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Abstract—The selection of relevant features in large databases
is one of the most important and challenging problems in
data mining. Samples forming a given database are generally
described by a predefined set of features, and the situation where
not all such features can be used for classification purposes needs
very often to be faced in real applications. This situation is very
typical when the database is related to a phenomenon whose
characteristics are not well known. In this context, the extrac-
tion of relevant features can therefore also provide additional
information on the studied phenomena. We tackle the feature
selection problem from an optimization point of view, by reducing
it to the problem of finding a maximal consistent “clustering”
grouping together the samples and the features of the database.
In this work, we extend this approach to dynamical databases,
where features are not represented by only one real value, but
they are rather given as sequences of a predefined number of
real values. Our main contribution consists in proposing an

alternative representation of the database so that it fits with
a tridimensional matrix with no missing entries, from which a
consistent triclustering can be obtained.

I. INTRODUCTION

More and more attention is given nowadays to techniques

for mining data, because of the growing amount of information

that can be obtained from different resources and that needs

to be analyzed [11]. The main aim of such techniques is to

identify suitable partitions of a given set of data, where similar

data can be grouped together. Such partitions can in fact help

in finding important relationships in the original data. In some

applications, a subset exists for which a classification of the

data is already available; the classification associated to this

subset can therefore be exploited for learning how to classify

data for which a classification is not yet known. In this context,

our work aims at looking for optimal selections of the features

of a dataset in order to improve the quality of the performed

classifications.

Let S be a set of n samples, where every Si ∈S is represented

by an ordered set of m time-series Qi
j. The number m of time-

series per sample is fixed, whereas the length of every time-

series can vary. We suppose that a classification of the samples

Si of S, in a given number of classes, is available.

More formally, we suppose that every time-series Qi
j is a

sequence of ℓi real values qi
j,k, with k counting from 1 to

ℓi. The length of every time-series depends on the sample Si,

and, since all features of a sample are generally recorded at

the same time, we can suppose, without losing generality, that

ℓi is a constant for all time-series forming the same sample.

In brief, we have:

S= (S1,S2, . . . ,Sn) a set of samples,

Si = (Qi
1,Q

i
2, . . . ,Q

i
m) ordered set of time-series,

Qi
j = (qi

j,1,q
i
j,2, . . . ,q

i
j,ℓi
) time-series.

We consider the problem of selecting the subset of time-

series that can better describe the phenomena under study. To

this purpose, we propose a three-dimensional matrix represen-

tation of the original dataset S that is independent from the

length of the time-series, and look for a consistent clustering

in sub-matrices where the maximal number of time-series is

preserved. Our approach finds its inspiration and extends some

previous works (the reader is referred to [7] for a complete

description) where non-dynamical problems were considered

(every feature was represented by one real value per sample,

and not by a time-series).

This short paper is organized as follows. In Section II, we

will briefly recall previous works on static problems where the

matrix representation of S is possible with a two-dimensional

full matrix. In Section III, we will introduce our three-

dimensional matrix representation for datasets where features

are represented by time-series. In Section IV, we will propose

an extension of the approach recalled in Section II to the data

representation introduced in Section III. Finally, Section V

will discuss on how to create datasets of human motions to

be analyzed by the presented technique, and Section VI will

conclude the paper.

II. FEATURE SELECTION BY CONSISTENT BICLUSTERING

Feature selection is widely studied in the context of data

mining. In case the samples of a given dataset do not have

a temporal component, the feature selection problem can be

tackled by consistent biclustering [7], [9], [10]. This approach

works particularly well for problems where measurements

are available for every sample, and where the number of

features is generally larger than the number of samples in

the dataset. The aim, in fact, is to select only important and

relevant features from the dataset, whereas others may not be

adequate for describing the samples. This gives two immediate

consequences. First, if only pertinent features are used and all

others are rejected, the memory space necessary for storing

the data is optimized. Secondly, a strict relationship between
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samples and features can this way be identified, which may

reveal important information about the problem under study.

If a set of data contains n samples which are described by m

features, then the dataset can be represented by a m×n matrix

A , where the samples are organized column by column, and

the features are organized row by row. In this context, we refer

to a bicluster of A as a sub-matrix of A , whose elements are

a subset of samples and features. Equivalently, a bicluster can

be seen as a pair of subsets (Sr,Fr), where Sr is a class (or

cluster) of samples, and Fr is a class (or cluster) of features.

A biclustering [1] is a partition of A in p biclusters:

B= {(S1,F1),(S2,F2), . . . ,(Sp,Fp)},

such that the following conditions are satisfied:

p⋃

r=1

Sr ≡ A , Sζ ∩Sξ = /0 1 ≤ ζ 6= ξ ≤ p,

p⋃

r=1

Fr ≡ A , Fζ ∩Fξ = /0 1 ≤ ζ 6= ξ ≤ p,

where p ≤ min(n,m) is the number of biclusters.

If a classification for the samples of A is available, as well as

a classification for its features, a biclustering B can be trivially

constructed. Inversely, classifications of samples and features

can be obtained from B.

In some data mining applications, there exist sets of data

for which a classification of its samples is already given: we

say in this case that a training set is available. However, the

classification of the features used for describing the samples

is generally not known, or, equivalently, there is no biclus-

tering B associated to this training set. Therefore, no a priori

information about possible relationships between samples and

features is in general given.

A way to obtain a classification for the features from a

training set A is to assign each feature to the class where

it is “mostly expressed” (see [7] for a wider discussion).

This idea comes from the study of biclusterings related to

gene expression data [4], but it can be applied as well to

problems arising in other fields (see for example [8]). Once

a classification for the features is obtained, a biclustering B

for A can be computed by simply applying the definition of

biclustering. If the found biclustering is consistent (in the sense

given in [7] for the bidimensional case, the reader is referred

to Section IV for additional details), then the selected features

are most likely the ones that better describe the samples. In

this work, this approach is extended in Section IV to consistent

triclusterings.

The feature selection problem can subsequently be formu-

lated as a 0–1 linear fractional optimization problem, which

was proved to be NP-hard [5]. We consider a bilevel reformu-

lation of this optimization problem, whose inner problem is

linear. For its solution, we employ a heuristic that is based on

the meta-heuristic Variable Neighborhood Search (VNS) [3]

where, at each iteration, the inner problem is solved exactly.

III. CONSTRUCTING 3D COMPARISON MATRICES

As stated in the Introduction, our focus in this work is

on datasets whose samples Si are described by a predefined

number of time-series Qi
j. As in the previous works on

consistent biclustering, it is supposed that, for every sample

Si, the same number of time-series Qi
j are available. Moreover,

every pair of time-series QA
j and QB

j , sharing the same index

j but belonging to two different samples, must be related

to the same kind of information (e.g. we cannot compare

angle variations with the concentration level of a chemical

compound). These requirements, which basically ensure that

the matrix representation of the biclustering has no missing

entries in dimension 2, does not imply a similar property when

working with time-series and clustering in 3D. In fact, while

the number of samples and the number of features are two

constants of the problem (the first two dimensions), the number

of elements ℓi forming a time-series depends on the sample Si.

Therefore, the corresponding three-dimensional matrix may, in

general, have missing entries. Moreover, elements qi
j,k sharing

the same index k may have no relationship (whereas common

index i means “same sample”, and common index j means

“same time-series”, or equivalently “same feature”).

Consider two samples A and B, and two homologous time-

series QA
j and QB

j :

(qA
j,1,q

A
j,2, . . . ,q

A
j,ℓA

), (qB
j,1,q

B
j,2, . . . ,q

B
j,ℓB

).

In order to obtain a coherent three-dimensional matrix rep-

resentation, we construct a new matrix where the entries

represent comparison scores between pairs of time-series Qi
j.

We consider Dynamic Time Warping (DTW) for a global

and temporal alignment of every pair of time-series (see for

example [12]). Together with DTW, we also consider the

more recent Correlation DTW (CoDTW) [2], which is able to

perform better quality alignments in more difficult situations.

From the original dataset S, we can therefore compute a full

three-dimensional matrix consisting of DTW scores between

pairs of samples A and B, for a given feature j:

DTW(A,B; j).

A graphical representation of this three-dimensional matrix is

given in Fig. 1.

The rows of such a matrix (as well as its columns) contain

all (Co)DTW values of one sample Si in comparison with all

the others, for a fixed set of homologous time-series. For this

reason, it is reasonable to represent a sample Si with either

a row or a column of such a matrix. This three-dimensional

matrix is the result of extending this sample representation to

all sets of homologous time-series.

IV. CONSISTENT TRICLUSTERING

The matrix representation of the original dataset S that we

propose consists of all scores obtained from the time-series

comparisons (see previous section). Let DTW be the n×n×m

matrix containing all such scores. Once the binary vector x is
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Fig. 1. Score comparison matrix obtained from the original dataset S.

defined over the index set {1,2, . . . ,m} so that

x j =

{

1 if the feature j is selected

0 otherwise,

we can define the sub-matrix DTW[x] obtained by removing

from the matrix DTW all features j such that x j = 0.

We suppose that a classification CS for the samples of S in

p classes is already available. Let CS(r), with r ∈ {1,2, . . . , p},

indicate the subset of samples belonging to rth class, and

let sAr be a binary parameter indicating whether the sample

SA belongs to the class of samples r. A classification CF

for the homologous sets of time-series can be identified by

applying the following rule. For a fixed r̂ ∈ {1,2, . . . , p}, the

homologous set indexed by j ∈ {1,2, . . . ,m} is assigned to the

r̂th class if, and only if, by definition:

∀ξ ∈ {1,2, . . . , p}|ξ 6= r̂,

∑
A,B∈CS(r̂) |A 6=B

DTW(A,B; j)

|CS(r̂)|
< ∑

A,B∈CS(ξ) |A 6=B

DTW(A,B; j)

|CS(ξ)|
.

We suppose working on datasets for which the equation

above cannot be satisfied with the equality, otherwise the

classification of the features would not be unique.

Let f jr be a binary parameter indicating whether the time-

series with index j belongs to the class of features r. A

triclustering of DTW[x] is consistent if

∀r̂,ξ ∈ {1, ..., p}, r̂ 6= ξ,∀A,B ∈CS(r̂),A 6= B
m

∑
j=1

DTW (A,B, j) f jr̂x j

m

∑
j=1

f jr̂x j

<

m

∑
j=1

DTW (A,B, j) f jξx j

m

∑
j=1

f jξx j

.
(1)

It is important to remark that the matrix DTW does not

admit, in general, a consistent triclustering if all features are

considered. Notice that, differently from the previous works,

we are interested here in the less expressed scores, because

they correspond to time-series showing higher similarities.

The problem of selecting the relevant features by consistent

triclustering can be stated as follows:

max
x

(

f (x) =
m

∑
j=1

x j

)

subject to ∀r̂,ξ ∈ {1, ..., p}, r̂ 6= ξ,∀A,B ∈CS(r̂),A 6= B
m

∑
j=1

DTW (A,B, j) f jr̂x j

m

∑
j=1

f jr̂x j

<

m

∑
j=1

DTW (A,B, j) f jξx j

m

∑
j=1

f jξx j

.

(2)

As already pointed out, we consider the bilevel reformula-

tion proposed in [7], and we solve the problem by employing

a VNS-based heuristic. To perform such a reformulation, we

transform the denominators of the optimization problem con-

straints (see equ.(2)) into continuous variables yr,r = 1, ..., p,

where yr represents the number of selected features in the

feature class CF(r):

∀r ∈ {1, ..., p} , yr =
m

∑
j=1

f jrx j.

Using the newly introduced variables, the constraint in the

original optimization problem can be rewritten by replacing
m

∑
j=1

f jr̂x j and
m

∑
j=1

f jξx j by yr̄ and yξ, respectively. We normalize

the values:

yr =

m

∑
j=1

f jrx j

m
,

so that the following constraint is satisfied:

p

∑
r=1

yr ≤ 1.

Our bilevel program is therefore:

outer pb



















































min
y

(

g(x,y) =
p

∑
r=1

[

(1− yr)+
p

∑
ξ=1:ξ6=r

c(x,r,ξ)
])

subject to

inner pb







x = argmax
x

(

f (x) =
m

∑
j=1

x j

)

subject to consistency constraint (1)
p

∑
r=1

yr ≤ 1,

where c(x, r̂,ξ) is

∑
j∈CS(r̂)

∣

∣

∣

∣

∣

∣

∣

∣

m

∑
j=1

DTW (A,B, j) f jr̂x j

m

∑
j=1

f jr̂x j

−

m

∑
j=1

DTW (A,B, j) f jξx j

m

∑
j=1

f jξx j

∣

∣

∣

∣

∣

∣

∣

∣

+

,

with | · |+ denoting the function that returns its argument if

positive, and 0 otherwise. Hence, c(x, r̂,ξ) is strictly positive

if and only if at least one constraint is not satisfied.
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Fig. 2. A graphical representation of some newly introduced features aiming
at measuring the symmetries in the movements (see distance sets represented
by the red arrows).

V. CREATING A DATASET OF HUMAN MOTIONS

Motion capture makes it possible to track human movements

over time. Markers are generally placed on the body surface

of an actor, from which main bones and joint positions of

the corresponding skeletal structure, over time, are derived. In

general, absolute positions, together with bone rotation angles,

are given for every frame of the motion capture (see skeletal

representation in Fig. 2, in blue). The data are often stored in

a specific format named BVH (BioVision Hierarchy), where

joints and bones representing the actor are organized in a

hierarchical way.

By collecting a certain number of captured human motions

in BVH format, we can define a dataset of motions having

particular properties (e.g. all motions are related to a certain

human movement, but performed by different classes of hu-

mans, such as experts and novices, or male and female). This

dataset can serve as a basis for our analyses, but it needs to

be manipulated before its effective use.

In fact, the position of each skeleton joint in space may not

give very useful information about the movements. Therefore,

we propose to enrich the dataset with additional information

as follows. For every motion, together with some information

related to rotation angles between body parts (which can be

easily extracted from BVH files), we also consider relative

distances between joint pairs. Some recent studies, in fact,

have shown that relative distances can play an important

role in the representation of human motions [6]. As Fig. 2

shows, subset of distances can provide information about the

symmetry of the movements. All these additional features are

represented by time-series.

We have performed some very preliminary experiments

where some relevant features were extracted from a so-

constructed dataset of human motions (walking motions, with

male and female actors) by using our optimization-based

approach for feature selection by consistent triclustering. For

lack of space, we cannot include any of them in this short

paper. As for a future work, we will create a larger collection

of motion datasets, having various properties, and we will use

them to validate the theory presented in this paper.

VI. CONCLUSIONS

We extended an optimization-based approach to feature

selection to datasets containing dynamical data. To do so,

we proposed an alternative matrix representation of the data,

where the original time-series are replaced by similarity scores.

This made it possible to extend a previous approach for

consistent biclustering to our new three-dimensional matrix

representation.

Future works will be aimed at performing supervised clas-

sifications by exploiting the information that can be derived

from obtained consistent triclusterings. Moreover, we plan to

extend this approach to fuzzy sets, so that samples and features

can actually belong to more than one class. It is our opinion

that this would help better describing real phenomena, such

as human motions.
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