
Abstract—Behavior of UML state machines can be a source

of interpretation problems in model to code transformation.

Different solutions to the semantic variants could be defined as

a special kind of mutations, similarly as in the mutation testing.

State machines together with class models can be a source of an

Model-Driven Software Development process aimed at building

an executable application. We have compared several

approaches to creating applications based on models in which

semantic mutation operators of state machine behavior are

used. The most promising approach has been utilized to extend

the Framework for eXecutable UML (FXU) with semantic

mutation facilities. The framework supports code generation

from UML classes and their state machines as well as

developing C# applications according to selected mutations of

state machine behavior. The tool has been used in evaluation of

a case study.

I. INTRODUCTION

UTOMATIC code generation in Model Driven Soft-

ware Development (MDSD) can be based not only on

structural models, like UML classes, but also on behavioral

models, e.g. state machines [1]. One of the obstacles is not

sufficient support for generation and verification of applica-

tions of this kind.

A

Mutation testing is used for evaluation of test suites and

generation high-quality tests [2]. Syntactic changes injected

into a source code are supposed to be detected by test cases.

Modified programs, so-called mutants, are run against tests.

An abnormal program behavior confirms ability of the tests

to detect the type of faults introduced by mutation opera-

tors during mutant generation.

Mutation testing approach has been extended for different

software artefacts to be mutated and tested in a software de-

velopment life cycle. A mutated source can be a model or

specification [3], including state machines [4], [5]. A special

kind of mutation testing is focused not on syntactical

changes of an input, i.e. code, model, or another artefact, but

on changes in its semantic or other implementation features

[5]-[7].

In this paper we focus of different architectural ap-

proaches to combine semantic mutation of state machines

into an MDSD process. It is assumed that an executable ap-

plication is created based on UML classes and hierarchical

state machine models [8]. The final code project is built with

all necessary library notions, so the target application can be

run as any other general–purpose application in a standard

environment. The developed application should reflect sys-

tem requirements that are specified in the input models,

therefore the final testing is performed at application level,

and not at model level.

Presentation of this idea and possibility of its realization

is the main contribution of the paper. We compare different

approaches to performing such semantic mutation in regard

to their applicability in practice and complexity of realiza-

tion (Sec. III). Complexity analysis of the approaches helps

to select the best one which has been implemented in FXU –

a tool that supports MDSD from UML classes and their be-

havioral state machines with the target to C# applications

(Sec. IV). Therefore, we have also shown how the semantic

mutation testing can be practically combined into an MDSD

process. To the best of our knowledge it is the first imple-

mentation of such mutation approach.

II.RELATED WORK

The main background of this work originate from areas of

code generation from state machines, interpretation of state

machine behavior, and mutation testing.

UML model to code transformation based on class mod-

els can be extended with state machine models [1]. Tools

that support this usually respect only a subset of notions,

omitting complex concurrency issues. Some solutions that

apply comprehensive set of state machine concepts do not

support C#, apart from FXU [8].

The UML specification has included some semantic vari-

ation points, in particular concerning behavior of state ma-

chines. They should be resolved in different ways while a

model has to be interpreted or a model-based application ex-

ecuted. In most of implemented solutions, there are different

resolutions of behavioral interpretation problems, often

without precise statements about selections taken.

Mutation testing approach has been used to applications

in different programing languages [2], including C# [9].

This idea was also used to mutate UML models, e.g. class

Approaches to Semantic Mutation of Behavioral State Machines in

Model-Driven Software Development

Anna Derezińska
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/16, 00-665 Warsaw Poland

Email: A.Derezinska@ii.pw.edu.pl

Łukasz Zaremba
Warsaw University of Technology

Institute of Computer Science

Nowowiejska 15/16, 00-665 Warsaw Poland

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 863–866

DOI: 10.15439/2018F313

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 863

models [3], or automata-based models, mainly dealing with

syntactical changes of diagrams [4].

Behavioral models, including state machines, have been

also considered as an object of semantic mutation [6], in

some variants called also an implementation mutation [4],

[5]. In this kind of mutation there are no changes introduced

into a model graph structure, but different semantic interpre-

tations are considered [7].

III. DIFFERENT APPROACHES TO COMBINING SEMANTIC

MUTATION OF STATE MACHINES INTO MDSD

In a model-based process of software development muta-

tion testing can be used at different levels, applied to various

software artefacts, and with evaluation of effects in different

process stages. Realizations of mutation of model semantics

can be classified into three main types [6]:

1) Simulation/interpretation of a model with different param-

eters mimicking semantic variants.

2) Semantic expressed in a set of configurable rules that is

combined in an executable model or a target application.

3) Imitation of semantic mutations using syntactic changes

of elements in a model or in a code.

In this paper we focus on approaches that belong to the

second realization type, discuss mutating of input model se-

mantic, but testing the final code application.

A. Categories and Strategies of Mutation Operators

The following general mutation categories which refer to

elements mutated in MDSD can be distinguished:

A) design or construction mutation

B) semantic mutation

C) semantic consequence-oriented mutation

The first category includes typical mutation testing de-

fined for programming languages, as well as modifications

of input models. However, in this paper we do not deal with

this category.

Semantic faults can be imitated by semantic mutation, or

semantic consequence-oriented mutation, or such structural

mutations that reproduce semantic faults [5]. In comparison

to design mutation, semantic mutations do not modify an in-

termediate source form of a model or code but apply another

interpretation of it. Transformation rules from a source to an

intermediate form are modified.

The third mutation category is associated with realization

of a given meaning of modelled programming concepts.

System realization consistent to a given semantic determines

a final system behavior. However, according to a semantic,

behavior of a system or its part can be nondeterministic.

This mutation category is aimed at imitation of different be-

havioral combinations.

This kind of mutation was considered as implementation-

oriented mutation [5] specified in the context of the Harel

statecharts. However, an approach to realization of such mu-

tations proposed in this paper is different to those from Tra-

chtenbrot [5]. The details of the semantic operators are be-

yond the scope of this paper and will be published in [10].

A mutation operator could be applied in many places of a

program, but in the first order mutation, code is changed in

one place per one mutant [2]. In general, the number of gen-

erated mutants will be denoted as MN, and equal to:

(1)

where N is a number of operators and OPi is the number of

program places in which the i-th operator can be applied.

Considering behavior variants, we generally assume that

only one operator is applied. However, the application of

such operators can be mutually dependent. It means, for ex-

ample, that only after operator OPx had been selected, a vari-

ant determined by another operator OPy could be used. Tak-

ing into account such dependency of operators, the final mu-

tant can still be counted as a first order mutant under appli-

cation of a composite operator OPxOPy.

A model usually includes many state machines, thus the

same operator could be used to one or many state machines

at the same time. Hence two strategies could be considered:

1) all state machines, i.e. the same mutation operator

refers to all state machines in a model to be transformed,

2) one or selected state machines, i.e. only selected state

machines (usually one) have different behavior determined

by the operator.

In the first strategy, the number of generated mutants de-

pends linearly on the number of operators and is lower than

in the second approach. The interpretation of the behavior is

also simpler. The latter strategy could result in higher num-

ber of mutants, especially for complex systems with many

state machines. The number of all possible mutants is of or-

der of N*K where N is a number of mutation operators and

K is the number of state machines.

B. Approach I – Multiple Code Generation

This is a simple approach based on a straightforward cre-

ation of code in a MDSD process. For each mutant, i.e. for a

pair <model, semantic>, a separate process towards a target

application will be performed. A result of the transformation

would be a code that implements model with the semantic.

The application code might be slightly different for each

mutant. Each mutant has its own code project and requires

to be compiled.

The main process metrics are summarized in Table I. Ap-

proach I is simple and independent of a code generator, but

have many disadvantages. The new code has to be written in

each mutant while a method body is supplemented. More-

over, it could be repeated before adjusting a mutant to any

test run. Therefore, the approach could be used for a quick

verification of a semantic mutation operator, but it not con-

venient for the mutation testing in MDSD.

C. Approach II – Multiple Libraries

Drawbacks of the first approach imply that mutation test-

ing process should be independent from model-to-code

transformation and from supplementing of the generated

code. This idea has already been partially supported if we

864 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

separate code generation and run-time libraries, where the li-

brary deliver the semantic of state machines.

The rules of a state machine behavior could be encapsu-

lated in a library, therefore we could mutate the library and

not a generated code that could be independent. Model

transformation and code supplementing would belong to one

process which is independent from the mutation testing

process. The model to code transformation is performed

only once, and we could also extend some code one time, if

necessary. In dependence of a selected mutation, an appro-

priate library could be chosen and used to build the final tar-

get application.

The main drawback of this approach is necessity to main-

tain many versions of the library (Table I). The number of

versions is equal to the product of supported mutation opera-

tors and their possible interpretations. Hence, the complexity

rises up quite fast.

D. Approach III – Mutants with Common Base

This approach extends the library with different variants

of classes that represent various concepts of state machine.

The whole idea is similar to the Strategy design pattern.

Each class implements a single interface that corresponds to

one state machine notion. All classes are gathered into one

library that could be added to a final application. Based on

an input model and selected mutation operators, multiple

classes are created for each state machine.

A base class specifying behavior is generated for each

model class that has its state machine. This base class could

include methods originated from the model class as well as

additional methods for initialization of the state machine of

a default semantic. Moreover, for each mutant a class de-

rived from the base class is created. Each such inherited

class redefines methods for initialization of the state ma-

chine corresponding to the semantic of a given mutant.

If a method body is supplemented in the generated code,

it can be done once in the base class. Creation of an exe-

cutable application requires one compilation of all mutants

together. Tests should be defined for a base class in order to

be run for all generated mutants.

An advantage of this approach is a single implementation

of additional code. Selection of mutation operators in exper-

iment iterations, i.e. updating a variant, could be realized by

substitution of a constructor in the generated mutant code

that would require changing in the code generator, which is

not a flexible solution.

E. Approach IV – Configurable Library

In the fourth approach we combine advantages of ap-

proaches II and III. Considering a set of mutants, we can use

a pair <model, a set of semantics> instead of a set of pairs

<model, semantic>. Moreover, the source code generated

from a model is explicitly separated from the library code.

The generated code can use the library only by dedicated in-

terfaces, placed in an additional intermediate layer. The gen-

erated code does not depend on the library classes that im-

plement those interfaces.

In result, one version of code is generated for each state

machine of a model. It would be used in an original applica-

tion and a mutated one. Therefore, supplementing of a

method code body is performed only once. We need also

only one compilation of the application.

Furthermore, mutation testing process uses one consistent

run-time library. Consequently, maintenance and extending

of the semantic mutation operators would be uncomplicated.

In a single mutant, various state machines can be executed

according to different semantic variants, if desired.

This approach has many advantages, but creating of ob-

jects of state machines could take more time due to reflec-

tion mechanism used in the intermediate layer. On the other

hand, this activity is performed only once during the live

time of an object that includes a state machine.

F. Comparison of Approaches

The approaches are summarized in Table I. We have

compared some relevant metrics of the process and product

complexity. Only in the first primitive approach we have to

build many code projects (row 1) and supplement the same

code in many applications (row 5). In other cases one

project is used for all mutants regardless of the number of

operators and the number of their interpretations.

When multiple variants are introduced into libraries, only

one class in the source code corresponds to one model class

(row 2). The second approach requires many libraries (row

3), while the others can use a single one. An important time

overhead is associated with multiple compilation, which is

necessary for two first approaches only (row 4).

Summing up quantitative data in the upper part of the Ta-

ble (rows 1-5), we can conclude that the fourth approach has

the lowest complexity (1 in all metrics).

The bottom part of the Table assesses the mutation testing

process flexibility and extensibility. Here, also the last ap-

proach would be the most beneficial. Iterative mutation test-

ing can be easily performed, and new semantic mutation

ideas could be easily introduced.

IV. REALIZATION OF SEMANTIC MUTATION WITH FXU

Framework for eXecutable UML (FXU) creates exe-

cutable C# from UML models [8]. It was the first tool that

supported transformation of state machines to C#, and still

belongs to comprehensive tools that covers all notions of be-

havioral state machines, with complex, orthogonal states,

different pseudostates, also history, etc. [1]. The FXU Gen-

erator transforms UML classes and their state machines into

C# code. The FXU Library contains implementation of all

state machine concepts. The final application is built as a

project including the generated code and the library.

Basing on the analytic evaluation of the approaches, FXU

has been extended to support semantic mutation of state ma-

chines using the fourth approach - configurable library. Both

strategies, all-state machines and one selected state machine,

have been implemented. The reconfigured FXU Library pro-

vides versatility of state machine semantic mutation opera-

ANNA DEREZIŃSKA, ŁUKASZ ZAREMBA: APPROACHES TO SEMANTIC MUTATION OF BEHAVIORAL STATE MACHINES 865

tors, including semantic mutations and semantic conse-

quence-oriented mutations (Sec III).

Evaluation of the mutation testing process with the ex-

tended FXU has been performed on a case study used in the

previous MDD experiments [11]. It referred to modeling of

a presence server in a social network. Here, we have focused

on the application verification, showing different application

alternatives reflecting activities consistent with various se-

mantic variants of UML state machines.

A set of unit tests for the application was developed. The

test project was supplemented with a configuration file of

state machine semantic. The tests followed two schemata, in

which (i) we checked a correctness of only one class and its

behavior specified by its state machine, or (ii) a whole sub-

system was verified. An example of the latter case could be

servicing of a data publishing request. It was verified if a

valid status was set in appropriate places. In case of tests

that check one class and one state machine, semantic for the

whole was mutated. In case of subsystem tests, two types of

mutants were configured. (A) All state machines behaved

according to the same semantic variant within the same test

run. (B) Different state machines of the involved classes

used various semantic variants within the same test run.

All tests were run against the created mutants and posi-

tively evaluated in the environment. The behavior of the

mutants corresponded to expectations given in the input

models and semantic variants.

V. CONCLUSION

Different approaches to introducing semantic mutation of

state machines have been compared. The best solution in

terms of complexity and flexibility has been implemented in

the FXU, the framework transforming class and state ma-

chine models into C# applications. While using this tool

support selected behavioral variants to state machines were

accomplished and verified in mutation testing experiments.

REFERENCES

[1] E. Dominguez, B. Perez, A.L. Rubio, and M.A. Zapata, “A systematic

review of code generation proposals from state machine

specifications,” Information & Software Technology, 54, no. 10, 2012,

pp. 1045-1066. http://dx.doi.org/10.1016/j.infsof.2012.04.008

[2] M. Harman and Y. Jia, “An analysis and survey of the development of

mutation testing,” IEEE Transactions Software Engineering, vol. 37,

no. 5, 2011, pp. 649-678, http://dx.doi.org/10.1109/TSE.2010.62

[3] A. Derezińska, “Object-oriented mutation to assess the quality of

tests,” in Proc. of the 29th Euromicro Conf., IEEE Comp. Society,

Los Alamitos, California, 2003, pp. 417-420. htpp://dx.doi.org/

10.1109/EURMIC.2003.1231626

[4] M. Trakhtenbrot, “New mutation for evaluation of specification and

implementation levels of adequacy in testing of statecharts models,” in

Proc. of the 3rd Workshop on Mutation Analysis (MUTATION'07),

Windsor, 2007, pp. 151-160. http://dx.doi.org/10.1109/TAIC.PART.

2007.23.

[5] M. Trakhtenbrot, "Implementation-oriented mutation testing of state-

chart models", Proc. 3rd Int'l. Conf. on Software Testing, Verification,

and Validation Workshops, Paris, 6-9 April 2010, pp.120-125. http://

dx.doi.org 10.1109/ICSTW.2010.55

[6] J.A. Clark, H. Dan, and R.M. Hierons, “Semantic mutation testing,” in

Science of Computer Programming, no. 78 pp. 345-363, 2013. http://

dx.doi:10.1016/j.scico.2011.03.011

[7] M. Trakhtenbrot, “Mutation patterns for temporal requirements of re-

active systems,” in Proc. of 10th IEEE Intern. Conf. on Software Test-

ing, Verification and Validation Workshops, 2017, pp. 116-121. http://

dx.doi.org 10.1109/ICSTW.2017.27

[8] A. Derezińska and R. Pilitowski, “Realization of UML class and state

machine models in the C# Code Generation and Execution Frame-

work,” Informatica vol. 33, no 4, pp. 431-440, Nov. 2009.

[9] A. Derezińska and A. Szustek, "Object-Oriented Testing Capabilities

and Performance Evaluation of the C# Mutation System," in Proc. 4th

IFIP TC2 Central and Eastern European Conference on Software En-

gineering Techniques CEE-SET 2009, LNCS, vol. 7054, pp. 229-242,

Springer, 2012. http://dx.doi.org/:10.1007/978-3-642-28038-2_18

[10] A. Derezińska, “Mutating state machine behavior”, unpublished.

[11] A. Derezińska, M. Szczykulski, "Towards C# application development

using UML state machines – a case study," in Emerging Trends in

Computing, Informatics, System Sciences, and Engineering, T. Sobh,

K. Elleithy, Eds. LNEE vol. 151, Springer, 2013, pp. 793-803, htpp://

dx.doi.org /10.1007/978-1-4614-3558-7_68

TABLE I.

COMPARISON OF APPROACHES I-IV (MN – NUMBER OF MUTANTS)

Metric I II III IV

1 Number of generated

projects

MN 1 1 1

2 Number of code classes

originated from a model class

which has its state machine

MN (one

in a

project)

1 MN

+1

1

3 Number of run-time libraries 1 MN 1 1

4 Number of compilation runs MN MN 1 1

5 Number of spots where the

same code is placed in

project(s)

MN 1 1 1

6 Mutant creation process

independent of code

generation

No Yes No Yes

7 Separate compilation needed

to create any executable

mutant

Yes Yes Yes No

8 Easy extensibility with other

semantic mutations

High Med

ium

Med

ium

High

9 Difficulty in performing an

iterative mutation testing

Low High Med

ium

Low

866 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

