
FetchIoT: Efficient Resource Fetching for the

Internet of Things

Badis Djamaa, Mohamed Amine Kouda, Ali Yachir, and Tayeb Kenaza

Ecole Militaire Polytehnique,

BP 17, Algiers, Algeria

{badis.djamaa, kouda.amine, ali.yachir, ken.tayeb}@gmail.com

Abstract—Finding the right resource at the right time and
space is a key enabler for a wide adoption and spread of the
Internet of Things (IoT). The Constrained Application Protocol
(CoAP) and related standards are among the most prominent
efforts working towards such a goal. Indeed, CoAP-related
standards provide interesting mechanisms for resource discovery
in both centralized and distributed architectures based on the
CoAP’s GET method. In this paper, we, first, highlight the
limitations of GET-based discovery mechanisms. The paper, then
proposes a new solution using the recently standardized FETCH
method and develops its specifications, rules and semantics.
The proposed solution is implemented in the recently released,
secure and reliable OpenThread platform and compared with
GET-based approaches in different home automation scenarios.
Obtained results demonstrate the performance of FETCH-based
discovery in achieving fine-grained, time-efficient and reliable
discovery while preserving network resources.

I. INTRODUCTION

W
ITH the growing number of sensors, actuators, de-

vices, smartphones and embedded chips, along with

the (r)evolution of computer and network technologies, the

world is talking more and more about the Internet of Things

(IoT); a term designating the extension of the Internet to

everyday objects. When interconnected, these objects can form

a network for measuring, storing, transferring, processing, and

exchanging data between physical and virtual worlds. Today,

such smart objects are able to discover, detect and exchange

messages across the Internet thanks to the newly introduced

protocols such as 6LoWPAN [1], RPL [2] and CoAP [3]. In

fact, with the provided features, smart object networks can

be built spontaneously and can be doted with capabilities of

self-configuring, self-regulating and self-healing.

In IoT, the vision is that a significant number of new devices

including refrigerators, clothes, cars, and traffic-lights will

be dynamically connected to the Web for communication,

command and control of the surrounding environment. This

trend creates the so-called Web of Things (WoT) with the

introduction of new constrained servers that have different

features from traditional web servers and users. This pushes

the WoT to face many challenges related mainly to the

heterogeneous nature of networks constituted by these ob-

jects and their very limited capacity in terms of computing

resources, communication capabilities, memory and energy.

To overcome such challenges, the offered functionalities in the

WoT are encapsulated as autonomous constrained REST (Rep-

resentational State Transfer) resources [4] that are accessible

from other objects or traditional Web services. This simplifies

transparent integration of the physical world with the virtual

one. However, to do so, there must be mechanisms to discover

available resources and their capabilities with the minimum

of human intervention. Thus, resource discovery becomes a

fundamental requirement for the success of any IoT solution.

One of the main protocols implementing the REST-based

mechanism for resource description and discovery in the

web of things is CoAP [3]. Indeed, besides being the de-

facto standard for data exchange in the WoT, CoAP provides

distributed and centralized solutions for achieving resource

discovery. It does so by employing the GET method for the

sake of finding available resources in an IoT environment. For

instance, a device searching for available temperature sensors

in its environment issues a GET request to a well-known URI

(Uniform Resource Identifier) asking for all sensors offering

resources of type temperature. The queerer will get responses

with the description of such resource and chooses the ones

that best meets its needs.

This GET based mechanism is limited in many aspects that

will be discussed and detailed in this paper. To overcome such

issues, we introduce a new usage of the FETCH method [5]

for the sake of efficient resource discovery in the IoT. The

specification of such a usage along with the definition of rules

allowing to achieve rich, expressive and compact resource

discovery in the web of things are the main contributions of

this paper.

Finally, it should be noted that to the best of our knowledge,

this is the first paper introducing the use of the newly standard-

ized FETCH method for resource discovery in the IoT. The

paper also adds a resource discovery layer to the secure and

reliable openThread networking protocol making the proposed

approach ready for commercial deployments.

The remainder of this paper is organized as follows: Section

II reviews related resource discovery work over CoAP. This

will be followed by identifying the main issues of such

approaches before proposing our approach and detailing its

mechanisms in section III. section IV is devoted to im-

plementing and evaluating the performance of the proposed

approach in multiple IoT scenarios over the commercially-

proven, secure Thread platform. The paper ends in Section V

with a conclusion and directions for future work.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 637–643

DOI: 10.15439/2018F278

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 637



II. RELATED WORK

Resource discovery is a well-investigated topic in tradi-

tional Networks with a plethora of solutions proposed in

the literature. IoT objects have radically different features

than traditional Web servers. As a result, traditional discovery

approaches can not be applied directly and will not produce

accurate and efficient results in many IoT scenarios. Conse-

quently, new solutions are emerging for the IoT. Such solutions

follow two main architectures, centralized and distributed,

with standards being proposed for both architectures. The

most promising ones are based on CoAP and/or DNS-SD [6].

While DNS-SD is starting to get intention, currently, CoAP-

based discovery is the main standard solution in today’s IoT

applications.

CoAP-based resource discovery can be achieved via three

main mechanisms, namely: CoAP Resource Directory (RD)

[7], CoAP Distributed Resource Directory (DRD) [8], and

CoAP Resource Discovery [9]. The main purpose of these

mechanisms is to provide URIs, also called links, for the

resources available within a server, as well as the attributes

that describe them [9].

With the RD, all the resources offered by the servers are

saved in a single directory so that clients can discover any

required resource by looking up the RD. For instance, once the

RD has been successfully discovered, a server can register its

resources in the RD by performing a POST request to the path

indicated by the RD. When a client wants to search the RD,

they must issue a GET request to the RD. For this, the client

uses a specific request to obtain the results that correspond

to its interest. The use of GET imposes many constraints on

the expressiveness of the request since the parameters must

be "bundled up in some unspecified way into the URI" [5].

It should be noted that Following the success of RD, many

solutions including [10] have been proposed. All, however,

suffer from the same problems related to the use of GET for

resource discovery.

In DRD-based discovery [8], before an object can register

its resources, it must find an Entry Point (EP) at the DRD.

The initial EP can be any object connected to the DRD. In

order to find an EP, one method is to use a multicast address

/.well-known, where the object sends a POST request to that

/.well-known address to obtain the DRD information. Other

means include searching for the nearest EP or DRD using

dynamic discovery [8]. To improve this approach, work based

on hierarchical repertoires has been proposed. Indeed, authors

of [11], have introduced a usage of the REsource LOcation

And Discovery (RELOAD) protocol [12] to discover CoAP

resources. RELOAD forms an overlay network to provide

storage and messaging services in a peer-to-peer (P2P) envi-

ronment and allows applications to define specific use cases.

For instance, [11] authors describe how to use CoAP with

RELOAD to discover interconnected CoAP resources across a

large geographic area. However, as with the RD, the discovery

is based on GET, which in addition to the above limitations,

only supports discovery in the CoRE Link Format (CLF) [9].

Direct approaches rely on IP multicast to achieve discovery

[9]. Similarly to the above approaches, it uses the GET method

to diffuse a request to all nodes in an IP domain targeting

the well-known URI (/.well-known/core?search*) of all nodes

members of the group’s multicast address. Unlike RD and

DRD, here, not being able to filter the request may generate

a huge number of irrelevant responses that consume network

resources and slow its operations. Thus, direct resource dis-

covery must include the search* filter in its requests, which

is still insufficient for fine-grained efficient discovery. Finally,

a hybrid approach that tries to take advantages of both direct

discovery and RD is proposed in [13]. However, similarly to

the above, it also relies on the GET method to formulate the

requests.

To the best of our knowledge, all CoAP-based discovery

approaches deploy the GET method that limits their capabil-

ities into achieving rich and concise discovery in IoT. Such

limitations will be discussed in the following section before

introducing our FETCH-based resource discovery for the IoT

approach.

III. FETCH-BASED RESOURCE DISCOVERY FOR THE IOT

Before introducing the FETCH-based resource discovery for

the IoT, the following subsection identifies and discusses the

main issues with the GET-based approach.

A. Issues with the GET-based resource discovery

As in HTTP, the GET method is used to obtain the complete

representation of a resource, which can be refined according

to the additional parameters conveyed in the request. However,

using GET, a user/device can only allow the specification of a

URI and the query parameters in CoAP options [3] as can be

seen in Figure 1. Indeed, the GET method does not support

the transmission of a payload detailing the request, which

generates verbose replies (Figure 1) that consume energy and

throughput. These restrictions have caused some applications

to use the POST method for the sake of formulating queries

with semantic alteration and standard compatibility violation

[5].

Fig. 1. An example of GET-based resource discovery

638 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



The following points summarize and discuss some of the

major limitations and gaps related to using GET for the sake

of resource discovery:

• Query parameters of GET-based requests are limited by

the form and the size of the URI, which restricts their

capacities to convey user/device requirements. This con-

straint imposes strict limitations on the expressiveness of

requests, which may result in generating verbose replies

that will, at the end, be discarded by the client.

• Despite some research efforts aiming to increase the

number of filters included in a GET request, until now,

CLF [9] limits this number to one by query. Indeed,

a GET discovery request follows the scheme: (/.well-

known/core ?search*), where search represents a single

parameter. For example: GET /.well-known/core?rt=light.

• The GET method does not support filtering based on

logical operations (AND, OR, <,>,> = ...) between query

parameters. These types of filtering are necessary to refine

queries to receive only the most relevant answers.

• With GET, we can not include and/or exclude nodes/re-

sources based on cached descriptions or any information

known by a user or device. The use of these features is

important for resource discovery in the IoT. Indeed, with

such features, the user/device will have the possibility

to specify the known resource descriptions in order not

to include them in the answer. More importantly, having

such an option will provide the possibility of specifying

particular nodes to avoid or include, as well as the

specification of the particular requirements in terms of

security, reliability and the required quality of service.

• With GET, we can not specify/limit the search domain,

the location of the searched resources, the maximum

number of hops a query can reach, and so on. Such

information is of paramount importance for a more fine-

grained, effective and efficient discovery. For example, a

client looking for temperature sensors in his immediate

environment is not interested in having answers from all

the temperature sensors available in the network.

• Finally, GET-based resource discovery only supports dis-

covery operations in the CoRE link format [9], which

limits its applicability when resources are described in

other formats such as JSON, CBOR, EXI, etc.

From the above, and knowing that in IoT most objects are

very constrained in terms of resources, a substitute mechanism

that offers an explicit, compact and comprehensive expression

of user requirements is required. Indeed, it is very important

for an alternative approach to minimize congestion, excessive

use of resources, energy consumption and latency, while

offering more relevant results to better satisfy user requests.

Such an approach will be the subject of the following sections.

B. The CoAP FETCH method

The FETCH method has been proposed in draft-ietf-core-

etch-04 [5], which has just become RFC 8132 [14]. FETCH

tries to provide a solution that covers the gap between the use

of GET and POST. In the same way as POST, the parameters

of FETCH are transmitted in the payload of the request rather

than in the context of its URI. However, unlike POST, the

semantics of FETCH is more specifically defined to ensure

tasks similar to those of GET.

As defined in RFC 8132 [14], the FETCH method of CoAP

is used to get a representation of a resource, providing a

number of query parameters. Unlike GET, which requires a

server to return a representation of the resource identified by

the request URI (as defined by RFC 7252 [3]), the FETCH

method is used by a client to request the server to produce a

representation as described by the query parameters (including

query options and payload) based on the resource specified

by the effective URI. As a result, the payload returned in

response to a FETCH request can not be assumed to be

a complete representation of the resource identified by the

effective request URI.

Using the FETCH method for the sake of resource discovery

in IoT can remedy GET-related problems identified in the

previous section. It is also extremely useful when efficient

result filtering that preserves network resources is desired. For

instance, if a client is only interested in the types of resources

available at a server, it formulates a FETCH request asking of

that part of the representation as can be seen in Figure 2. The

server, then, replies only with the required information, which

saves throughput and energy.

Furthermore, if several resources of similar types are pro-

vided by different objects and the client knows beforehand the

existence of certain resources not meeting its requirements, it

can indicate them in the request payload to avoid undesired

replies. Thus, a client can exclude non-needed resources,

nodes, and parameters by specifying them in the body of

its request. In the same way, a client can specify the de-

sired parameters, nodes, content-formats, etc. to be included.

Moreover, a client/device can combine all their requirements

and knowledge in a single request to further filter returned

responses.

Fig. 2. A FETCH request in JSON

From the above, it is clear that the new FETCH method

opens up promising prospects for successfully filtering the

returned results, which can significantly reduce network traffic,

congestion, collision problems and power consumption when

performing resource discovery in constrained networks. In

view of these advantages, the question, which will be ad-

BADIS DJAMAA ET AL: FETCHIOT: EFFICIENT RESOURCE FETCHING FOR THE INTERNET OF THINGS 639



dressed in the following section, is how to design an effective

use of FETCH for resource discovery in the IoT.

C. FETCH-based Resource discovery for the IoT

Having discussed the limits of GET-based resource discov-

ery and presented the opportunities provided by FETCH, this

section introduces the proposed design of an effective scheme

of FETCH-based resource discovery.

To do so, we took inspiration from the IGMPv3 protocol

for the use of resource filtering based on the INCLUDE

and EXCLUDE modes; EXINC for short. These modes are

considered very adaptable to the context of resource discovery

in the IoT. Indeed, it is useful to have a mechanism that allows

to EXCLUDE the resources we do not need. At the same time,

providing a technique allowing to INCLUDE the desired fea-

tures is crucial for an fine-grained resource discovery. Indeed,

with these two modes, several combinations of user/device

discovery requirements can be formulated in the same request

in a very compact format. Building on this, we have developed

a scheme allowing to provide rich combinations of desired

parameters to be included along with resources, nodes, and

parameters to be excluded when replying. Such a scheme is

presented in Figure 3, where a EBNF representation is given

for the case of CoRE link format. It should be noted, however,

that our scheme is not tight to CLF and can be adopted to any

other description format including JSON, EXI, CBOR to allow

resource discovery in formats other than CLF.

Fig. 3. Semantics of the FETCH-based resource discovery

In addition to the EXINC filtering technique, we propose to

format the payload of the FETCH request in such a way as to

take logical operators into account when specifying parameter

lists to INCLUDE or EXCLUDE. For instance, a client may

specify the parameters to be included AND/OR those to be

excluded. It can also formulate the request to only get a

specific part of the description in a specific media type. In

this context, implementations can formulate a request payload

of any media type that is compatible with the semantics of

FETCH-based resource discovery, detailed in Figure 3. Finally,

Figure 4 presents an example of a FETCH discovery request

formulated in accordance of the proposed scheme.

To further highlight the importance of the proposed

FETCH-based resource discovery, we employ it in a home

automation scenario illustrated in Figure 5. In this scenario,

the smart air-conditioner must get the average temperature

of the house from the thermostats located in different rooms.

However, this air conditioner only trusts in Nest thermostats

that are secured with Thread and are located less than

five hops away. The realization of such a scenario is not

possible with GET-based discovery as defined in [9]. On

the other hand, with FETCH, we can filter the results by

using the proposed EXINC scheme. The FETCH request for

this scenario along with the resolution process and returned

results are shown in Figure 6.

Finally, the proposed FETCH-based discovery opens up

promising prospects for significantly reducing network traffic,

congestion, collisions, and power consumption during resource

discovery. Note that the proposed technique is expandable to

take into account more parameters and more combinations

between these parameters in the same query. It is also designed

to be adaptable for future uses. In addition, it is as valid

with direct (distributed) discovery as with the centralized

approaches and any other CoAP-based discovery approach.

Indeed, it only requires changing the formulation of the queries

by using FETCH with the semantics given above.

IV. PERFORMANCE EVALUATION

This section details the performance evaluation of the pro-

posed method when compared with the GET-based approach

adopted by CoAP. It starts by detailing the methodology and

used tools, before presenting the evaluation scenarios and

measured metrics along with discussing the obtained results.

A. Evaluation tools and Implementations

All our evaluations were carried out in the recently released

Thread platform targeting IoT applications in home automation

and similar environments. The choice of Thread is motivated

by the fact that is a proven secure and reliable solution. It

is, also, already implemented in many commercial products

on sale for several years now. Moreover, this secure and open

network protocol is built on a collection of existing standards

similarly to environments such as Contiki [15]. Finally, a user

can employ a smartphone, an application, and/or any device

to communicate, directly or via the Cloud, with the Thread

network.

Based on the open-source implementation of Thread,

dubbed OpenThread [16], and inspired by Contiki, we have

added a resource discovery layer over CoAP as specified in

Figure 7. This layer contains three main components; namely:

the request engine implementing the semantics of both GET

and FETCH look-ups; the publication engine that is respon-

sible on resource registration; and the resource description

component. Subsequently, we developed prototypes of nodes

that implement client and/or CoAP server along with the RD.

B. Evaluation protocol and scenarios

To evaluate our solution, we created different home automa-

tion and similar network configurations. Each configuration

640 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 4. Example of the proposed scheme for FETCH

Fig. 5. A use-case of FETCH-based resource discovery

contains 13 nodes over which we run several single-hope and

multi-hop scenarios for both centralized and distributed cases.

Below are the details of multi-hop scenarios.

• Centralized discovery (CoAP-RD) in multi-hop networks:

in this test, we designed a scenario where three servers

will register their resources in the RD, then two concur-

rent clients consult the RD to obtain the descriptions of

registered resources. To do so, clients send their requests

in unicast, using the Thread unicast routing protocol, to

the RD. This latter will respond with unicast messages

containing the requested parts.

• Distributed discovery in multi-hop networks: in this test,

one client sends a multicast request to discover required

resources. This request will be propagated in the network

by the multicast routing protocol MPL [17]. Once this

request arrives to a node having the desired resources, it

will respond directly to the client with a unicast response.

The above test cases were performed by simulations us-

ing virtual instances of Thread objects. Hence, environment-

related parameters such as signal propagation, influence of

obstacles and interference with other wireless signals are not

taken into account. Also, the estimation of parameters, such

as the consumed energy will not be possible. For each test

case, we set the simulation time to 600 seconds and varied the

request frequency. To put the results in context, we compared

our FETCH-based discovery approach with the standard GET-

based approach under the following performance metrics.

• Average discovery time: this parameter is defined as

the average waiting time between the transmission of a

request and the reception of the first response averaged

over several requests. This metric is used to evaluate the

efficiency of our solution in terms of latency.

• Discovery success rate: measures the number of received

responses to all sent queries. This metric is used to

evaluate the reliability of the proposed technique.

• Size of request/reply messages: accumulate the size of

request/reply messages. It is defined as the ratio between

the sum of request/reply sizes for each node over the total

number of nodes.

By comparing our approach with that of GET under different

networks and discovery scenarios, we aim to encompass

most of the performance indicators of the proposed approach.

Simulation parameters are summarized in Table I and obtained

results are discussed in the following subsection.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Duration of one simulation 600 seconds

Number of iterations 5

Number of nodes 13

type of nodes Thread CLi Instances

Message payload Variable size

Network layer IPv6 over 6LoWPAN

MAC layer 802.15.4 with enabled MAC security

C. Results and discussions

This section discusses the obtained results in both central-

ized and distributed scenarios.

1) Centralized approach: In this section, we will discuss

the results obtained for the centralized approach of our

FETCH-based solution (CoAP-RD-FETCH) and that of GET

(CoAP-RD-GET). Obtained results are depicted in Figure 8.

Figure 8.(a) presents the average time of discovery of both

approaches when varying the request frequency. As can be

seen from this figure, discovery with FETCH achieved a lower

discovery time compared to that of the GET method. This can

be explained by the fact that GET generates more traffic since

the response message contains descriptions of all available

resources in the RD. It takes a longer time to reach the client

because of its size and the congestion created in the network.

However, the FETCH method performs efficient filtering so

BADIS DJAMAA ET AL: FETCHIOT: EFFICIENT RESOURCE FETCHING FOR THE INTERNET OF THINGS 641



Fig. 6. Details of a FETCH-based resource discovery process

Fig. 7. Resource discovery implementation in OpenThread

that the RD only returns the desired resource descriptions,

which significantly reduces the size of the response messages

and also allows for faster routing (less congestion).

Concerning the average discovery success rate, Figure 8.(b)

shows that both GET and FETCH registered a high success

rate approaching 100 % in low request frequencies. This is

due to the reliable routing protocol deployed in Thread along

with the fact that the simulation environment is considered

perfect. With a high query frequency, however, the discovery

success rate becomes very low, approaching 40% for the

GET method. This could be explained by the very high

congestion of the network caused by the high frequency of

query generation and the size of GET responses that may even

lead to the elimination of responses at the transmission buffer.

However, with the FETCH method, we notice that the rate

does not decrease too much and approaches 80% at the highest

frequency thanks to the minimized size of returned responses.

With regards to the size of requests, it is clear from Figure

8.(c) that the queries generated by FETCH are slightly larger

compared to those generated by GET. This is due to the extra

data that FETCH needs in its payload to specify the filter

that will be used during the discovery process. This has the

advantage of minimizing response size by only returning the

desired resources. Knowing that a single query can match

several large responses, this surplus provides an acceptable

Fig. 8. Evaluation of proposed mechanisms in a unicast discovery scenario

compromise. Indeed, it improves the relevance of responses

along with the discovery time and network utilization as can

be seen from Figure 8.(d). For instance, this figure shows that

the difference in size, between the responses generated by GET

and those generated by FETCH, is very important. This is due

to the fact that, with FETCH, the RD only returned description

parts that exactly matched user’s specifications. This ensures

both user satisfaction concerning discovery relevance and time

as well as network fluidity with regards to congestion and

resource utilization.

2) Distributed approach: This subsection discusses the

results obtained on the distributed resource discovery sce-

nario with the two discovery approaches: GET (CoAP-GET-

multicast) and FETCH (CoAP-FETCH-multicast). Obtained

results are depicted in Figure 9.

As can be seen from Figure 9.(a) FETCH-based resource

discovery achieved noticeably lower discovery time compared

to that achieved by GET-based discovery. This difference

reaching up to 130 ms, shows the power of FETCH especially

for multicast traffic, which is slow and expensive in terms of

time and energy. With regards to the average discovery success

642 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 9. Evaluation of the proposed mechanisms in a multicast discovery
scenario

rate, Figure 9.(b) shows that both methods are equally reliable

in both centralized and distributed approaches through the use

of the MPL, which ensures the efficient routing of messages.

Finally, and concerning the size of generated messages,

it is clear from Figure 9.(c) that the size of the multicast

requests sent by FETCH is slightly larger than those of the

GET. These results are similar to those of the centralized

approach because it is the same client that sends the same

requests. On the other hand, the size of returned responses is

noticeably smaller in FETCH-based discovery in comparison

with GET as can be seen from Figure 9.(d). Similarly to

the centralized case, this is due to the fact that with FETCH

the servers only returned the descriptions of the adequate

resources.

By analyzing these results, we can confirm that the use

of FETCH method for the sake of resource discovery is

very important and outperforms GET in many aspects re-

garding the granularity, efficiency, and relevance of discovery

along with resource utilization. Such performance is equally

efficient and effective for both approaches (centralized and

distributed). Therefore, an in-depth elaboration of the FETCH-

based specification will open up more advanced and more

efficient prospects for resource discovery in the IoT.

V. CONCLUSION

In this paper, a new CoAP-based discovery mechanism was

proposed building on the newly standardized FETCH method.

Obtained results demonstrated the capacities of FETCH to

achieve fine-grained, expressive and efficient discovery when

compared with the GET-based discovery adopted by CoAP.

These achievements open up new horizons to formulate a

compact and expressive resource discovery framework for the

IoT. Our future work ports on the generalization of FETCH-

based resource discovery to encompass a wide-range of IoT

look-ups in view of proposing a specification of IoT resource

discovery based on FETCH.

REFERENCES

[1] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of ipv6 packets over ieee 802.15.4 networks,” RFC 4944, RFC Editor,
September 2007. http://www.rfc-editor.org/rfc/rfc4944.txt.

[2] P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, and R. Alexander, “Rpl: Ipv6 routing protocol for low power
and lossy networks,” RFC 6550, 2012.

[3] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” RFC 7252, RFC Editor, June 2014. http://www.
rfc-editor.org/rfc/rfc7252.txt.

[4] R. T. Fielding, Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, Irvine,
2000.

[5] P. Stok, C. Bormann, and A. Sehgal, “Patch and fetch methods
for constrained application protocol (coap),” Internet-Draft draft-ietf-
core-etch-04, IETF Secretariat, November 2016. http://www.ietf.org/
internet-drafts/draft-ietf-core-etch-04.txt.

[6] S. Cheshire and M. Krochmal, “Dns-based service discovery,” RFC
6763, RFC Editor, February 2013. http://www.rfc-editor.org/rfc/rfc6763.
txt.

[7] Z. Shelby, M. Koster, C. Bormann, and P. V. der Stok, “Core re-
source directory,” Internet-Draft draft-ietf-core-resource-directory-10,
IETF Secretariat, March 2017. http://www.ietf.org/internet-drafts/
draft-ietf-core-resource-directory-10.txt.

[8] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in machine-
to-machine communications,” in Wireless and Mobile Computing, Net-

working and Communications (WiMob), 2013 IEEE 9th International

Conference on, pp. 319–324, IEEE, 2013.
[9] Z. Shelby, “Constrained restful environments (core) link format,” RFC

6690, RFC Editor, August 2012. http://www.rfc-editor.org/rfc/rfc6690.
txt.

[10] T. A. Butt, I. Phillips, L. Guan, and G. Oikonomou, “TRENDY: An
adaptive and context-aware service discovery protocol for 6lowpans,” in
Proceedings of the third international workshop on the web of things,
p. 2, ACM, 2012.

[11] J. Maenpaa, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP
for wide area sensor and actuator networking,” EURASIP Journal on

Wireless Communications and Networking, vol. 2012, no. 1, p. 121,
2012.

[12] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“Resource location and discovery (reload) base protocol,” RFC 6940,
RFC Editor, January 2014.

[13] B. Djamaa, A. Yachir, and M. Richardson, “Hybrid CoAP-based re-
source discovery for the Internet of Things,” Journal of Ambient Intel-

ligence and Humanized Computing, Feb. 2017.
[14] P. van der Stok, C. Bormann, and A. Sehgal, “Patch and fetch methods

for the constrained application protocol (coap),” RFC 8132, RFC Editor,
April 2017.

[15] “The official git repository for contiki.” [Online] Available: https:
//github.com/contiki-os/contiki.

[16] “Openthread github website.” [Online] Available: https://github.com/
openthread/openthread.

[17] J. Hui and R. Kelsey, “Multicast protocol for low-power and lossy
networks (mpl),” RFC 7731, RFC Editor, February 2016.

BADIS DJAMAA ET AL: FETCHIOT: EFFICIENT RESOURCE FETCHING FOR THE INTERNET OF THINGS 643


