41 -48 -46 -38

-53 -60 -65 -62 -56 -68 -77 -83 -79 -73 -86

-93 -100 -97 -89 -103 -109 -117 -113 -108

-122 -126 -132 -129 -125 -139 -144 -151 -146

-142 -154 -162 -166 -164 -157 12 13 14 15 0

-169 -177 -184 -182 -174 -187 -196 -201 -199

-191 -17 -26 -32 -28 -23 -35 -41 -48 -46 -38

-53 -60 -65 -62 -56 -68 -77 -83 -79 -73 -86

-93 -100 -97 -89 -103 -109 -117 -113 -108

-122 -126 -132 -129 -125 -139 -144 -151 -146

-142 -154 -162 -166 -164 -157 12 13 14 15

170 171 172 173 178 179 184 185

181 182 175 176 0

The size of logical formula within a file does not prove

difficulty of the problem itself but, of course, in practice, the

time spent on searching for the solutions of the big formulas

is longer, sometimes very long. There are tools which aim

is to minimize logical formulas which can reduce time of

solving the problem significantly. One of the better known

tools is SatELite program which implements the following

techniques [14]:

1) elimination of variables by resolutions – deleting unnec-

essary variables and equivalent literals;

2) fast subsumption – C1 clause subsumes C2 when C1 ⊆
C2, therefore C1 may be deleted;

3) self-subsumption – C1 clause almost fully subsumes C2

with exception of one literal x which appears in C2

with a different value. For example, C1 = {x, a, b}, and

C2 = {¬x, a}. Resolution for x gives C ′

1
= {a, b},

which subsumes C1, therefore C1 can be added to

logical formula and C1 can be removed.

III. VISUALIZATION METHODS

There are used three basic methods of visualization in this

work . It does not cover all planned implementation methods.

The present set should be interpreted as an initial proposi-

tion for system functionalities. The currently used methods

are [13]:

• factor graph,

• interaction graph,

• resolution graph.

Undirected factor graph GF = (V,E) is a graph where a

set of vertices V is created by variables and clauses, therefore

V = X ∪ C, where X is a set of variables and C is a set of

clauses. E symbol means a set of edges. The edge is drawn

between variable x and clause c when x ∈ C or ¬x ∈ C.

Provided that there exists a problem described by formula:

(¬x ∨ ¬y ∨ z) ∧ (y ∨ z) ∧ (x ∨ ¬z ∨ u) it is possible to

determine the following clauses:

1) C1 = (x ∨ ¬y)
2) C2 = (¬x ∨ z ∨ u)
3) C3 = (x ∨ z)

Construction of factor graph for the problem presented above

should start from drawing variables and clauses in form of

vertices, see Fig. 1. Later on we draw edges which connect

variables with clauses in which they appear, starting from

clause C1. Finally, the graph looks like the last structure in

Fig. 1.

In contrast to undirected factor graph, directed factor graph

includes the difference between a variable in positive and

negative form. It is usually presented using colors, where green

means not negated variable and red a negated one. For the

analyzed problem, the graph looks like the following one:

Fig. 2.

Variable interaction graph GI = (V,E) is a graph in which

a set of vertices V is equal to a set of variables X which

is equivalent to V = X . E means a set of edges. The edge

420 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



x y z u

C1 C2 C3

x y z u

C1 C2 C3

x y z u

C1 C2 C3

Fig. 1. Structure of a factor graph, and successive construction steps

x y z u

C1 C2 C3

Fig. 2. Directed factor graph

connects two variables: x and y when they appear together in

at least one clause (x ∈ Ci and y ∈ Ci). On the basis of the

example from the previous section, there are determined the

following clauses:

1) C1 = (x ∨ ¬y)
2) C2 = (¬x ∨ z ∨ u)
3) C3 = (x ∨ z)

The first step to create interaction graph is drawing variables

in the form of vertices, see Fig. 3. Later on, starting from C1

clause, the appearing variables are connected together. When

analyzing next clauses, if the particular edge already exists for

a pair of variables, it is omitted. Finally, the graph looks like

the last structure in Fig. 3.

Resolution graph GR = (V,E) is a graph in which a set

of vertices V is equal to a set of clauses, therefore V = C.

E means a set of edges. The edge connects two variables C1

and C2 only if there is a variable x where x ∈ X , in which

X means a set of variables where x ∈ C1 and ¬x ∈ C2.

Using the previously presented formula and having already

determined clauses:

1) C1 = (x ∨ ¬y)
2) C2 = (¬x ∨ z ∨ u)
3) C3 = (x ∨ z)

Construction of the resolution graph starts from drawing

clauses in form of vertices, see Fig. 4. Later on the following

variables which appear in both C1 and C2 clauses are ana-

lyzed. Because x ∈ C1 and x ∈ C2 there can be drawn an

x y

z u

x y

z u

x y

z u

Fig. 3. Structure of interaction graph, and the succseeding, and successive
construction steps

C1

C2

C3

C1

C2

C3

C1

C2

C3

Fig. 4. Structure of resolution graph, and the succseeding, and successive
construction steps

edge between the clauses. The redundant edges are omitted.

Finally, the graph looks like the last structure in Fig. 4.

The methods of visualization presented above are the basic

set of methods. In the future there are plans to introduce the

new ones taking into consideration needs and nature of SAT-

related problems.

RADOSŁAW KLIMEK: VISUALIZATION OF LOGICAL FORMULAS 421



Fig. 5. The screenshot of the system – formula management

IV. DESIGN OF VISUALIZATION SYSTEM

The implemented system, see Fig. 5, is breifly described.

Server application was made using Python language together

with frame of Django REST Framework application [15].

For operation of asynchronous tasks, Celery task queue [16],

together with RabbitMQ [17] message broker, are respon-

sible. Data is stored in PostgreSQL database server. Client

application, as well as user’s interface, was created on the

basis of TypeScript language using the frame of Angular 4

application. There was used an effective visualization library

based on JavaScript language named vis.js [18]. Server proxy

Nginx [19] is responsible for managing the movement between

user’s graphic interface and server application. The whole

project is containerized using Docker technology [20]. Nginx

plays the role of Reverse-Proxy or Forward-Proxy server, see

Fig. 6. Reverse-Proxy server helps in:

• hiding the current system which is behind proxy server,

• distributing the movement between application instances

of the server,

• pointing the movement towards proper applications,

• compressing the content of data flow,

• manipulating with requests and answers.

Fig. 6. Difference between Forward-Proxy i Reverse-Proxy server. Source:
Vivek Srivastav: Proxy Pass. [In:] http://viveksrivastv.blogspot.com/p/apache-
administration.html. Accessed on 1 May 2018.

Celery is a asynchronous task queue based on task distribu-

tion using messages. It concentrates on operations performed

in the shortest possible time but also it supports planned

tasks. Tasks are performed at the same time using one or

many executive instances – workers and with the use of

multiprocess transformation. Those tasks can be performed

asynchronously (it enables the ordering application to perform

further work) or synchronically (the ordering application waits

for the result). In order to use Celery, it is required to use

message broker which provides data for workers. The message

broker recommended by Celery authors is RabbitMQ. It is

an open source and easy to implement system in Erlang

language. It supports and monitors asynchronous message

sending and their deployment using clusters which enables

further development of the system.

Message 

broker

Data base

Reverse-Proxy Server

Server app

Client app

Item 1

……

Item n

Fig. 7. Structure of logical formula visualization system

The created client application is an interface of the whole

system because a target user has an access to it. Thanks

to that, the user can log in and log out, upload and delete

data from server and, most importantly, display visualizations

and save them to file. Implemented application is in the

form of browser application. Server application, implemented

separately, organizes the whole data processing according to

user’s expectations. Detailed analysis of this issue exceeds the

aim and size of this work, see also Fig. 7.

V. EXAMPLES OF VISUALIZATION

There were examined many formulas in terms of possi-

bilities for system work as well as visualization effects. All

figures (from 8 to 13) are provided by the designed system,

see also [12]. Presentation starts from simple formulas and

continues to the most complicated ones. We will start from a

very simple example, see also Fig. 8:

p cnf 3 2

1 -3 0

2 3 -1 0

In interaction graph:

• blue vertices – represent variables,

• edge, shade of edge signifies number of connections

between variables (the more of them, the darker the shade

is). Interaction graph presents the structure of variables

neighborhood within the examined logical formula. On

the basis of that there can be performed the analysis if a

422 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 8. First example: interaction, resolution and factor graphs

Fig. 9. Second example, interaction, resolution and factor graphs

problem is integral or if it can be divided into parts. What

is more, the edges brightness can help to find frequent

neighborhoods of variables.

In resolution graph:

• blue vertices – represent clauses.

Resolution graph visualizes the structure of clause dependen-

cies. Vertices are connected by edge if they have one (or more)

literals of a different logical value. In directed factor graph:

Fig. 10. Second example, after minimalization: interaction, resolution and
factor graphs

Fig. 11. Third example: stabilization, factor graphs – before stabilization,
first screenshot, second screenshot, after stabilization

• yellow vertices – represent clauses,

• blue vertices – represent variables,

• red edge – represents a variable with negation,

• green edge – represents a variable without negation.

Factor graph shows clause dependencies and variables with

their logical values.

The next analyzed formula has 29 variables and 109 clauses,

and is shown in Fig. 9. After preprocessing, the minimization

was performed which gave 13 variables and 47 clauses, see

Fig. 10.

In a created system there was implemented graph/formula

stabilization operation. It means, that the graph was rebuilt in

such a way that the edges got a total minimal length. Stabiliza-

Fig. 12. Fourth example: interaction, resolution and factor graphs

RADOSŁAW KLIMEK: VISUALIZATION OF LOGICAL FORMULAS 423



tion helps to get more compact visualizations. The stabilization

process can be observed in the case of logical formula of

83 variables and 369 clauses. The next images present the

following visualization stages, until its accomplishment, see

Fig. 11.

The fourth example: logical formula – 155 variables, 1135
clauses, see Fig. 12.

And the last example: logical formula after minimalization

– 42 variables, 133 clauses, see Fig. 13.

Fig. 13. The last example: interaction, resolution and factor graphs

VI. CONCLUSION

Visualization project of logical formulas has to be consid-

ered as a successful one, however, it is now at its initial stage

and it will be continued. The system enables the elementary

transformation of formulas and their preprocessing. The aim of

the whole project was to create widely accessible tool helping

to understand, analyze and examine the structures of problems

presented with the use of logical formulas.

The system also offers storing files on the server which

requires creating log-in system and the user’s profile. It also

offers the possibility of interaction with generated graphs, min-

imization of uploaded formulas and export of visualizations

to the selected graphic formats. Its design and implementation

aspects are very modern as a result of using the open approach

as well as modern software technologies.

There are plans of a further system development by intro-

ducing new functionalities, another visualization methods and

opening it for other SAT problems, for example MaxSAT.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfi-

ability: Volume 185 Frontiers in Artificial Intelligence and Applications.
Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009.

[2] E. Kucharska, K. Grobler-Debska, and K. Raczka, “ALMM-based
methods for optimization makespan flow-shop problem with defects,”
in Information Systems Architecture and Technology: Proceedings of

37th International Conference on Information Systems Architecture and

Technology ISAT 2016 - Part I, Karpacz, Poland, September 18-20,

2016, 2016, pp. 41–53. [Online]. Available: https://doi.org/10.1007/978-
3-319-46583-8 4

[3] R. Klimek, “Towards formal and deduction-based analysis of business
models for SOA processes,” in Proceedings of 4th International Confer-

ence on Agents and Artificial Intelligence (ICAART 2012), 6–8 February,

2012, Vilamoura, Algarve, Portugal, J. Filipe and A. Fred, Eds., vol. 2.
SciTePress, 2012, pp. 325–330.

[4] R. Klimek and P. Szwed, “Verification of archimate process speci-
fications based on deductive temporal reasoning,” in Proceedings of

Federated Conference on Computer Science and Information Systems

(FedCSIS 2013), 8–11 September 2013, Kraków, Poland. IEEE Xplore
Digital Library, 2013, pp. 1131–1138.

[5] R. Klimek, “From extraction of logical specifications to deduction-based
formal verification of requirements models,” in Proceedings of 11th

International Conference on Software Engineering and Formal Methods

(SEFM 2013), 25–27 September 2013, Madrid, Spain, ser. Lecture Notes
in Computer Science, R. M. Hierons, M. G. Merayo, and M. Bravetti,
Eds., vol. 8137. Springer Verlag, 2013, pp. 61–75.

[6] P. Wiśniewski, K. Kluza, A. Ligeza, and A. Suchenia, “Generation
of synthetic business process traces using constraint programming,”
in Proceedings of Federated Conference on Computer Science and

Information Systems (FedCSIS 2018), 9–12 September 2018, Poznań,

Poland, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds. IEEE
Xplore Digital Library, 2018, pp. 441–449.

[7] R. Klimek, “Behaviour recognition and analysis in smart environments
for context-aware applications,” in Proceedings of the IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC 2015),

October 9–12, 2015, City University of Hong Kong, Hong Kong. IEEE
Computer Society, 2015, pp. 1949–1955.

[8] R. Klimek and L. Kotulski, “Towards a better understanding and behav-
ior recognition of inhabitants in smart cities. a public transport case,” in
Proceedings of 14th International Conference on Arificial Inteligence

and Soft Computing (ICAISC 2015), 14–18 June, 2015, Zakopane,

Poland, ser. Lecture Notes in Artificial Intelligence, L. Rutkowski,
M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M.
Zurada, Eds., vol. 9120. Springer Verlag, 2015, pp. 237–246.

[9] R. Klimek, “Exploration of human activities using message streaming
brokers and automated logical reasoning for ambient-assisted services,”
IEEE Access, vol. 6, pp. 27 127–27 155, 2018.

[10] C. P. Gomes, H. A. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” in Handbook of Knowledge Representation, ser. Foundations of
Artificial Intelligence, F. van Harmelen, V. Lifschitz, and B. W. Porter,
Eds. Elsevier, 2008, vol. 3, pp. 89–134.

[11] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:

Satisfiability, 1st ed. Addison-Wesley Professional, 2015.
[12] P. Baranowski, “System for visualization of logical formulas, Engineer-

ing diploma thesis, supervisor: Radosław Klimek, AGH University of
Science and Technology,” 2018.

[13] C. Sinz, “Visualizing SAT Instances and Runs of the DPLL Algorithm,”
Journal of Automated Reasoning, vol. 39, no. 2, pp. 219–243, Aug.
2007. [Online]. Available: http://dx.doi.org/10.1007/s10817-007-9074-1

[14] N. Eén and A. Biere, “Effective preprocessing in sat through variable and
clause elimination,” in Theory and Applications of Satisfiability Testing,
F. Bacchus and T. Walsh, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 61–75.

[15] T. Christie, “Website: Django rest framework,” 2018, accessed on
6-Jan-2018. [Online]. Available: http://www.django-rest-framework.org/

[16] Celery Development Team, “Website: Celery: Distributed task
queue,” 2018, accessed on 6-Jan-2018. [Online]. Available:
http://www.celeryproject.org/

[17] Rabbit Technologies Ltd., “Website: RabbitMQ documenta-
tion,” 2018, accessed on 7-Feb-2018. [Online]. Available:
https://www.rabbitmq.com/documentation.html

[18] vis.js Development Team, “Website: vis.js. dynamic browser based
visualization library,” 2018, accessed on 6-Jan-2018. [Online]. Available:
vhttp://visjs.org/

[19] NGINX Development Team, “Website: Nginx prod-
ucts,” 2018, accessed on 6-Jan-2018. [Online]. Available:
https://www.nginx.com/resources/wiki/

[20] Docker Development Team, “Website: Docker - software
containeraization platform,” 2018, accessed on 6-Jan-2018. [Online].
Available: http://www.docker.com/

424 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


