
Smart Micro-scale Energy Management and Energy

Distribution in Decentralized Self-Powered

Networks Using Multi-Agent Systems

Stefan Bosse

University of Koblenz-Landau

Faculty Computer Science, Institute of Software Technology,

Koblenz, Germany

Email: sbosse@uni-bremen.de

Abstract—Energy distribution as a main part of energy
management in self-powered micro-scale networks like sensor
networks is a challenge with the goal to satisfy a safe and reliable
operational state on system and node level. Under the assumption
that nodes are arranged in mesh-like networks with links posing
the capability to transfer data and energy between nodes a self-
organizing Mulit-agent System based on divide-and-conquer is
deployed in this work successfully to distribute energy without
a system/world level model and knowledge of single nodes about
the system state. Different agent behaviour were investigated
and the emergence evaluated. An exploring help strategy with
energy deliver child agents showed the best and efficient overall
behaviour. Mobile agents were programmed in JavaScript using
the JavaScript Agent Platform that can be deployed in strong
heterogeneous environments.

I. INTRODUCTION

A
MONG energy supply and consumer networks on a

macro-scale level there are sensor networks with self-

powered sensor nodes consisting of an energy storage and

energy supply. Both classes of networks require distributed,

adaptive and self-organizing energy management to satisfy

(1) A balance of energy supply and energy consumption,

and (2) Operational stability on system level [1]. The en-

ergy management addressing the control of consumption and

production is basically a distributed resource sharing and

scheduling problem [2]. Sensor networks consists of nodes

optionally equipped with an energy harvester collecting energy

from the environment from different sources posing varying

availability that cannot be controlled, in contrast to macro-

scale energy sources (power engines, ..). Power management

and energy harvesting are central issues in sensor networks [3].

Additionally, self-powered nodes can be supplied by external

energy sources not directly attached to the node using other

nodes to transfer energy. Nodes in a sensor network can use

communication links to transfer energy, for example, optical

links are capable of transferring energy using Laser or LE

diodes in conjunction with photo diodes on the destination

side, with a data signal modulated on an energy supply signal.

Typically, energy management is performed by a central

controller on software level [1], with limited fault robustness

and the requirement of a well-known environment world

model for energy sources, sinks, and storage. In a centralized

approach, energy is only transferred on node level. With

a distributed approach, energy management in a network

involves the transfer of energy between node instances, too.

In [4], multi-agent systems (MAS) are used to perform energy

management (between sinks and sources) in a renewable

energy grid by solving a (global) optimization problem by the

MAS. In [1], a MAS performs energy distribution by a token-

based approach solving an optimization problem, too. In [5],

MAS based on the Belief-Desire-Intention architecture (BDI)

are deployed in distributed sensor networks to perform goal

and knowledge orientated energy management (but without

considering energy distribution). These examples pose the

benefit of agent-based systems solving energy management

and distribution in large-scale networks. Agents are already

deployed in industrial applications and the Industrial IoT [6].

We propose a smart energy management and distribution

approach for a broad range of applications ranging from micro-

scale sensor network architectures to large-scale energy net-

works with nodes supplied by 1. energy collected from a local

source (energy harvesting, [3]), and 2. by energy collected

from neighbour nodes using smart energy management (SEM)

and self-organization, based on early work investigating pri-

marily technological aspects in sensorial materials and agent-

on-chip hardware architectures [7]. For the sake of simplicity,

nodes are arranged in a n-dimensional grid with connections

to their direct neighbours, i.e., in a three-dimensional network

there exist up to six connections in directions North, South,

East, West, Up, and Down. It is assumed that the network

is irregular (missing nodes) and incomplete (missing links).

Each node can store collected energy and distribute energy to

neighbour nodes via communication links.

Each autonomous node provides communication, data pro-

cessing, and energy management. There is a focus on sin-

gle System-On-Chip (SoC) design satisfying low-power and

high miniaturization requirements addressing the micro-level

as well as macro-scale networks with power supplies and

consumers.

Energy management is performed 1. For the control of

local energy consumption, and 2. For collection and dis-

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 203–213

DOI: 10.15439/2018F282

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 203

tribution of energy by using the data links to transfer en-

ergy.

Considering strong heterogeneous networks and host plat-

forms with a loosely coupling of nodes arranged in grids the

distributed data processing is a challenge. Multi-agent systems

(MAS) poses a distributed computation and communication

model providing autonomy, self-organization, and group be-

haviour. MAS are already deployed in energy management

and energy distribution systems[8][9][1]. Most published MAS

perform negotiation between energy producer and consumer

under varying environmental, node and system level states.

The negotiation results effect and control energy production

and consumption. In contrast to public energy markets, self-

powered sensor networks do not provide such a control as

energy harvesting is strongly influenced by not controllable

environmental conditions (e.g., sun shine duration influencing

solar cell harvesting efficiency).

This work investigates and evaluate the emergence be-

haviour of self-organizing energy management agents that are

capable to transfer (virtually carry) energy between nodes of

networks and that are deployed in large-scale decentralized

energy supply and consumer networks under resources and

reliability constraints, e.g., self-powered sensor networks[10].

The desired emergence is the efficient improvement of the

energy distribution in such networks to satisfy operational

stability of the entire network on system level and in bounded

regions, i.e., avoiding nodes with too low energy being oper-

ational. Agents perform decision making based on actual and

past node energy, reward, and interaction with other agents.

The next sections introduce the underlying energy model

on node level, energy management and distribution, the MAS

and the agent processing platform (APP), finally used in an

evaluation of a large-scale network simulation.

II. ENERGY MODEL

There is no system level model in this work considering only

the node level energy. The total energy of a network node is

a balance of energy loss due to computation, communication,

and agent creation, and energy harvesting via energy delivery

by agents and local energy harvesters (power supplies). The

energy balance equation is shown in Eq. 1. and used through-

out this work.

Enode(t) = e0(t0)−
∑

kdecay(t)
−
∑

kcompτ(Aci)
−
∑

kcreateAgi(AC)
−
∑

kcommklinkσ(msgi)
+
∑

lconvllinkei,deliver +
∑

lconvhai

(1)

It is assumed that the time variable of the energy E is a

discrete variable with a time resolution between milliseconds

and seconds. The initial energy is e0 with a time-dependent

decay kdecay due to losses in the energy storage of a node.

The energy is reduced by agent activity Aci (with τ (Ac) as

the execution time of an agent activity scaled by a parameter

kcomp), agent creation Ag(AC) from class AC (can be ex-

pressed by a computational time, too). Communication further

requires energy and depends on the size of the messageσ(msg)

scaled with the parameter kcomm and the link specific energy

consumption given by the parameter klink . Finally, energy is

increased by agents delivering energy via the communication

links (amount can vary, and energy conversion losses are

covered by the parameter lconv and the loss of the link by llink)

and from local power sources (ha, again covering conversion

losses by the parameter lconv).

Nodes are classified by their energy deposit and operational

state:

1. A node with very low energy E<EAlarm, with

restricted node operation (only agents arriving with

energy are processed, only help emergency agents

are sent out).

2. A node with low energy E<EThres1, resulting in a

basically normal node operation but with execution

limits (number of agents, agent processing time,

agent creation, agent migration, agent class restric-

tions, increased barriers of processing negotiation).

3. A node with normal energy deposit E<EThres2 and

a normal node operation state with some resource

limitations. All agents are processed and the node

agent can create any type of energy agents.

4. A node with very high energy E>EAlarm, with

node operation being normal with only a few or no

resource limitations. All agents are processed and the

node agent will only create distribute energy agents

(if behaviour was enabled).

For the sake of simplicity a three-dimensional grid network

connecting spatial neighbour nodes is assumed, shown in Fig.

1. Connected nodes can exchange data and energy. The shown

example network consists of three layers (z-axis, levels) and

each layer consists of 5x8 nodes. Each node has any time t an

energy deposit 0>E(t)>Emax, illustrated in Fig. 1 by different

colors (blue: low energy, red: high energy).

Figure 1: Example of an energy distribution in a three-dimensional network.
Squares: Nodes (red color indicates enough node energy - good node - to
be operational, blue color indicates critical low energy capacity - bad node),
Circles: Agents, Lines: Communication and Energy links. The different z-
levels are connected by up- and down links.

204 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

III. ENERGY MANAGEMENT AND DISTRIBUTION

In this work mobile agents perform energy management

and distribution, discussed in detail in Sec. IV. The energy

management relies on three main principles:

A. Adaptive Routing

Agents are responsible to find an appropriate path between

a source and a distinct destination node by using adaptive

routing or by using data centric routing linking an information

(energy) supplier and an information (energy) sink.

B. Energy Transport

Mobile agents can carry energy tokens being able to be

transferred between nodes. An energy token is requested on

a node (granted or negotiated by the node agent) and can be

migrated to other nodes. Each time an agent arrives on a new

node it delivers its energy to the node energy deposit. If the

agent has to transport the energy token to another node the

agent has to collect the energy token again reduced by some

technical conversion losses, shown in Fig. 2. This approach is

reasonable with respect to a technical representation of energy

transfer in networks via communication links.

C. Negotiation

To avoid a high density of help and request agent popula-

tions on a specific neighbour node each help and request agent

places temporary markings on the node indicating energy

demand on this (good or very good) node (aka. synthetic

pheromones) by other nodes. These markings are placed in

the tuple space of the node and removed after a time-out

automatically. If a new help or request agents arrives on this

nodes and this node has a strong marking it will continue

traveling (help behaviour) or dies (request behaviour). Each

help and request agent negotiates energy demand with the node

agent via the tuple space (by accessing active tuples using the

evaluate operation and placed by the node agent using a listen

operation).

Node 1
Energy=

TS TS

TS

Node 2
Energy=

TS TS

TS

ENERGY-

ENERGY+

ENERGY-

ENERGY+

ENERGY+

HARVEST

ENERGY-ENERGY+

Figure 2: Energy transport by agents: Each time an agent carrying energy
tokens arrives at a new node the energy is stored in the node deposit and
a virtual energy tuple is stored in the tuple space. If the agent continues
travelling it has to collect the energy token again.

D. Energy Management

The following parameters are used for the dynamic energy

management (which can be changed at run-time) performed

by the MAS:

Energy Thresholds: EAlarm<EThres0<EThres1,

EDeposit

Energy Transfer Tokens: EReq,EDist

Efficiencies: kConv,kComm

Exploration Radius: rexpl
Agent Lifetime: τmax

Maximal hop-count: hmax

IV. MAS

The Multi-agent system (MAS) used for distributed energy

management and energy distribution consists of different agent

classes posing different behaviour and goals. Each network

node part of the distributed energy management system pro-

vides an agent processing platform (APP). At least one sta-

tionary (non-mobile) node agent is created on each node to

initialize the sensor processing and energy management. Based

on the current state of the node and the power history of the

node the node agent will create further energy management

agents, summarized in Tab. I. All other energy management

agents are mobile and can migrate (travel) along a path in the

network crossing multiple nodes.

The node management agent can choose different energy

management strategies: Help, request, and distribute. Depend-

ing on the operational and energy state of the node one or

multiple strategies are applied to improve the energy deposit.

The different behaviour of the energy management agent is

shown in the activity-transition diagram in Fig. 3. Different

parameters have an impact on each behaviour at run-time.

Each agent owns a set of body variables, e.g., a delta vector

indicating the position in the network, a charge and energy

variable for distributed energy management. Most central

parameters are the current position∆(relative to a source node)

and the energy deposit of the current node E that is retrieved

via the tuple space and provided by the node agent that

interacts with power components via a HAL of the physical

node. Energy agents are either created by the node agent (help,

request, distribute) or by already created energy agents (reply,

deliver).

Each agent can carry virtual energy as outlined in Sec. III.

Since agents are mobile they can transfer energy from a node

A to a new node B via the communication link (or any other

power link between these nodes) just by migration. The energy

transfer is handled by the APP on migration if thecharge agent

body variable holding a mobile energy token is greater than

zero. Before travelling the charge value is transferred to the

energy body variable of the agent to store the energy virtually.

After the arrival on a new node the value of theenergy variable

is transferred back to the charge variable. There are now two

possible cases: The agent delivers the energy finally on the

current node (technically the energy was already transferred

to the local energy storage), or it continues travelling and

transfers the energy again to the next node via links.

STEFAN BOSSE: SMART MICRO-SCALE ENERGY MANAGEMENT AND ENERGY DISTRIBUTION 205

Agent Class Behaviour

Node This stationary agent monitors the node

state and power history. It has to initi-

ate appropriate actions, i.e., creation of

energy request, help, or distribute agents.

The node agents has to asses the quality

of the SEM locally and can change SEM

strategies.

Request Point-to-point agent: This mobile agent

requests energy from a specific destination

node, returned with a Reply agent. If

the destination node cannot deliver energy

(bad node), the request agent dies without

a reply.

Reply Point-to-point agent: Mobile reply agent

created by a Request agent, which has

reached its destination node. This agent

carries energy from one node to another.

Help ROI agent: This mobile agent explores

a path starting with an initial direction

and searches a good node having enough

energy to satisfy the energy request from

a bad node. This agent resides on the final

good node (found by random walk within

a region) for a couple of times and creates

multiple deliver agents periodically in de-

pendence of the energy state of the current

node. If the current node is not suitable

anymore, it travels to another good node.

Deliver Path agent: This mobile agent carries en-

ergy from a good node to a bad node (re-

sponse to Help agent). Depending on se-

lected sub-behaviour (HELPONWAY), this

agent can supply bad nodes first, found

on the back path to the original requesting

node.

Distribute ROI agent: This mobile agent carries en-

ergy from the source node to the neigh-

bourhood and is instantiated on a good

node. It explores a path starting with an

initial direction and searches a bad nodes

to supply them with the energy from the

agent virtual energy deposit.

Table I: SEM agents with different behaviour used to manage and distribute
energy in bounded regions (ROI: region of interest) based on negotiation.

The movement of mobile agents are constrained by three

parameters: The maximal hop count, the maximal mobility

radius relative to the source node, and a maximal lifetime.

The constrained mobility ensures a relaxation and limitation

of the population of the MAS after a stimulus occurred, i.e.,

energy decrease or increase that can trigger the creation of

energy agents.

The request and distribute strategies are the most simple

ones that can be performed by bad and good nodes, respec-

tively. The help strategy is more advanced usually performed

by bad and very bad nodes. A variation of the help strategy

adds help-on-way behaviour performed by the deliver agents

to charge bad nodes on the way back to original requesting

bad node, too.

Agents perform decision making based primarily on the

node energy class (bad/good), but also on actual and past node

energy recording, reward and utility feedback for charging

their home node, and interaction with other agents.

V. AGENT PLATFORM

In this work agents are programmed and implemented

in JavaScript using the JavaScript Agent Machine platform

(JAM) and the AgentJS programming language used for the

implementation of the state-based reactive agents.

In the considered use-case scenario the MAS is deployed

in a large-scale strongly heterogeneous network environment,

which can be additionally extended with mobile devices. This

heterogeneous network requires a unified agent processing

platform (APP), which can be deployed on a wide variety

of host platforms, ranging from embedded devices, mobile

devices, to desktop and server computers. E.g., some mea-

suring stations are attached to buoy or installed on small

islands, equipped only with low-power low-resource com-

puters. To enable seamless integration of mobile MAS in

Web and Cloud environments, agents are implemented in

JavaScript(JS), executed by the JS Agent Machine (JAM),

implemented entirely in JS, too. JAM can be executed on

any JavaScript engine, including browser engines (Mozilla’s

SpiderMonkey), or from command line usingnode.js(based on

V8) or jxcore(V8 or SpiderMonkey), or a low-resource engine

JVM. The last three extend the JS engine with an event-

based (asynchronous using callback functions) IO system,

providing access of the local file system and providing Internet

access. But theseJS engines have high resource requirements

(memory), preventing the deployment of JAM on low-power

and low-resources embedded devices. For this reason,JVM was

invented. This engine is based on jerryscript and iot.js from

Samsung, discussed in [11]. JVM is a Bytecode engine that

compilesJS directly to Bytecode from a parsed AST. This

Bytecode can be stored in a file and loaded at run-time. JVM

is well suited for embedded and mobile systems, e.g., the

Raspberry PI Zero equipped with an ARM processor.JVM has

approximately 10 times lower memory requirement and start-

up time compared with nodes.js.

JAM consists of a set of modules, with the Agent Input

Output System (AIOS) module as the central agent API and

execution level. The deployment of agents in the Internet re-

quires an additional Distributed Organization Layer (DOS with

capability-based security). JAM is available as an embeddable

library (JAMLIB). The entire JAM and DOS application re-

quires about 600kB of compacted text code (500kB Bytecode),

and the JAMLIB requires about 400kB (300kB Bytecode),

which is small compared to other application programs and

commonly used Java-based platforms like JADE/AgentSpeak.

JVM+JAMLIB requires only 3 MB total RAM memory on

start-up.

206 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

∆, ∆*
DIR
DE

ENERGY E
CHARGE C
AGENT TYPE T
AGENT STATE S
AGE, HOPS

MAXLIFE, MAXHOPS
RANGE, E0, E1, E2

Interact Incoming

N:=MyNode()
E:=E*kε

N.E:=N.E+E

T

Percept/Request

S:=I AM HERE

Percept/Reply

S:=I AM HERE

Percept/Deliver

S:=I AM HERE
N.FLOW:=
 DirOfPos(-∆)::
 N.FLOW

Percept/Help

S:=I AM HERE
DX*:=DX*-DX
DY*:=DY*-DY

Percept/Help

S:=DYING
AGE:=0

Percept/Dsitribute

S:=I AM HERE

T

Action/Reply

S:=DYING
AGE:=0

Action/Help

S:=DYING

Action/Request

AGE:=AGE-1

Action/Request

S:=DYING
AGE:=0
Create(REPLY,
 ∆=-∆ *
 E=DE)

S:=DYING

Action/Deliver

S:=DYING
AGE:=0

AWAIT

Action/Help

AGE:=AGE-AGEBAD

Action/Help

AGE:=AGE-AGEGOOD
Create(DELIVER,
 ∆=-∆ *
 E=DE)

Action/Distribute

S:=DYING
AGE:=0

ROUTEDISCARD

PERCEPT

ACTION

S

S

otherwise

otherwise
S=DYING S=TRAVEL

otherwise

N.E+DEPOSIT>DE

otherwise

AGE<=0

T=HELP

AGE=0 |
N.QoS < THRES

otherwise

S=I AM HERE

T=DISTRIBUTE

N.E-DE>THRES

T=DELIVERT=REPLY

T=REQUEST

N.E<E1
 |

∆=0

T=DISTRIBUTE

∆=0 &
N.E+DEPOSIT<DE

N.E+DEPOSIT>DE

T=HELP

HELPONWAY & N.E<THRES
|

∆=0

∆=0∆=0

T=DELIVER T=REPLYT=REQUEST

Figure 3: Principle activity diagram of the Energy Agent behaviour. There are five different agent classes (or sub-classes of the energy management agent)
differing in their behaviour: Request, Reply, Help, Deliver, and Distribute.

STEFAN BOSSE: SMART MICRO-SCALE ENERGY MANAGEMENT AND ENERGY DISTRIBUTION 207

JAM is capable of handling thousands of agents per node,

supporting virtualization and resource management. JAM

agents can migrate between different (physical) node APPs

supporting true agent mobility with process snapshots preserv-

ing and embedding the entire agent state with low-resource

overhead. Depending on the usedJS VM, agent processes can

be executed with nearly native code speed. JAM provides

Machine Learning as a service that can be used by agents.

The agent only saves a learned model, but not the learner

code. Agent interaction and synchronization is provided by

exchanging data tuples stored in a tuple space on eachJAM

node.

The agent behaviour is modelled according to an Activity-

Transition Graph (ATG) model. The behaviour is composed

of different activities representing sub-goals of the agent, and

activities perform perception, computation, and inter-action

with the environment (other agents).

Agent interaction (communication) is performed by using

tuple spaces and mobile signals (point-to-point or point-to-

N messages). Using tuple spaces is a common approach for

agent communication, as proposed by[12], much simpler than

[13] proposed with AgentSpeak. The transition to another

activity depends on internal agent data (body variables). The

ATG is entirely programmed in JavaScript (AgentJS, see [14]

for details). The ATG can be modified by agents at run-

time enabling code morphing and optimization (behaviour

adaptation or sub-classing).

JAM agents are mobile, i.e., a snapshot of an agent process

containing the entire data an control state including the be-

haviour program, can migrate to another JAM platform. JAM

provides a broad variety of connectivity, available on a broad

range of host platforms. Although JAM is used in this work

as a simulation platform in the SeJAM simulator only, it is

ready to use in real-world networks and is capable to execute

thousands of agents. The SeJAM simulator is built on top

of a JAM node adding simulation control and visualization,

and can be included in a real-world closed-loop simulation

with real devices. Since JAM can be embedded in any host

application and its capability to be easily extended enables

the binding of JAM to low-level power management and

technical energy components (conversion, storage, transfer).

A hardware abstraction layer (HAL) enables the access of the

power components by agents completely via the tuple space

or by extended AIOS functions.

VI. SIMULATION AND EVALUATION

The simulation was carried out with the SeJAM simulator

and a three-dimensional grid network consisting of three z-

levels (layers), 8 rows, and 5 columns, as already shown in

Fig.1. Each node of the network is a virtual JAM instance con-

nected with up to six neighbouring nodes via serial links. Each

node is associated with a virtual energy storage and energy

harvester. The links are capable to transfer data and energy

as introduced. Each node is populated with at least one node

agent. An artificial world agent controls the simulation, per-

form monitoring, and reforms Monte Carlo simulation of the

energy harvesting, and the initial start condition with respect

to the initial energy deposit of each node. The randomized

energy distribution assign nodes with an initial energy storage

in the range [e1=50,e2=300](arb. energy units). Depending

on the energy threshold settings there is initially a fraction of

bad and very bad nodes about 20% of the total number of

120 nodes. In periodic intervals the nodes are charged with

randomized energy amounts in the interval [0,e∆=0.3].

Each simulation run consists of 3000 simulation steps (in

all considered cases the SEM converged either during this

simulation range or never).

A typical parameter set used by the MAS is shown below.

parameter:{
energy1:50, Energy range of nodes

energy2:300,

energyAlarm:50, e < eAlarm: Very Bad Node

energyThres0:100, e < eThres0: Bad Node

energyThres1:200, e > eThre1: Very Good Node

energyDeposit:50, Reservoir

energyRequest:50, Def. en. to requeste

energyDistribute:20, Def. en. to distribute

explorationRange:4,

maxLife: 4,

maxHops: 8,

Inhibit request/help agent send out

inhibitTime: 20,

Internal energy conversing efficiency

energyK: 0.95,

energyCommK: 0.8, Energy transfer efficiency

sem: [’help’], Energy management strategy

doHarvest:true,

harvest:0.3,

cpuK:0.3,

createK:3,

}

One important outcome of the simulation was the observa-

tion that the emergent behaviour on system level depends on

the starting condition of the network, i.e., the initial energy

distribution. That means the result of the MAS operation can

vary significantly under different situations discussed below.

Typical examples of the run and progress of different energy

management strategies with respect to the node classification

population (very bad, bad, good, very good) are shown in Fig.

5. Without SEM (not shown), there is commonly no change in

the network situation, i.e., the number of bad nodes (typically

about 20%) remains unchanged. Using SEM, the MAS is

capable to decrease the fraction of all bad nodes below 1%.

All three SEM strategies request, help, and help-on-way, show

a fast convergence and reaching of the goal to minimize bad

nodes but still preserving a high amount of good and very

good nodes. The help behaviour has the fastest convergence

time, usually eliminating all bad and very bad node states,

whereas the request behaviour has a slower convergence time.

The help-on-way behaviour can create a remaining fraction

of bad and very bad nodes and seems not be appropriate to

satisfy the system level goal.

208 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Typical variations of the run and progress of different

energy management strategies are shown in Fig. 6. The request

behaviour poses a lower stability in the final outcome of the

MAS than the help and help-on-way behaviour. Although help-

on-way seems to be more reliable, it tends to create very bad

node cluster as shown in Fig. 4.

Figure 4: Formation of isolated very bad node clusters

One important measure is the temporal development of

energy agents during a SEM run and the total number of

created energy agents (help, request, distribute, deliver, reply),

shown in Fig. 7. The help behaviour performs optimally (both

concerning the convergence time and the number of agents re-

quired). The help-on-way behaviour shows the aforementioned

instability and missing convergence.

Fig. 7 summarizes the evaluation of the impact of different

SEM agent parameters (parameter sets B-F). The parameter

sets are explained in App. A. Parameter sets B-E are used to

investigate the help MAS behaviour with different maximal

help agent life times (staying on a good node and sending

out deliver agents). Increasing the lifetime increases the to-

tal number of created energy agents without decreasing the

fraction of bad nodes significantly. A fraction about 4% still

remains (with large variations). But increasing the exploration

range and the maximal number of agent hops results always

(regardless of the initial start condition) in 0% bad nodes!

Finally, the energy efficiency of the MAS (defined as the

fraction of start+harvest energy/final energy) was analyzed and

is shown in the center plot of Fig. 8. All parameter sets show

a high efficiency between 87-92%.

The energy equation Eq. 1. is updated during simulation

about every 50 simulation step providing a sufficient smooth

change of E based on updated perception and energy harvest-

ing activities.

���M�����	
�

�

�
�
	
M�
�
�
�
rM
�
�
�

	
�

�

��

��

��

��

���

����M����rM���
	�
� ��� ����� ����� ����� ����� 	����

���M����

	

�
�
�
M
�
�
�
.M
�
�
��
�
�

�

��

��

��

��

���

����M���.M������
� ��� ����� ����� ����� ����� 	����

���M����	
��

�
�
�
�
�
M�
�
�
�
sM
�

��
�
�

�

��

��

��

��

���

����M����sM�
����
� ��� ����� ����� ����� ����� 	����

Figure 5: Typical examples of the run and progress of different energy
management strategies with respect to the node classification population.
(Top) SEM with RequestQ behaviour (Middle) Help behaviour (Bottom) Help
On Way behaviour [x-axis: simulation time in arbitrary units, y-axis: node
number]

STEFAN BOSSE: SMART MICRO-SCALE ENERGY MANAGEMENT AND ENERGY DISTRIBUTION 209

���M�����	
�

�

�
�
	
M�
�
��
rM
�
�
�

	
�

�

��

��

��

��

���

����M����rM���
	�
� ��� ����� ����� ����� ����� 	����

���M����

	

�
�
�
M
�
��
.M
�
�
��
�
�

�

��

��

��

��

���

����M���.M������
� ��� ����� ����� ����� ����� 	����

���M����	
��

�
�
�
�
�
M�
�
��
sM
�

��
�
�

�

��

��

��

��

���

����M����sM�
����
� ��� ����� ����� ����� ����� 	����

Figure 6: Typical variations of the run and progress of different energy
management strategies with respect to the node classification population.
(Top) SEM with RequestQ behaviour (Middle) Help behaviour (Bottom) Help
On Way behaviour [x-axis: simulation time in arbitrary units, y-axis: node
number]

���M�����	

�
�
�
�

�
M�

�
�

	
M�
�
�
�
aM
�
�
�

	
�

�

�

��

��

��

��

����M����aM���
	�
� ��� ����� ����� ����� ����� �����

���M����

�
	
�

�
�
M
�
�
	
�
�
M�
�

�
aM
�
	
��
�
�

�

�

��

��

��

��

����M��
�aM�	����
� ��� ����� ����� ����� ����� �����

���M����	
��

�

�
�
�

M�
�
�

�
�
M�
�
�
�
tM
�

��
�
�

�

�

��

��

��

��

����M����tM�
����
� ��� ����� ����� ����� ����� �����

Figure 7: Typical temporal energy agent populations of runs with different
energy management strategies. (Left) SEM with RequestQ behaviour (Center)
Help behaviour (Right) Help On Way behaviour [x-axis: simulation time in
arbitrary units, y-axis: agent number]

210 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

����l����	
l�	���

�
	
�
�
�
l�
�
��
.l
�
�
��

�

�

���

���

���

���

���

���������l���
� � 	
 �

����l����	
l�������

�
�
�
�
��
�

l�
r
�

��

��

��

��

���

���������l���
� � � 	

���d����d��	
�

�
�
�
d�
�
�
�
�
d�
�
	

�
d�
R
�

�

�

�

�

�

������	��d��	
� � � 	

Figure 8: Analysis of the impact of different parameter sets of the SEM
help behaviour. (Left) Total number of energy agents created (Center) Energy
Efficiency comparing start, harvested, and final energy sum on system level
(Right) Bad node ratio (before SEM/after SEM) [x-axis: parameter set, y-axis:
agent number, efficiency and bad node ratio in %]

VII. CONCLUSION AND OUTLOOK

Smart energy distribution in self-powered micro-scale net-

works like sensor networks is a challenge with the goal to

satisfy a safe and reliable operational state on system and

node level. Under the assumption that nodes are arranged

in mesh-like networks with links posing the capability to

transfer energy and data between nodes a self-organizing MAS

was deployed in this work successfully to distribute energy

without a system/world level model and knowledge of the

single nodes about the system state. Different agent behaviour

were investigated and evaluated. The exploratory help strategy

with deliver child agents showed the best and efficient overall

behaviour.

The agents were programmed in JavaScript using the

JavaScript Agent Machine Platform (JAM) that can be de-

ployed in strong heterogeneous environments on a wide range

of devices.

Among the agent behaviour already presented in this work,

the issue of rising very bad (non operable) node clusters

observed in the current MAS framework must be prevented.

One possible solution is directed diffusion propagation around

nodes giving energy away, i.e., an agent consuming and trans-

ferring energy from a node should trigger energy transfer in the

opposite delivery direction (away from the energy valley up

to energy hills). Furthermore, distributed supervised learning

can be used to improve the emergence of the entire network

and MAS on system level and on local region level. The used

JAM platform already supports agents with an extensive set

of learning algorithms posing mobile models that can migrate

with agents.

PARAMETER SETS

B={explorationRange:2, maxLife:1, maxHops:4,

inhibitTime: 20}

C={explorationRange:2, maxLife:2, maxHops:4,

inhibitTime: 20}

D={explorationRange:2, maxLife:4, maxHops:4,

inhibitTime: 20}

E={explorationRange:2, maxLife:8, maxHops:4,

inhibitTime: 20}

F={explorationRange:4, maxLife:4, maxHops:8,

inhibitTime: 20}

AGENT BEHAVIOUR

The following algorithms describe parts of the agent be-

haviour in AAPL short notation (details [15]) of node and

energy agents and their interaction using the tuple space.

The stationary node agent controls energy storage, harvesting,

and transfer on network nodes (with direct access to energy

devices). The mobile energy agent performs energy negotiation

and transport.

Notation: Ψ: Agent class, ϕ: Subclass, Σ: Agent body vari-

ables, α: Agent activity, Θ: Agent creation/destruction (+:cre-

ate, ×:destroy, →:fork), ∇: Tuple space access (+:out, -:inp,

%:rd, ±:listen, ∓:evaluate), ⇔: Agent migration, π: activity

transitions. Tuple listener receive tuples (with actual and

formal parameters) from a corresponing evaluate operation and

pass modifieded tuples to the evaluation request.

STEFAN BOSSE: SMART MICRO-SCALE ENERGY MANAGEMENT AND ENERGY DISTRIBUTION 211

Ψnode : options → {
Σ = { energy , energy thres∗, energyDeposit , .. }
αinit : {

• Agent asks for energy demand (+) or grant (−)
∇±(ENERGY ?, ?) → (∗, ask) {
energy < energyThres0

+ energyDeposit ?
• energy demand

ask ← energyThres1
− energy :

• energy grant

ask ← −(energy − energyThres0
− energyDeposit)

}
• Agent requests energy token

∇±(ENERGY−, ?) → (∗, con) {
energy > con − energyDeposit ?
energy ← energy − con,
consumed ← consumend + con ,
• conversion loss

con ← con ∗ energyK :
con ← 0

}
• Agent delivers energy token

∇±(ENERGY+, ?) → (∗, del) {
• conversion loss

del ← del ∗ energyK

energy ← energy + del

}
• Agent delivers energy token after migration

∇±(ENERGYC+, ?) → (∗, del) {
• conversion loss

del ← del ∗ energyCommK

energy ← energy + del

}
• Generic energy request

∇±(REQUEST , ?) → (∗, req) {
• Is this node good , very good , or bad?
energy < energyThres0

?
• bad node, needs energy
req ← 0 :
energy < energyThres1

?
• goog node : grant only half energy request !
req ← req / 2 :
• very good node : grant full request

}
}
}

Energy negotiation is peformed by different tuples (energy

tokens): ENERGY?, ENERGY-, ENERGY+, ENERGYC+, RE-

QUEST. Energy agents can replicate based on behaviour.

Ψenergy : options → {
Σ = { state, charge, energy, age, hops , ∆, age, .. }
αinit : {
state ← SEARCHING

charge?∇∓(ENERGY−, charge)→
(∗, ∗){charge ← 0}
}

route () → {
range? {

• Random walk behaviour

dir ← random([NORTH , SOUTH ,WEST , ..])
..
} : {

• Simple ∆routing

∆x > 0 ∧?Λ(EAST) ? ∆x - -,→ EAST

∆x < 0 ∧?Λ(WEST) ? ∆x ++,→WEST

∆y > 0 ∧?Λ(SOUTH) ? ∆y - -,→ SOUTH

..
}
}

αtravel : {
nextdir ← route()
¬ nextdir? Θ×(self)
charge?∇∓(ENERGY−, charge) →
(∗, req) { energy = req, charge = 0 }

hops ++, lastdir ← nextdir ,⇔ (nextdir)
}

αarrived : {
energy > 0?∇∓(ENERGYC+, energy)→
(∗, ∗) {charge ← energy , energy ← 0}

∆ = 0? state → IAMHERE

}

αterminate : { .. }
αwait : { .. }

ϕrequest : {
αpercept : {
∆ = 0 ∧ request?∇∓(REQUEST , request)→
(∗, x) {charge ← x}

}
αaction : {
charge? Θ→(type : REPLY , ∆ : −∆,

charge : charge, state : SEARCHING),
• Stay only if the requested charge was granted

charge ∗ 1.1 > request ? age - - : age ← 0
charge ← 0

}

π : {
percept → ∆ = 0 ? action : travel

action → age > 0 ? wait : terminate

}
}

ϕreply : {
αpercept : {∆ = 0? state → IMAHERE }
αaction : { }
π : {
percept → state = SEARCHING ? travel : terminate

action → percept

}
}

212 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

ϕdeliver : {
αpercept : {

• Help − on − way behaviour?
helponway?∇∓(ENERGY ?, ∗)→
(∗, req){ req > 0 ? charge ←

charge − charge/(range + 2) }
∆ = 0? state → IAMHERE

}
αaction : { .. }
π : {
percept → state = SEARCHING ? travel : terminate

action → percept

}
}

ϕhelp : {
αpercept : {
charge → 0, state → SEARCHING

∆ 6= 0 ?∇∓(ENERGY ?, ∗) → (∗, req)
{ req < 0 ∧−req > request?state → IAMHERE }
}
αaction : {
state = IAMHERE?
Θ→(
type : DELIVER, state : SEARCHING,
charge : request , energy : 0,
delta : −∆range : 0

)
age - -

}

π : {
percept → hops > maxhops ? terminate :

(state = SEARCHING ? travel : action)
action → age > 0 ? wait : terminate

}
}

ϕdistribute : {
αpercept : {
charge > 0 ?∇∓(ENERGY ?, ∗)→
(∗, req) {
req > charge ?

• Deliver all charge on this node

charge → 0, state → IAMHERE :
• Deliver charge requested from node

req > 0 ? charge → charge − req

}
}

αaction : { }
π : {
percept → action

action → state = SEARCHING ∧ hops < maxhops ?
travel : terminate

}
}
}

REFERENCES

[1] J. Lagorse, D. Paire, A. Miraoui, A multi-agent system for energy
management of distributed power sources , J. of Renewable
Energy, Vol. 35, Issue 1, 2010

[2] S. Ghani, M. Mousavi, and A. Movaghar, Distributed Algorithms
for Power Saving Optimization in Sensor Network , Proceedings
of the 8th WSEAS international conference on Data networks
communications computers, pp. 109 −115, 2009.

[3] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, Power manage-
ment in energy harvesting sensor networks , ACM Transactions
on Embedded Computing Systems, vol. 6, no. 4, p. 32-es, 2007.

[4] Z. Jun, L. Junfeng, W. Jie, and H. W. Ngan, A multi-agent solution
to energy management in hybrid renewable energy generation
system , Renewable Energy 36, vol. 36, pp. 1352-1363, 2011.

[5] G.M. P. O’Hare, D. Marsh, A. Ruzzelli, and R. Tynan, Agents
forWireless Sensor Network Power Management, in Parallel Pro-
cessing, 2005. ICPP 2005 Workshops. International Conference
Workshops on, 2005.

[6] P. Leito and S. Karnouskos, Industrial Agents Emerging Applica-
tions of Software Agents in Industry. Elsevier, 2015.

[7] S. Bosse, F. Kirchner, Smart Energy Management and Energy
Distribution in Decentralized Self-Powered Sensor Networks Us-
ing Artificial Intelligence Concepts , Proceedings of the Smart
Systems Integration Conference 2012, Session 4, Zürich, Schweiz,
21 − 22 Mar. 2012, 2012, ISBN: 978-3-8007-3423-8.

[8] E. Rokrok, M. Shaekhah, P. Siano, and J. P. S. Catalao, A Decen-
tralized Multi-Agent-Based Approach for Low Voltage Microgrid
Restoration , Energies, vol. 10, no. 1491, 2017.

[9] B. Zhao, M. Xue, X. Zhang, C. Wang, and J. Zhao, An MAS based
energy management system for a stand-alone microgrid at high
altitude , Applied Energy, vol. 143, 2015.

[10] S. Bosse, A. Lechleiter,Structural Health and Load Mon-
itoring with Material-embedded Sensor Networks and Self-
organizing Multi-agent Systems , Procedia Technology, 2014,
http://dx.doi.org/10.1016/j.protcy.2014.09.039

[11] E. Gavrin, S.J. Lee, R. Ayrapetyan, R., A.Shitov, (2015) Ultra
lightweight JavaScript engine for internet of things , in SPLASH
Companion 2015 Companion Proceedings of the 2015 ACM
SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, 2015, pp.
19-20

[12] L. Chunlina. , L. Zhengdinga., L. Layuanb. , Z. Shuzhia,. (2002)
A mobile agent platform based on tuple space coordination,
Advances in Engineering Software, vol. 33, no. 4, pp. 215−225.

[13] R.H. Bordini., J.F: Hübner. (2006) BDI agent programming in
AgentSpeak using Jason , Computational Logic in Multi-Agent
Systems, Volume 3900 of the series Lecture Notes in Computer
Science, Springer,, pp. 143-164.

[14] S. Bosse, Mobile Multi-Agent Systems for the Internet-of-Things
and Clouds using the JavaScript Agent Machine Platform and Ma-
chine Learning as a Service, in The IEEE 4th International Confer-
ence on Future Internet of Things and Cloud, 22-24 August 2016,
Vienna, Austria, 2016, http://dx.doi.org/10.1109/FiCloud.2016.43.

[15] S. Bosse, A. Lechleiter, A hybrid approach for Structural Moni-
toring with self-organizing multi-agent systems and inverse numer-
ical methods in material-embedded sensor networks, Mechatron-
ics, (2016), http://dx.doi.org/10.1016/j.mechatronics.2015.08.005

STEFAN BOSSE: SMART MICRO-SCALE ENERGY MANAGEMENT AND ENERGY DISTRIBUTION 213

