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Abstract—The energy efficiency of program executions is
an active research field in recent years and the influence of
different programming styles on the energy consumption is
part of the research effort. In this article, we concentrate
on SIMD programming and study the effect of vectorization
on performance as well as on power and energy consump-
tion. Especially, SIMD programs using AVX instructions are
considered and the focus is on the AVX load and store
instruction set. Several semantically similar but different load
and store instructions are selected and are used to build
different program versions of for the same algorithm. As
example application, the Gaussian elimination has been chosen
due to its interesting feature of using arrays of varying length in
each factorization step. Five different SIMD program versions
of the Gaussian elimination have been implemented, each of
which uses different load and store instructions. Performance,
power, and energy measurements for all program versions are
provided for the Intel Sandy Bridge, Haswell and Skylake
architectures and the results are discussed and analyzed.

Index Terms—Energy consumption, power consumption, AVX
instruction set, Gaussian elimination.

I. INTRODUCTION

In addition to performance optimization of codes for

numerical algorithms, there is a growing need to optimize

the power and energy consumption of such programs as

well. Reasons are well-known and include aspects, such

as budgeting, battery life, cooling capacity, or physical

boundaries. A possibility to reduce the power and energy

consumption of the execution of a program is the choice of

energy-saving architectures and or architecture components,

which have been developed by the hardware manufacturers

for this purpose. An example for such an architecture com-

ponents are SIMD or vectorization units supplied by recent

processors. A CPU based SIMD execution unit calculates

multiple elements in special registers simultaneously with

one instruction in contrast to processing them sequentially.

For the same computation, a vectorized program activates

less transistors than a sequential program and, hence, vec-

torization provides a potential for performance and, power

and energy optimization.

The exploitation of SIMD units for executing numerical

algorithms requires to provide a suitable program which

contains so-called vector operations that cause the archi-

tecture to exploit the vector units. One possibility to do

this is to use the Intel AVX instruction set, which can

be used on recent Intel architectures, such as the Intel

processors Sandy Bridge, Haswell or Skylake. The design of

such a vectorized program using AVX instruction includes

several decisions when transforming a sequential program or

algorithm into a vectorized program version. The decisions

include the selection of program parts to be coded as vector

operations but also the specific choice of AVX instructions

to be used for the coding. Both, the strategy to include

SIMD parallelization into a program as well as the choice

of instructions, can have an effect on the performance as

well as the power and energy consumption. This article

concentrates on the AVX load and store instruction set and

investigates the effect on the performance when different but

semantically similar instructions are chosen.

The investigations of this article concentrate on different

load and store instructions provided by the AVX instruction

set, such as aligned, unaligned, streaming or masked load

and store instructions. Using these alternatives for load and

store, different SIMD program versions for the Gaussian

elimination are built. The experimental investigation of

these program versions exhibits interesting differences in

the performance results, such as the different performance of

aligned and unaligned load and store instructions. In detail,

this article makes the following contributions:

• Several program versions for the Gaussian elimination

are implemented with different AVX instructions.

• The performance, power and energy of the the five

program versions with different AVX instructions have

been investigated on three processor architectures.

• A detailed discussion and comparison of differences

in performance, energy and power consumption of the

implemented program versions is given.

The rest of this article is structured as follows: In Sec. II,

we introduce AVX instructions, the Gaussian elimination,

and the vectorized program versions of the Gaussian elimi-

nation. Section III introduces the execution environment and

hardware architecture. Section IV presents the performance

properties of the program versions. In Sec. V, we discuss

the influence of different AVX instruction on the energy

efficiency of a program. Section VI shows related research

and Sec. VII concludes.
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II. SIMD IMPLEMENTATION OF THE GAUSSIAN

ELIMINATION

The vectorized implementation of the Gaussian elimina-

tion leaves room for different choices of load/store AVX

instructions. This section introduces the AVX instructions,

their expected influence, the Gaussian elimination, and the

vectorized program versions.

A. Programming with AVX

Many of today’s CPUs have vector or SIMD instruction

sets, which support parallel executions by applying the same

operation simultaneously to two, four, or more pieces of

data. Two popular SIMD instruction sets are the Streaming

SIMD Extensions (SSE) and the Advanced Vector Extensions

(AVX), both implemented into various AMD R© and Intel R©

processors. SSE and AVX provide instructions to load,

modify, and store 128-bit (SSE) or 256-bit (AVX) vectors

containing multiple elements, where the number of elements

is specified by their particular size. In principle, program

executions can reach a speedup equal to the number of

data elements per vector, in practice several factors limit the

optimal speedup. The performance properties and limitations

for vectorization have been demonstrated for multiple exam-

ples, e.g. in [2]. Only few articles cover vectorization in the

context of energy efficiency. Examples from Cebrián et. al.

[3] or Lorenz et. al. [4] demonstrate a potential to increase

the energy efficiency by the application of vectorization.

The SSE and AVX instructions can be used either as

assembler instructions or embedded into C-style intrinsic

functions. It is recommended to use intrinsic functions in-

stead of assembler instructions, since it enables the compiler

to apply further optimizations, such as dead code analysis.

The intrinsic functions have the following format:

<type>

_mm<size>_<operation>_<type_suffix>(

<type> param1,..)

• <type> can either be a standard C-type (e.g. float)

or a special vector type (e.g. __m256 for 8 single-

precision floating-point values) depending on the actual

function purpose and definition.

• <size> denotes the number of bits used for the

instruction, e.g. 256 for AVX.

• <operation> expresses the implemented operation,

e.g. add for an addition.

• <type_suffix> denotes the type of data to operate

on, e.g. ps for packed single precision.

• The number and type of parameters varies dependent

on the instruction.

Table 1 lists the specific intrinsic functions used in this

article with their semantic, and the values for latency and

throughput on different processor architectures given in [1].

B. Alternative load/store instructions

The different semantic of the intrinsic functions can be

investigated with regard to the energy efficiency. For this

1 f o r k = 0 < N−1; k+=1
2 / / exchange rows w i t h p i v o t e l e m e n t

3 f o r i = k+1 < N; i +=1
4 L [ i ∗N+k ] = A[ i ∗N+k ] / A[ k∗N+k ]
5 f o r j = k+1 < N; j +=1
6 A[ i ∗N+ j ] = A[ i ∗N+ j ] − A[ k∗N+ j ] ∗ L [ i ∗N+k ]
7 b [ i ] = b [ i ] − b [ k ] ∗ L [ i ∗N+k ]
8 / / Backward s u b s t i t u t i o n

Listing 1: Algorithm of a Gaussian elimination adapted from
[6] of which the vectorized program versions are derived.

purpose the intrinsic functions in Tab. 1 are evaluated in

the context of expected differences in measurement results.

Such differences can arise from their difference in latency

and throughput, and due to their requirement on memory

alignment, i.e. the memory address being divisible by 32

byte. The following instructions are amenable to demon-

strate such differences:

• Unaligned load/store: Load and store operations ac-

cessing unaligned memory are applicable for any mem-

ory position to load/store any consecutively stored

elements. The cache line size is a multiple of the AVX

register size of 256 bit, and thus the access of unaligned

memory positions may contain a cache line border,

resulting in a possible performance loss [5].

• Aligned load/store: Vectors aligned at 256 bit reside

in the same cache line. Thus, the access is expected to

lead to a higher performance of the program, compared

to unaligned instructions. However, an aligned memory

access has to be ensured by the programmer using

methods such as loop peeling, special allocators, and/or

alternative strategies.

• Streaming store: Streaming stores are special, aligned

store instructions that bypass the caches when storing

data. In detail, they are implemented using a “non-

temporal hint” to indicate that no intermediate copy

should be created in cache. Thus, streaming stores pro-

vide the possibility to issue a Write Through operation

at the programming level.

• Masked load/store: Vector instructions usually use all

elements for their calculations leading to a strict SIMD

implementation and execution. A possibility to use

only parts of a vector register is provided by masked

instructions. Masked load/store instructions have an

additional mask parameter which specifies the elements

to be loaded/stored. The elements to be omitted, i.e.

not to be loaded/stored, are specified by 0-bits in the

mask parameter. Values omitted by loads are assigned

zeros in the vector, whereas values omitted by stores

are skipped while writing to memory. Values to be load-

ed/stored are identified by 1-bits in the mask parameter

and treated accordingly.

C. The Gaussian elimination

The Gaussian elimination is an important kernel in sci-

entific applications for solving linear equations. For the

Gaussian elimination, a set of N linear equations with N

2
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HSW SKL
Intrinsic function Instruction semantic Lat Tp Lat Tp

_mm256_load_ps(*mem) Loads 8 float values from an aligned memory position mem into a
vector variable.

1 0.5 1 0.25

_mm256_loadu_ps(*mem) Loads 8 float values from an unaligned memory position mem into a
vector variable.

1 0.5 1 0.25

_mm256_maskload_ps(

*mem,mask)

Loads a specified selection (mask) of values from a memory position
mem into a vector variable. Omitted values are 0.

8 2 11 1

_mm256_broadcast_ss(*mem) Loads one float value (mem) into all elements of a vector variable. - - - -
_mm256_loadu_si256(*mem) Loads 256 bits of integer values from an unaligned memory position

mem into a vector variable.
1 0.25 1 0.25

_mm256_store_ps(*mem,a) Stores the elements of a vector variable (a) into an aligned memory
position mem.

1 0.5 1 0.25

_mm256_storeu_ps(*mem,a) Stores the elements of a vector variable (a) into an unaligned memory
position mem.

1 0.5 1 0.25

_mm256_maskstore_ps(

*mem,mask,a)

Stores a specified selection (mask) of values from a vector variable a
into a memory position mem. Omitted values are skipped.

- 2 - 1

_mm256_stream_ps(*mem,a) Stores the elements of a vector variable (a) into an aligned memory
position mem using a non-temporal hint.

- 1 - 1

_mm256_mul_ps(a,b) Multiplies the elements of two vector variables (a and b) with each
other.

5 0.5 4 0.5

_mm256_sub_ps(a,b) Subtracts the elements of one vector variable (b) from another vector
variable (a).

3 1 4 0.5

Table 1: AVX intrinsic functions used in this article with their respective values for Latency (Lat.) and Throughput (Tp.) for

the Haswell (HSW) and Skylake (SKL) architectures from [1].

unknowns xk and their respective coefficients aik and right

hand side bi, where 1 ≤ i, k ≤ N is given. The equation

and solution for Ax = b, with A ∈ IRN×N and x, b ∈ IRN ,

has to be solved.

The Gaussian elimination can be divided into two phases:

A forward elimination and a backward substitution. In the

forward elimination the matrix A is transformed into an

upper triangular form, such that Ux = b′ holds, where U is

the matrix in upper triangular from.

The forward elimination is depicted in Listing 1 as

pseudocode. The k-loop in Line 1 executes the steps of the

forward elimination and iterates along the diagonal elements

akk of matrix A. Each step starts with a pivot search in

which the maximum value below (aik) the diagonal element

akk is searched, and a row exchange of the current row ak
with the row of the pivot apiv is done. In each step the

i-loop in Line 3 calculates for each row ai , with i > k, the

elimination factor lik = aik

akk

(Line 4), which is stored in a

separate matrix L ∈ IRN×N . Using the elimination factor lik
all elements of row ai are calculated by aij = aij−akj ·lik,

where k+1 ≤ j ≤ N denotes the column that is iterated by

the loop in Line 5. Afterwards, for each row the element bi
of the result vector b is calculated by bi = bi−bk · lik. After

N − 1 steps the former matrix A is transformed to upper

triangular form U . The resulting matrix U is stored in the

same memory location as the former matrix A, in which the

lower triangular elements are assumed to be zero.

The second phase is the backward substitution in which

the values for vector x are calculated. The elements of vector

x are calculated in the order of xN , xN−1, . . . x1 according

to xk = 1

akk

(

bk −
∑N

j=k+1
akj · xj

)

.

The algorithm of Listing 1 is not optimized to preserve

the ratio of memory- and computation-instructions.

1 f o r k = 0 < N; k+=1
2 / / exchange rows w i t h p i v o t e l e m e n t

3 f o r i = k + 1 < N; i +=1
4 L [ k∗N+ i ] = A[ i ∗N+k ] / A[ k∗N+k ] ;
5 m256 l v = mm256 broadcas t ss (&L [ k∗N+ i ] ) ;
6 f o r j = k + 1 < N − 8 ; j +=8
7 m256 ak = mm256 loadu ps(&A[ k∗N+ j ] ) ;
8 m256 a i = mm256 loadu ps(&A[ i ∗N+ j ] ) ;
9 ak = mm256 mul ps ( ak , l v ) ;

10 a i = mm256 sub ps ( a i , ak ) ;
11 mm256 storeu ps (&A[ i ∗N+ j ] , a i ) ;
12 i f ( j < N)
13 i n t loadmask = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−1,−1,−1,−1,−1,−1,−1,−1};
14 m256i mask = mm256 loadu si256 (

( m256i ∗ )&loadmask [N−j ] ) ;
15 j = N − 8 ;
16 m256 ak = mm256 loadu ps(&A[ k∗N+ j ] ) ;
17 m256 a i = mm256 loadu ps(&A[ i ∗N+ j ] ) ;
18 ak = mm256 mul ps ( ak , l v ) ;
19 a i = mm256 sub ps ( a i , ak ) ;
20 mm256 maskstore ps (&A[ i ∗N+ j ] , mask , a i ) ;
21 / / c a l c u l a t e b s i m i l a r l y

22 / / Backward s u b s t i t u t i o n

Listing 2: Vectorized implementation of the Gaussian
elimination from Listing 1, which is the starting point for the
subsequent program versions.

D. SIMD implementation versions of the Gaussian elimina-

tion

A vectorized implementation of the Gaussian elimination

from Listing 1 is presented in Listing 2. The implemen-

tation uses the intrinsic functions introduced in Tab. 1

to calculate multiple elements of the row (of the j-loop)

simultaneously. Lines 1 to 4 of Listing 1 remain unchanged.

For the vectorized calculation the resulting value of lik is

copied into all elements of a vector variable lv in Line 4.

The j-loop in Line 6 is unrolled eight times to calculate

3
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a1,1 a1,2 · · · a1,k a1,k+1 · · · · · · · · · · · · a1,N−8 · · · a1,N

0 a2,2 · · · a2,k a2,k+1 · · · · · · · · · · · · a2,N−8 · · · a2,N

...
. . .

. . .
...

...
...

...

...
. . . ak,k ak,k+1 · · · ak,k+8 · · · · · · ak,N−8 · · · ak,N

... 0 ak+1,k+1 · · · ak+1,k+8 · · · · · · ak+1,N−8 · · · ak+1,N

...
...

...
...

...
...

0 · · · · · · 0 aN,k+1 · · · aN,k+8 · · · · · · aN,N−8 · · · aN,N

















































































ak
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j-loop

i-loop
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ak

ai

Figure 1: Matrix A in step k, with i = k + 1 and j = k + 1. The vector variables and the iteration directions according to Listing 2 are
depicted in red. The remainder is calculated using the vectors highlighted as blue rectangles for which only the new elements (blue filled)
are stored back to the array.

eight single-precision floating-point values simultaneously

as demonstrated in Fig. 1. For the use with vector instruc-

tions the elements are loaded into vector variables (ak

and ai in Lines 7 and 8, red rectangles in Fig. 1). The

vector variables are used to calculate the new values for

ai,j , ai,j+1, . . . , ai,j+7 (see red ai in Fig. 1) that are written

back into the array in Line 11.

Since the number of iterations for the j-loop (N−(k+1))
is not guaranteed to be divisible by eight a special case has to

be implemented. The remaining elements are handled in the

block after Line 12 using the masked instructions. Usually,

masked instructions are used to load the last elements of

the row and values which would not be part of the row

are omitted. We choose a different strategy to avoid two

costly maskload instructions. For this strategy the last

eight elements of each row are loaded, regardless of how

many are actually needed (see blue rectangle in Fig. 1).

After calculation, when storing the results, a mask is applied

to write only those elements that are part of the remainder,

discarding the twice used elements (blue fill of ai in Fig. 1).

The mask is created by using an array (loadmask in Line

13) of 256 0-bits followed by 256 1-bits and loading the

mask in Line 14 which contains the correct amount of 1-

bits. The calculation of the N − (k+ 1) elements of vector

b is done similarly.

Different program versions of the Gaussian elimination

are built with different load/store instructions. In the fol-

lowing we describe the five program versions:

• The storeu program version is the starting point imple-

mentation using unaligned loads and stores. The storeu

program version is presented in Listing 2.

• The store program version uses aligned

loads (_mm256_load_ps) and stores

(_mm256_store_ps). Hence, the j-loop in Line

6 does not start at j = k + 1 but at the beginning

of the aligned block of memory in which k + 1
resides. Thus, additional elements are calculated, but a

peeling loop is avoided. The aligned load instructions

are implemented in Line 8, and the aligned store

instructions in Line 11 of Listing 2.

• The stream program version uses aligned loads iden-

tically to the store program version. However, the

store instruction in Line 11 is replaced with a stream-

ing store (_mm256_stream_ps) instruction which

bypasses the cache while writing.

• The maskload program version replaces

all load instructions with masked load

(_mm256_maskload_ps) instructions. Explicitly,

the maskload instruction is implemented in Lines

7, 8, 16 and 17 of Listing 2. The masks of these

may be either all 1-bits or the correct mask for the

remainder. The maskload program version illustrates

the difference between masked loads and normal

loads.

• The SeqRem program version replaces the vectorized

remainder (Lines 12 to 20 in Listing 2) with a se-

quential loop that processes each remaining element

sequentially as in Listing 1. A sequential remainder

loop may be more efficient due to the expected higher

cost of masked instructions.

The program versions cover a set of selectable instruc-

tions to implement a vectorized Gaussian elimination. The

program versions differ only in the modifications shown.

III. EXPERIMENTAL EVALUATION

The measurements for this article are conducted in the

environment described in this section. Each measurement is

conducted ten times and the presented values are averaged.

For the measurements we use a matrix A that has 10 000×
10 000 elements.

A. Execution Environment

For the measurements of this article we use three Intel R©

Core i7 processors with a similar specification but different

architecture families. The three processors are: A Core i7-

2600 of the Sandy Bridge architecture, a Core i7-4770K

of the Haswell architecture, and a Core i7-6700 of the

4
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Figure 2: Number of AVX instructions actually executed in the
CPU by the execution of the five program versions on the three
processors.

Skylake architecture. All three processors allow processor

frequency scaling with the cpu-freq tool. For the Haswell

and Skylake processor scaling is enabled between 0.8GHz

and 3.5GHz and for the Sandy Bridge processor the scaling

is possible between 1.6GHz and 3.7GHz.

We measure the energy consumption of program ex-

ecutions using a simple interface to read the on chip

energy values provided by the Intel R© RAPL interface.

Additionally, we measure other performance counters using

the PAPI library version 5.5. We compiled the program

versions using the Intel R© C++ Compiler (icc version

17.0.0 [gcc version 4.9.0]) with the additional compiler

flags -O3 and -restrict. Additionally, we applied the

compiler flags -mavx for Sandy Bridge architecture and

-march=core-avx2 for the other architectures. The us-

age of the -march-avx2 flag implies the usage of FMA

instructions rather than sub and mul by the compiler.

B. Issued AVX instructions

A variation of the number of issued AVX instructions

occurs when executing the five program versions on the

three processors. The number of issued AVX instructions

can be measured during program execution and reflects the

number of 256-bit instructions executed.

The number of issued AVX instructions is depicted in

Fig. 2 for the different program versions from Sec. II

and the three architectures. It is notable that most of the

program executions have a nearly identical number of issued

instructions. The expected behavior would be all issued

instruction counts being nearly identical, since the number

of instructions should be predefined by the number of

assembler instructions that are generated by the intrinsic

functions.

There are multiple exceptions to the expected behavior.

For all program versions, the number of instructions issued

on the Haswell architecture is about 50% higher, than for

the other two architectures. Additionally, some program

versions generate an untypical high number of executed
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Figure 3: Execution time of the Gaussian elimination versions
from Sec. II on Sandy Bridge architecture depending on CPU
frequency.
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Figure 4: Execution time of the Gaussian elimination versions
from Sec. II on Haswell architecture depending on CPU frequency.

instructions. These exceptions arise at the execution of

the program version with a higher amount of maskload

instructions for the Haswell architecture, the use of the

stream instruction on the Sandy Bridge architecture and

slightly more with the use of the aligned load and store

operations for the Sandy Bridge architecture.

IV. PERFORMANCE EVALUATION OF THE PROGRAM

VERSIONS

In this section, we present the measurements and discuss

the differences in execution time for the different program

versions. The five program versions of Sec. II are executed

on the three processors described in Sec. III.

A. Evaluating execution time

The Fig. 3, 4 and 5 display the execution times of the

different program versions in dependence to the processor

frequency. As expected, a higher processor frequency leads

in all diagrams to a shorter execution time and the qualitative

5
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Figure 5: Execution time of the Gaussian elimination versions
from Sec. II on Skylake architecture depending on CPU frequency.

behavior is similar. However, the effects of different AVX

instructions on performance are thus revealed by the relation

of the execution time of the program versions to each other.

The program version using the stream instruction has the

longest execution time for all architectures. This might be

caused by the Write Through strategy that is applied with

the stream instruction which bypasses the cache when

writing data. Thus, the processor has to wait for completion

of the write operation (write-wait) before another stream

instruction can be executed.

The write-waits are a significant problem occurring for the

Gaussian elimination, which has a high number of loads and

stores with only little computation per element in between.

In other algorithms, that implement a lower number of

streaming stores the write-waits may be hidden by other

computations, loads or Write Back stores.

The Sandy Bridge architecture was the first architecture

to support AVX instructions and many improvements to

hardware for AVX have been made since. This is also

reflected in the example of the program version executing

a higher number of maskload instructions. For the Sandy

Bridge architecture the maskload program version takes a

higher execution time than the remaining three program

versions. For the Haswell architecture the execution time is

only slightly higher and for the Skylake architecture there

is no difference in execution time between a maskload

(with a full true-mask) and a loadu instruction.

A comparison between the storeu program version and

the SeqRem program version demonstrates the influence of

a vectorized remainder against a sequential remainder loop.

The measurement results of the storeu and the SeqRem pro-

gram versions are nearly identical (< 0.5%). In combination

with the results of the maskload program version, this leads

to the conclusion, that the use of masked instructions has

a worse performance than regular load/store operations, but

are at least as performant as a sequential program execution.

For the Sandy Bridge architecture the aligned load

and store instructions exhibit a better performance than
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Figure 6: Cycle Stalls due to level 2 cache misses of the Gaussian
elimination versions from Sec. II on Sandy Bridge architecture
depending on CPU frequency.

the unaligned ones. The difference between aligned and

unaligned instructions is eliminated for the Haswell architec-

ture. For the Skylake architecture the performance enhance-

ment of aligned instructions is again visible. Presumably, the

architectural changes between Sandy Bridge and Haswell

architecture improved the unaligned instructions, whereas

the architectural improvement from Haswell to Skylake

architecture improved the aligned instructions.

B. Influence of Cache-Waits on execution time

The memory properties of a program can support the

classification of its performance properties. One way to get

information about the memory properties is to take a look

at the cache usage of the program versions.

Figure 6 displays the number of CPU cycles stalled due to

waits for pending operations on level 2 cache for the Sandy

Bridge architecture. For most of the program versions from

Sec. II the relation of the curves is directly inverse to their

execution time of Fig. 3. This behavior is expected due to

the limitation of memory bandwidth that gets visible more

clearly if the program executes the implemented calculations

faster.

The stream program version produces a lower rise in cycle

stalls in dependence to the processor frequency than the

other four program versions. The lower rise in the diagram

can be explained with the operation inside the stream

instruction: The Write Trough operation. The Write Trough

operation does not write data into the cache but directly

to main memory. Thus, waiting for a write operation is

not counted as a wait for any cache and thus does not

get counted for level 2 cache stalls. When regarding other

resource stalls, i.e. general stalls, the results for the stream

program version are much higher than for the other program

versions. This observation reinforces the previous statement

of the worse execution time of the stream instruction

resulting from write-waits. The difference is presented for

the Sandy Bridge architecture in Fig. 6 but is also observ-

6
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Figure 7: Energy consumption of the Gaussian elimination ver-
sions from Sec. II on Sandy Bridge architecture depending on CPU
frequency.
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Figure 8: Energy consumption of the Gaussian elimination ver-
sions from Sec. II on Haswell architecture depending on CPU
frequency.

able for the Haswell and Skylake architectures. Since the

investigations for this article do not exploit parallelism, the

level 3 cache displays a similar behavior.

V. EXAMINING THE ENERGY EFFICIENCY

The main question of this article is the behavior of the

energy efficiency of different AVX instructions. This section

discusses the energy and power consumption of the five

program versions from Sec. II. The results are presented as

Energy to Solution and Power to Solution from which other

metrics, such as Energy-Delay-Product, can be derived.

A. Evaluation of the energy consumption

One metric to discuss the energy efficiency of program

execution is the energy consumed by the processor during

the execution of the program version. The Fig. 7, 8 and

9 present the energy consumption of the program versions

from Sec. II depending on the processor frequency. Similar
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Figure 9: Energy consumption of the Gaussian elimination ver-
sions from Sec. II on Skylake architecture depending on CPU
frequency.

to the results of the performance discussion, the stream pro-

gram version has the highest (worst) energy consumption for

all architectures. The maskload program version consumes

more energy on the Sandy Bridge and Haswell architecture.

Executing the remainder with a sequential remainder loop

does not change the energy consumption against a vector-

ized remainder. In contrast to the performance discussion,

the program version using aligned stores consumes less

energy for all three architectures.

The lowest energy consumption is achieved with a fre-

quency between 1.5GHz and 2.0GHz for all program ver-

sions and architectures. The dependency of the energy

consumption on the processor frequency produces a U-

Shape with deviations. Specifically, the U-Shape of the

stream program version creates a U-Shape with a broader

base, i.e. a flatter U-Shape. A similar behavior is shown by

the maskload program version on the Haswell and Skylake

architectures.

The different program versions produce their highest

difference in energy consumption for the lower frequencies.

For the higher frequencies the execution of the program

versions is mostly affected by the memory transfer time, as

already discussed in Sec. IV. The dependence on memory

bandwidth limits the capabilities of vectorization and thus

makes idle or waiting time a significant fraction of the

program execution.

B. Differences in power consumption

In many cases the implementation with different vector

instructions changes energy consumption in the same way

as it changes the execution time of the program execution.

Some exceptions can be found by regarding the power con-

sumption of the program versions, where power = energy

time
.

The power consumption is calculated from the averaged

measurement results for execution time and energy con-

sumption of each execution. The power consumption of

a program execution strongly depends on the processor

7
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Figure 10: Difference of power consumption of the Gaussian
elimination versions from Sec. II to the storeu program version
in percent on Sandy Bridge architecture depending on CPU fre-
quency.
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Figure 11: Difference of power consumption of the Gaussian
elimination versions from Sec. II to the storeu program version
in percent on Haswell architecture depending on CPU frequency.

frequency [7]. Thus, to discuss the differences between the

five program versions the Fig. 10, 11 and 12 display the

power consumption as difference from the storeu program

version in percent. In general, a processor consumes more

power when more transistors are active, i.e. the processor

gets hotter, which often comes with a shorter execution time

and less energy consumption.

Overall, the five program versions produce less dif-

ferences for higher frequencies, which demonstrates the

dependency on memory bandwidth rather than computing

capabilities. Additionally, the sequential remainder loop

program version has nearly no difference (< 0.5%) to the

storeu program version with a vectorized remainder.

The stream and maskload program versions produce a lo-

cal maximum or peak behavior for the processor frequencies

around 1.5GHz for the Haswell and Skylake architectures

in Fig. 11 and 12. The peak results from the flatter U-
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Figure 12: Difference of power consumption of the Gaussian
elimination versions from Sec. II to the storeu program version
in percent on Skylake architecture depending on CPU frequency.

Shape that these two program versions display in energy

consumption, where the storeu program version (0%-Line)

does not follow this behavior.

In Fig. 10 the maskload program version generates a

lower power consumption for the Sandy Bridge architecture

than the storeu program version. For the other two architec-

tures the relation is directly inverse or no difference is shown

at all. The reason for this is the higher energy consumption

of the maskload program version on the Haswell and Sky-

lake architecture for which the execution time is identical

to the storeu program version. For the execution of the

maskload program version on the Sandy Bridge architecture

the execution time is higher (+16% for 1.6GHz) as well as

the energy consumption is higher (+12% for 1.6GHz). The

difference between these two increased values leads to a

lower power consumption.

The program version implemented with aligned stores

produces a lower energy consumption than the storeu pro-

gram version for all architectures. However, the execution

time is nearly identical on the Haswell architecture and

lower on the other two architectures. This leads to a re-

duced power consumption of the store program version

on the Haswell architecture. Additionally, for the Skylake

architecture the store program version produces a constant

difference in energy consumption and execution time to the

storeu program version for higher frequencies. However, the

point at which the constancy is occurring is at 2.0GHz for

the energy consumption and at 2.7GHz for the execution

time. This leads to an inverse relation of the store program

version in Fig. 12 above 2.7GHz, for which the aligned

stores are more power and energy efficient.

VI. RELATED WORK

The energy and power efficiency is subject to different

research fields. Especially, in the field of multi-threaded,

parallel and distributed computing [3], [8], [9]. In our work

we isolate the effects of vectorization on energy efficiency

8
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and leave other techniques of parallel execution applicable

on top.

Lien et al. [10] investigate the energy efficiency of multi-

threaded vectorized programs. They use three different al-

gorithms for their work: FFTW, Matrix-Multiplication, and

blackscholes. They show that vectorization increases energy

efficiency, even more with additional multi-threading. For

our investigations we isolate the use of vectorization to

reason about the impact of different instructions used.

Caminal et al. present an energy efficiency study of

the ParVec Suite based on different vectorization strategies

[11]. They demonstrate the need for easy user guided

vectorization to reduce the energy consumption of program

executions. Their main focus is on the results of different

user guided vectorization techniques such as OmpSs and

Mercurium. The focus of our work is the investigation

of differences of vector instructions to create additional

knowledge for the use in such user guided vectorization

systems.

In [2] Kim et al. describe modifications of source code to

increase the performance properties of vectorized programs.

They specifically emphasize that the use of continuously

stored data elements is one of the key factors for efficient

vectorized programs. For this they extensively discuss the

use of Struct-of-Arrays instead of Array-of-Structs store

order. We considered their findings for creating our program

versions and focus on the influence of different instructions.

Hofmann et al. examine the influence on performance of

vector instructions with the RabbitCT benchmark in [12].

They demonstrate that the choice of instructions has an

influence on the performance of the program execution.

Their work examines the additional instructions introduced

by the AVX2 instruction set and Intel Xeon Phi instructions.

We extend this research by examining the performance and

energy efficiency for regular load/store instructions.

VII. CONCLUSION

In this article, the influence of different load and store

AVX instructions with different program versions of a

Gaussian elimination are investigated. The investigations

demonstrate that the choice of instructions influences the ex-

ecution time, energy and power consumption. The number of

issued AVX instructions may be different, depending on the

processor architecture and set of instructions implemented.

However, no influence of a different number of issued AVX

instructions on the performance or energy properties of the

program execution can be derived.

The processor development influences the properties of

different instructions, such as for the masked instructions

which are improved in the newer processors. The use of

streaming store instructions produces the worst behavior due

to the memory intensiveness of the Gaussian elimination.

Additionally, remainder loops can be vectorized without per-

formance or energy efficiency being negatively influenced.

Aligned load and store instructions produce the best results

in performance and energy consumption even if additional

elements are computed.

A next step in our research will be to identify the

root cause of the different number of instructions issued

presented in Sec. III. Additionally, the influence of data size

and cache usage can be examined with cache optimizations

of the basic program versions and comparisons with

established library implementations, such as in BLAS or

LAPACK.
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