
The Practical Use of Problem Encoding Allowing

Cheap Fitness Computation of Mutated Individuals

Michal Przewozniczek

Department of Computational Intelligence

Faculty of Computer Science and Management

Wroclaw University of Science and Technology

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Email: michal.przewozniczek@pwr.edu.pl

Marcin Komarnicki

Department of Computational Intelligence

Faculty of Computer Science and Management

Wroclaw University of Science and Technology

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Email: marcin.komarcniki@pwr.edu.pl

Abstract—The usual assumption in the Evolutionary Compu-
tation field is that a cost of computing single fitness function
evaluation is at last similar for all cases. Such assumption does not
have to be true. In this paper we consider the recently proposed
Problem Encoding Allowing Cheap Fitness Computation of
Mutated Individuals (PEACh) effect that allows to significantly
reduce the computation load of some of the fitness computations
that occur during the evolutionary method run. To the best of our
knowledge, it is the first experimental analysis that investigates
the results of PEACh application to methods solving NP-hard
practical problems.

I. INTRODUCTION

T
HE OPTIMIZATION of computation load consumption

by Evolutionary Algorithms (EAs) is a valid and im-

portant topic since these are the tools applied to solve hard

computational problems. Many techniques were proposed to

minimize the expenses for computing the fitness [7], [12], [6].

In this paper, we consider the Problem Encoding Allowing

Cheap Fitness Computation of Mutated Individuals (PEACh)

effect [17]. PEACh is a recently proposed technique that

allows to significantly reduce the computation load spent

on a single fitness computation without losing the precision

of a result. To the best of our knowledge, except some

theoretical experiments proposed in [17], there are no studies

that would show the PEACh benefits obtained by applying it to

Genetic Algorithms (GAs) solving a hard, practical problem.

Therefore, in this paper, we apply PEACh to evolutionary

methods applied to solve NP-hard flow optimization problem.

The main objective of this paper is to check how significant (if

any) is the PEACh influence on results quality and the method

efficiency.

The other objective of this paper is to investigate which

methods are more suitable to use PEACh benefits. In [17]

the standard GA was pointed as a method that is capable of

using PEACh optimization only for mutation operator. On the

other hand, the multi-population methods employing so-called

messy-coding [2], [8], [16], [15] were pointed out as those

that should improve their speed more significantly.

This work was supported by the Polish National Science Centre (NCN)
under Grant 2015/19/D/ST6/03115

Another important issue that was raised in [17] is the

fairness of computation load measurement by using the Fitness

Function Evaluation number (FFE). The application of PEACh

does not change the method run, except some of the fitness

value computations are performed significantly faster. There-

fore, in such situations, the use of FFE as a fair computation

load measure may be questioned. In this paper, by showing the

speed-up, scale we verify if FFE is truly unfair computation

load measure for methods using PEACh.

The rest of this paper is organized as follows. In the second

section we present the related work, Section 3 contains a

definition of the considered practical problem. The fourth

section defines PEACh and analyses its possible applications

to the considered practical problem. The research results and

analysis is presented in Section 5. Finally, the last section

summarizes this work and points on most promising future

work directions.

II. RELATED WORK

In this section, we will present the different propositions

of computation load optimization techniques employed in

the Evolutionary Computation field. We will also discuss

some related issues, eg. the fairness of the computation load

measurement with the use of Fitness Function Evaluation

number (FFE). Finally, we will briefly present the benefits

of using multi-population approaches with a dynamically

changed number of subpopulations since one of the methods

considered in this paper is employing such techniques.

In some of the papers concerning Evolutionary Algorithms

(EAs) applied to solve practical problems it is pointed that the

computation load necessary to compute particular individual’s

fitness may be significantly decreased if the fitness value of

similar (but not necessarily the same) individual is known. In

[9], [10] different Resource-Constrained Scheduling Problem

(RCSP) version are considered. To compute fitness of any

individual, the problem solution that is represented by this

individual must be constructed first. Then, the constructed

solution is rated, and the fitness is computed. Some of the

presented methods introduce small changes to already known

and already rated individuals. Thus, the fitness of new indi-

vidual that is a result of small genotype modification may be

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 57–65

DOI: 10.15439/2018F331

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 57



computed in two different ways. It may be computed in a usual

way by constructing and rating the solution. However, it is also

possible to copy the solution of an old, already rated individ-

ual, modify it and rate it. In RCSP problem the computation

load necessary for solution construction is significantly higher

than the computation load required for rating the constructed

solution. Thus, in NEH2 heuristic (Nawaz, Enscore, Ham)

proposed in [9] the fitness of new solutions is computed by

modifying the already known solutions rather than by building

new solutions from scratch. In result, NEH2 can use a higher

FFE number than its predecessor – NEH heuristic.

Surrogate model [6] is an interesting technique of computa-

tion load usage optimization that is useful when single fitness

evaluation takes significantly long time (e.g. minutes, hours, or

even days). In such situation, the use of evolutionary methods

may be limited. The idea is to propose a new problem model

that would mimic the real model but would be significantly

cheaper to evaluate. Therefore, the use of surrogate model

enables the use of EAs for problems to which they would be

otherwise inapplicable due to practical reasons. The surrogate

model is similar to PEACh effect considered in this paper

because it optimizes the cost of fitness value computation.

However, the difference is that PEACh leads to an exact fitness

value, while surrogate model offers only the approximated

fitness value.

Another technique that allows decreasing the computation

costs is fitness caching [7], [12]. Its idea is based on storing the

information about fitness values computed for the particular

genotypes. When such knowledge is available instead of

computing fitness the method checks if the fitness for the

particular genotype was not already computed. If so, then

instead of computing fitness the stored fitness value is returned.

Such technique may significantly decrease FFE. However, the

drawback is that checking if the fitness for the particular

genotype was not computed before becomes more and more

expensive in time as the list gets longer. At some point, the

benefits brought by omitting the fitness computation may be

exceeded by costs generated by the list search. Another issue

is that the list of already rated genotypes may consume high

amounts of memory. Therefore in [7] two different fitness

caching techniques are described - brutal fitness caching

(that is the technique described above) and population fitness

caching. The population fitness caching works in the same

way as its brutal version but instead using the genotypes list,

the optimization is limited to the search through the current

population. The research presented in [7] proposes an analysis

of benefits brought by both fitness caching techniques. The

research is based on modern evolutionary methods: Link-

age Learning Genetic Algorithm (LTGA) [18], Dependency

Structure Matrix Genetic Algorithm II (DSMGA-II) [5] and

Parameter-less Population Pyramid (P3) [3]. Another impor-

tant issue is shown in [7] is that when any fitness caching

is used the FFE is not a reliable computation load measure

when a method gets stuck. The reason for this situation is

that once a method gets stuck it simply loses the capability of

proposing new solutions, which have not been investigated yet.

If so, then at some point all, or almost all fitness computation

requests are cached. In the research presented in [7] FFE per

iteration may drop to zero for the whole remaining method

run. Thus, a different computation load measure than FFE

number is necessary because in the described situation FFE

only shows that method is not consuming any computation

load at all which is not true.

The issue of fair computation load measurement is also

addressed in [14]. One of the assumptions of using FFE

as a fair computation load measure is that the computation

load required to compute a single fitness value is the same

or, at least, similar. The research presented in [14] show

that this assumption is not always true. For instance, the

computation load may be dependent on the genotype. Another

requirement to use FFE as a fair computation load measure

is that the dependency between the overall computation load

used by a method and FFE should be close to linear. In

other words, the computation load necessary to compute the

fitness value is significantly higher than the computation load

used for all other method activities. If this condition is not

true, then the use of FFE as computation load measure may

not be reliable. This issue is discussed in details in [8] on

the base of Bayesian Optimization Algorithm (BOA). During

its run, at each iteration BOA constructs the model of gene

dependencies. When the genotype is long the computation

load necessary for model construction significantly exceeds the

computation load spent on all other method activities making

it ineffective.

III. FLOW ASSIGNMENT IN COMPUTER NETWORKS

The problem of flow assignment in computer networks is

one of the main problems in the field of network design

[11]. The other are the capacity assignment, flow and capacity

assignment, topology, flow, and capacity assignment. In the

flow assignment problem, the solution shall satisfy the set of

demands. Each demand defines an amount of information that

is to be sent between a particular pair of network nodes. The

list of demands as well as the network topology are given

and cannot be modified. For each demand, a route in the

network must be set to satisfy it. Thus, the solution to the

problem is a list of routes (one route for one demand) that

satisfy all demands and do not break the network links capacity

constraint. The solution quality may be measured in many

different ways. Here, we employ the Lost Flow in Link (LFL)

function. LFL describes how well the network topology is

prepared for the link breakdown scenario. The optimization of

LFL value increases the network survivability and the quality

of service. The problem denominated as WP_LFL [15] and is

NP-complete [11].

The notation used to represent the WP_LFL problem is

presented below.

Sets

V - set of n vertices representing the network nodes

A - set of m arcs representing network directed links

P - set of q connections in the network

58 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



∏

p - the index set of candidate working paths (routes) for

connection p
Xr - set (selection) of variables xp

k , which are equal to one.

Xr determines the unique set of currently selected working

paths

Indices

p - connections (demands) in the network, used as subscript

k - candidate routes, used as superscript

a - arcs (directed links), used as subscript

r - selections, used as subscript

Other

o(a) - the start node of arc a
d(a) - the end node of arc a
Constants

δkpa - equal to1, if arc a belongs to path k realizing connection

p; 0 otherwise

Qp - volume (estimated bandwidth requirement) of connection

p
ca - capacity of arc a
Variables

xk
p - decision variable, which is 1 if working route k ∈

∏

pis

selected for connection p and 0 otherwise

fa - flow of arc a

ginv =
∑

i:d(i)=v fi - aggregate flow of incoming arcs of v;

einv =
∑

i:d(i)=v ci - aggregate capacity of incoming arcs of

v;

goutv =
∑

i:o(i)=v fi - aggregate flow of outgoing arcs of v;

eoutv =
∑

i:o(i)=v ci - aggregate capacity of outgoing arcs of

v;

The o : A → V and d : A → V functions denote the

origin and destination node of each arc. For each a ∈ A the

set of incoming arcs of d(a) except a in(a) = {k ∈ A|d(k) =
d(a), k 6= a}, and the set of outgoing arcs of o(a) except a
out(a) = {k ∈ A|o(k) = o(a), k 6= a} are defined.

Definition 1. The global non-bifurcated m.c. flow denoted

by f = [f1, f2, ..., fm] is defined as a vector of flows in all

arcs. The flow f is feasible if for every arc a ∈ A the following

inequality holds

∀a ∈ A : fa ≤ ca (1)

Inequality 1 ensures that in every arc, flow is not greater

than capacity. This inequality is called the capacity constraint.

For the sake of simplicity, the following function is intro-

duced

ǫ(x) =

{

0 for x ≤ 0

1 for x > k
(2)

The analysis of local repair properties is based on a scenario

where the failure of arc k ∈ A is considered. If local repair is

used then flow on the arc k must be rerouted by the origin node

of k. Therefore, residual capacity of arcs outgoing from node

o(k) except arc k is a potential bottleneck of the restoration

process. Since

fk ≤
∑

i∈out(k)

(ci − fi) (3)

then the flow of the failed k can be restored using the

residual capacity of other links leaving the origin node of k.

Otherwise, if

fk >
∑

i∈out(k)

(ci − fi) (4)

then some flow of the failed link k cannot be restored

because the residual capacity of other arcs leaving the origin

node of k is too small. As a consequence, the 100% restoration

is not possible and some flow of k is lost. Applying formulas

3 and 4, and the gout
o(k), e

out
o(k) definitions, the LAout function

is defined as follows.

LAout
k (f) = ǫ(gouto(k) − (eouto(k) − ck)) (5)

Formula 5 defines the flow lost for arc k as dependent on

the whole flow leaving the origin node of k. Therefore, the

function of flow lost for all arcs leaving node v is defined as

follows.

LNout
v (f) =

∑

a:o(a)=v

ǫ(goutv −(eoutv −ca)) =
∑

a:o(a)=v

LAout
v (f)

(6)

Function LN in
v (f) is analogous to LNout

v (f) and defines

how much flow is lost in the arcs incoming to node v. The goal

of defining a function that measures the network preparation

to link breakdown is realized in 7.

LFL(f) =
∑

v∈V

(LN in
v (f) + LNout

v (f))/2 (7)

More details about the LFL may be found in [13]. The op-

timization problem, WP_LFL [13], [15] is defined as follows.

min
f

LFL(f) (8)

subject to

∑

k∈
∏

p

xp
k = 1 ∀p ∈ P (9)

xp
k ∈ {0, 1} ∀p ∈ P, ∀k ∈

∏

p

(10)

fa =
∑

p∈P

∑

k∈
∏

p

δkpax
k
pQp ∀a ∈ A (11)

fa ≤ ca ∀a ∈ A (12)

Condition (9) guarantees that the each connection can use

only one working route. Constraint (10) ensures that deci-

sion variables are binary ones. Formula (11) defines a link

flow. Finally, (12) denotes the link capacity constraint. The

MICHAŁ PRZEWOŹNICZEK, MARCIN KOMARNICKI: THE PRACTICAL USE OF PROBLEM ENCODING ALLOWING CHEAP FITNESS COMPUTATION 59



WP_LFL problem given by (8)-(12) is a 0/1 NP problem with

linear constraints. For this problem, the solution space that

includes all possible paths for each connection is large even for

relatively small networks. Therefore, the problem is considered

hard. Let us consider 2500 demands and ten routes available

for each demand. The number of solutions (not all may be

feasible) 102500.

IV. PEACH EFFECT IN CONSIDERED PRACTICAL PROBLEM

In this section, we present PEACh idea proposed in [17].

Since PEACh benefits are strictly dependent on the problem

encoding, in the second subsection we give a detailed descrip-

tion of solution encoding for the considered WP_LFL problem.

Finally, in the last subsection, we present the two considered

competing methods and discuss whether they are suitable to

use PEACh benefits.

A. General PEACh description

Let us consider a situation in which fitness computation

process is built from two stages - solution creation and solution

rating. For some problems, the main computational cost is paid

on the solution creation stage, while the process of rating the

created solution is relatively cheap [17]. In such situation, if we

wish to rate an individual but we know a similar solution that

was already rated it is reasonable to copy the rated solution,

modify it and rate the resulting solution.

Let us consider the Traveling Salesman Problem (TSP). TSP

can be represented as a graph G = (V,E), where V is a set of

n vertices (cities) and E = {ei, j}n×n is a set of edges that

represent connections between cities. The distance function

d : E → ℜ+ is used to assign each edge e a distance value.

The goal is to find a Hamiltonian cycle of minimal distance

that visits each vertex only once. Let us assume that in the

considered TSP instance we need to visit 1000 cities, the

genotype encodes the solution by storing a list of genes that are

city identifiers. Some individual that was already rated is being

mutated by changing two genes (cities order) in its genotype.

To compute fitness for the mutated version of the individual,

we may compute the cost generated by using 1000 routes

that are encoded by the genotype of the mutated individual.

Another option is to copy the fitness of individual before

mutation, subtract from it the distance of two routes that were

removed and add the distance yield by two new routes. Note,

that the second option requires significantly lower computation

load.

We may state that PEACh benefits are used if the following

condition holds

cost(X) ≫ cost(Xmut, f itInfo(X)) (13)

subject to

diffr(X,Xmut) ≪ size(X) (14)

where

X , Xmut - individuals genotypes

cost(X) - the computation load that must be paid to compute

the fitness of X without any prior knowledge

fitInfo(X) - the additional information about data produced

during X fitness value calculation process (including X
fitness value if necessary)

cost(X, addInfo) - the computation load necessary to

compute the fitness of X with additional information taken

from the other fitness value calculation operation

diffr(X,Y ) - the number of genotype positions for which

genotype X is different than the genotype Y
size(X) - the number of genotype positions in genotype X

If an additional information (from another fitness value

computation operation) is available, then the computation load

necessary for the fitness value computation will be signifi-

cantly lower than if the same computation was done without

the additional knowledge (inequality (13) is true). Condition

(14) guarantees that the additional information is supported by

the fitness calculation process for similar genotype.

The above definition proposed in [17] does not define a unit

of computation load amount (returned by cost(X, addInfo)
and cost(X)). In this paper, similar as in [17], we use the

computation time. Another available choice is the number of

processor instructions. Note, that FFE is not an allowed choice,

since the amount of computation load necessary to compute a

single fitness evaluation may significantly differ.

B. PEACh in WP_LFL

In WP_LFL the network topology is given. The network

links connecting the nodes are directed, so the particular link

transfers data only in one direction. Therefore, the network

may be represented as a directed graph. The list of demands

defining the nodes pairs between the communication channels

must be established is also entry information. Each demand

except the start and destination node defines the volume of

the demanded communication channel. Each connection is

using only one route. Thus, the solution to the problem is a

set of routes (each route proposed for one demand). Many

communication channels may go through a single network

link. The summarized volume going through a single network

link may not exceed the link capacity. The example of the

4-demand problem solution encoded in the GA-like manner

may be as follows: [(4) (6) (11) (13)]. In this solution the first

demand will use route number 1, second demand will use the

sixth route, etc. Note, that the solution does not have to be

feasible, i.e. the link capacity constraint may be broken.

In Fig. 1 we present the example of the network state in

the form of the two-dimensional matrix. The numbers in the

matrix represent the available capacity of network links. For

instance, the link from node A to node B has 24 capacity units

left. For the network state presented in the upper part of the

figure, we wish to set up the connection channel using the

route from node A through nodes B and C to node D. The

demand size (volume) of the connection channel is 4 capacity

units. In the result of this operation, the available capacity

in links A to B, B to C and C to D is decreased by 4. In

the WP_LFL instances consider in the research present in this

60 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 1. The example of route establish

paper we use 1260 up to 2500 demands. To compute fitness

of any individual we have to create a solution (by setting all

connection channels for all demands) and then rate it (compute

LFL function value for all links and summarize it). For the

considered test cases the time necessary to construct the

problem solution (Tmodel) is significantly larger than the time

necessary to rate the constructed solution (Tquality). Therefore,

the decreasing Tmodel time, shall significantly decrease the

overall time necessary for fitness computation. Let us consider

the following situation. The individual X encoding a solution

to 2500-demands WP_LFL problem instance was rated and

cost of this operation was cost(X) = Tmodel+Tquality . Then,

individual X was mutated (one of its genes was modified)

creating individual Xmut. We can compute fitness of indi-

vidual Xmut without using any additional knowledge. If so,

then cost(Xmut) ≈ costX . However, we can also compute

the fitness of Xmut differently and use the model created for

individual X . It is enough to unset one connection channel that

was encoded by individual X (set this channel with negative

volume) and set the new channel that was defined in individual

Xmut. In such situation we need to perform two channel

setting operations instead of 2500 route setting operations

cost(Xmut, f itInfo(X)) = 2/2500 ·Tmodel+Tquality . Since

for the considered test cases Tmodel ≫ Tquality , it is true that

cost(X) ≫ cost(Xmut, f itInfo(X)). Thus, we may expect

that using the PEACh effect may significantly decrease the

computation load consumed by a method during its run.

C. Competing methods and PEACh suitability

In this section, we present the two methods chosen for

tests. The first is Hierarchical Evolutionary Algorithm for Flow

Assignment in Non-bifurcated Commodity Flow (HEFAN 2.2)

[13]. HEFAN 2.2 is a standard GA that is dedicated to solving

flow optimization problem. The individuals are encoded in a

standard GA-manner presented in the previous section. Since

considering all available routes between every nodes pair

would lead to the combinatorial explosion and would make the

problem intractable, at the beginning of the run HEFAN 2.2

uses four shortest routes between each node pair and all routes

that are not longer than 1-, 2-, 3-, and 4-hops. Such route set

may be not enough to construct some high-quality solutions.

Therefore, HEFAN 2.2 uses two problem-dedicated operators

that were designed to propose new routes, namely the low-

level crossover and low-level mutation operators. The idea

behind both low-level operators is to interpret a single route

(that is an ordered list of nodes) as an individual and apply

to it standard GA operators. The routes resulting from low-

level operators may not be feasible in the particular network

topology. Therefore, the repair procedure is applied to their

results. The details about dedicated operators employed by

HEFAN 2.2 may be found in [13].

The second considered method is Multi Population Pattern

Searching Algorithm for Flow Assignment in Non-bifurcated

Commodity Flow (MuPPetS-FuN) [15], based on MuPPetS

[8]. In MuPPetS-FuN two types of individual are employed.

The classical GA-like individuals called Competitive Tem-

plates (CT) are used together with messy-coded individuals

[2] called viruses. The messy-coded individuals do not encode

the complete problem solution, but only a part of it. To rate

such individual, the missing genes must be first supplemented.

Therefore, each CT (complete problem solution encoded in

GA-like manner) has a crowd of viruses assigned to it. The

genes that are missing in each virus are supplemented from

CT the virus is assigned to. Each virus population is separate,

and the number of their populations is equal to the number

of CTs. The virus population evolution process may be found

as the optimization of the CT the viruses are assigned to -

after their evolution is finished, if the fitness of best-found

virus is better than its parental CT, then the genes from the

virus infect the CT, improving it. The important feature of

messy-coding concerning PEACh effect is that viruses encode

only a small part of a complete problem solution. Thus, each

virus may be interpreted as a modification of its parent CT.

Since, lvir ≪ size(CT ), where lvir is the genotype length of

a virus, then the process of virus fitness computation seems

to be suitable for using the benefits of PEACh effect.

V. RESULTS

In this section, we present the results of experiments per-

formed for two methods dedicated to solving the considered

WP_LFL problem. HEFAN 2.2 is based on the idea of stan-

dard GA, while MuPPetS-FuN Active is a multi-population

MICHAŁ PRZEWOŹNICZEK, MARCIN KOMARNICKI: THE PRACTICAL USE OF PROBLEM ENCODING ALLOWING CHEAP FITNESS COMPUTATION 61



method that uses messy-coding and dynamically manages the

number of maintained subpopulations (i.e., during the method

run new subpopulations are created, and some subpopulations

are deleted). Since HEFAN 2.2 is based on standard GA idea,

the use of PEACh effect will be limited only to mutation

operator. On the other hand, MuPPetS-FuN uses messy-coding

which is suitable for gaining the benefits brought by PEACh.

The objective of the research is twofold. First, we wish to

experimentally check how significant may be the optimization

of computation load usage when PEACh is employed and

how this optimization is dependent on the method type.

Second, we wish to check how significantly the use of PEACh

may influence the results quality for the considered WP_LFL

problem.

The rest of this section is organized as follows. In the first

subsection, we report the experiment setup. In the second

subsection, we show and comment the differences in the

computation load usage optimization brought by PEACh. The

third subsection presents the influence of PEACh effect on the

results quality for the two considered methods types. Finally,

the last subsection contains the results discussion.

A. Experiment setup

In the experiments, the time-based stop condition was

used. As pointed out in sections II and IV, since PEACh is

employed, the use of FFE as a stop condition is doubtful for

the research presented in this paper. The experiments were exe-

cuted on PowerEdge R430 Dell Server Intel Xeon E5-2670 2.3

GHz 64GB RAM with Windows 2012 Server 64-bit installed.

To ensure that the computation load used in each experiment is

equal, the number of computation processes was always one

less than a number of available CPU nodes. The time limit

was set to 3 hours. All methods were programmed in C++,

share all the possible pieces of code and are single-threaded.

The experiments are executed in the clean environment – i.e.,

no other resource consuming processes are running, and the

number of executed experiments is always one less than the

number of available processor cores (1 core is spared for the

operating system activities). Such assumptions are the same

as in [7], [15], [8] and shall allow for fair comparison.

To compare the performance chosen methods we use rank-

ing, defined as follows. The best method for a particular

experiment receives the number of points equal to the number

of competing methods; the second method receives one point

less, etc. If more than one method takes the same place, then

all such methods receive the same number of points as for one

method. For instance, there are three competing methods A, B

and C. Methods A and B were the best, and receive 3 points.

Method C was the worst one – it receives 1 point.

The considered experiments may be grouped concerning

the network type or flow parameters. Six different network

topologies were considered. The networks parameters (min-

imal, maximal and average node degree) might be found as

typical [19]. The mesh of five networks is irregular, the mesh

of one network is grid-like. The parameters of all considered

networks are presented in Table I.

TABLE I
CONSIDERED NETWORKS PARAMETERS

Network 104 114 128 144 162 Grid
Node number 36 36 36 36 36 36
Arc number 104 114 128 144 162 120
Minimal node deg. 2 2 3 3 3 2
Maximal node deg. 5 5 6 6 6 4
Average node deg. 2.89 3.17 3.56 4 4.5 3.33

Topology Irregular mesh
Regular
mesh

TABLE II
EXPERIMENT GROUPS PARAMETERS

Experiment group Group A Group B Group C

Arc capacity 4800 4800
km · 1200,where
km=1,...,8

Connections to set 1260 2500 2500
Connection choice 1 for each pair random random

Demand size
equal for all
connections

random random

The classification using the demanded flow parameters

divides the experiments into three groups: A, B and C. Each

experiment group is characterized by arc capacities used, a

number of connections to be set (demands) and the way

the connections were chosen. The OC-12 and OC-48 stan-

dards, typical for transportation networks [4], were taken into

consideration at the arc capacity design. The parameters for

each experiment group are presented in Table II. The units

of demands sizes and arc capacities were abandoned which

is frequent for the papers concerning the problems of flow

assignment in computer networks [11], [13], [15].

Ten experiments were used for each network and experiment

group. Thus, the total number of test cases was 6 ·3 ·10 = 180.

The considered problem is NP-complete [4]. As presented

in table II the number of demands is 1260 or 2500. In the

employed solution encoding each gene refers to a single

demand, which makes gene number equal to demand number.

If for each demand we consider 10 different routes, then the

number of solutions that may be encoded is equal to 101260

or 102500.

The methods settings were adopted from [15] and are

presented in Tables III and IV.

B. PEACh benefits depending on method type

One of the main objectives of this paper is to check how

significant is the influence of PEACh effect on computation

load optimization for the considered problem depending on

TABLE III
MUPPETS-FUN ACTIVE SETTINGS

Parameter name MuPPetS-FuN Active

Virus generations 100
Virus subpopulation size 100
Cut 0.21
Splice 0.30
Mutation 0.20
Low Level Crossover 0.60
Low Level Mutation 0.20

62 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



TABLE IV
HEFAN 2.2 SETTINGS

Parameter name HEFAN 2.2
Population size 1000
Crossover 0.9
Mutation 0
Low level crossover 0.1
Low level mutation 0.4
Uniform crossover 0.5
Crossover 0.9

TABLE V
FFE INCREASE RATIO CAUSED BY PEACH EFFECT IN MUPPETS-FUN

ACTIVE RUNS

Avr St. dev. Min Max Mean

All 207.92% 48.20% 123.14% 311.01% 207.18%
104 241.78% 34.17% 188.03% 311.01% 239.90%
114 216.76% 34.42% 170.45% 279.07% 207.64%
128 212.07% 23.90% 171.90% 265.80% 211.09%
144 158.89% 22.02% 129.44% 197.67% 157.62%
162 149.49% 20.17% 123.14% 187.52% 143.62%
Grid 255.66% 21.37% 225.07% 291.69% 261.73%
Group A 174.72% 39.80% 123.14% 251.10% 178.37%
Group B 192.74% 40.34% 140.48% 276.49% 205.40%
Group C 220.23% 45.64% 144.99% 311.01% 213.23%

the method type. Therefore, we compare the amount of FFE

done by MuPPetS-FuN Active and HEFAN 2.2 when using

and not using the benefits of PEACh effect. To assure that the

comparison is precise, each experiment was executed with the

same random seed. The runs in which the optimal solution was

found were excluded from the comparison. The FFE increase

ratio (FFE for the run using PEACh effect is divided by FFE

for the run without PEACh) is presented in Tables V and VI.

The results presented in Tables V and VI show that using

PEACh effect is far more beneficial for MuPPetS-FuN Active.

For MuPPetS-FuN, the minimum increase obtained in all 180

runs is over 123%, while the maximum ratio for HEFAN 2.2 is

less than 112%. Such results are expected since during most of

its run MuPPetS-FuN process messy-coded individuals, which

genotypes are much shorter than the genotype of full GA-like

coded problem solution. Thus, PEACh effect benefits may be

used at every fitness computation of messy-coded individual.

On the other hand, for HEFAN 2.2 whish is based on a

standard GA, PEACh is only beneficial during mutation.

It is also interesting that for MuPPetS-FuN Active PEACh

TABLE VI
FFE INCREASE RATIO CAUSED BY PEACH EFFECT IN HEFAN 2.2 RUNS

Avr St. dev. Min Max Mean
All 107.98% 1.98% 104.14% 111.95% 108.14%
104 109.08% 2.24% 104.21% 111.95% 109.98%
114 107.91% 1.94% 104.64% 111.05% 108.04%
128 107.42% 2.37% 104.14% 111.76% 106.24%
144 107.71% 1.58% 105.17% 110.41% 108.48%
162 107.13% 0.94% 105.50% 108.79% 107.18%
Grid 107.98% 1.84% 104.43% 110.69% 108.56%
Group A 105.93% 1.06% 104.21% 108.42% 105.78%
Group B 109.12% 1.93% 104.14% 111.76% 109.14%
Group C 108.65% 1.45% 105.27% 111.95% 108.65%

TABLE VII
THE INFLUENCE OF PEACH EFFECT ON METHOD EFFECTIVENESS

(RANKING)

PEACh No PEACh

LRH MuPPetS HEFAN MuPPetS HEFAN

All 2.15 2.98 2.33 2.62 2.12
104 2.43 3.40 2.97 2.70 2.77
114 1.77 3.00 2.03 2.60 1.87
128 1.87 3.03 2.10 2.43 1.80
144 1.43 2.90 2.50 2.90 2.17
162 1.80 2.43 2.37 2.53 2.13
Grid 3.60 3.13 2.03 2.53 1.97
Group A 1.12 2.40 2.34 2.30 2.38
Group B 1.58 2.50 2.58 2.02 2.36
Group C 2.88 3.96 2.26 3.58 1.70

effect is significantly more beneficial for some test case

groups. For instance, the highest FFE increase ratio is found

for networks Grid and 104. On the other hand, FFE increase

ratio is the lowest for experiments using networks 144 and

162. The detailed analysis of this phenomenon is out of

this paper scope and is one of the interesting future work

directions. The reasonable explanation seems to be that in

the experiments for networks 144 and 162 the average length

of messy-individual genotypes is significantly longer than in

the experiments for Grid and 104 networks. The longer is

the messy-coded individual’s genotype, the less significant is

the fitness function computation speed-up caused by PEACh

effect. This observation seems to be supported by the FFE ratio

observed experiments in groups A, B, and C. The full GA-like

encoded solution in experiments from group A contains 1260

genes, while in experiments in groups B and C this is 2500

genes. We may expect that in experiments of from group A,

the average genotype of messy-individual contains a larger

percentage of all necessary genes than in two other groups.

C. PEACh influence on results quality

In this section, we compare the effectiveness of both

considered methods, depending on PEACh effect. In these

experiments the randomizer seed was random. Thus, it is

possible that a method version with PEACh may return a

lower quality result than a version without PEACh. Note,

that it was impossible for the experiments considered in the

previous subsection because when the seed is set manually

both method versions (with and without) were performing

the same run. The only difference was that version with

PEACh was working faster, so it was able to perform a higher

number of iterations. The comparison of results quality in

Table VII. In the experiments presented in this subsection

the MuPPetS-FuN and HEFAN 2.2 are also compared with

Lagrangian Relaxation Heuristic (LRH) [13], [15]. LRH is a

hybrid algorithm that joins the Flow Deviation for Primary

Routes algorithm [1] and Lagrangian Relaxation. It uses sub-

gradient optimization to determine Lagrangian coefficients and

was shown effective [13] in solving flow assignment problems.

As presented in Table VII the methods employing PEACh

effect are the most effective for all experiment groups except

two. The first is the Grid network group for which the most

MICHAŁ PRZEWOŹNICZEK, MARCIN KOMARNICKI: THE PRACTICAL USE OF PROBLEM ENCODING ALLOWING CHEAP FITNESS COMPUTATION 63



TABLE VIII
THE COMPARISON OF MUPPETS-FUN EFFECTIVENESS WITH AND

WITHOUT PEACH EFFECT ON THE BASE OF p-VALUE REPORTED BY SIGN

TEST

with PEACh
better or equal

Equal
with PEACh
worse or equal

All 100.00% 0.00% 0.00%
104 99.95% 0.37% 0.19%
114 98.94% 7.68% 3.84%
128 100.00% 0.07% 0.04%
144 59.27% 100.00% 59.27%
162 50.00% 100.00% 68.55%
Grid 99.88% 0.94% 0.47%
Group A 92.52% 28.10% 14.05%
Group B 99.99% 0.06% 0.03%
Group C 100.00% 0.01% 0.00%

TABLE IX
THE COMPARISON OF HEFAN 2.2 EFFECTIVENESS WITH AND WITHOUT

PEACH EFFECT ON THE BASE OF p-VALUE REPORTED BY SIGN TEST

with PEACh

better or equal
Equal

with PEACh

worse or equal
All 99.98% 0.07% 0.04%
104 96.08% 18.92% 9.46%
114 92.83% 33.23% 16.62%
128 98.94% 7.68% 3.84%
144 96.82% 16.71% 8.35%
162 98.46% 9.63% 4.81%
Grid 73.83% 83.18% 41.59%
Group A 50.00% 100.00% 64.94%
Group B 99.00% 4.70% 2.35%
Group C 99.98% 0.09% 0.04%

effective is LRH, the second is 162 network for which the

most effective MuPPetS-FuN Active without PEACh effect.

In the experiments employing the Grid network, LRH simply

seems to be a more suitable method. Such observation is

consistent with the previous research in this area [15]. For

experiments using 162 network, the explanation may be as

follows. MuPPetS-FuN Active seems to be effective in solving

test cases from this group. The PEACh influence on compu-

tation load used by MuPPetS-FuN Active was the lowest for

these experiments (less than 150% of average ratio presented

in Table V), so it is likely that such result is the effect of

noise. To check if the benefits of PEACh effect are statistically

significant we have used Sign Test. The results are presented

in Table VIII.

As presented in Table VIII the use of PEACh effect is

not statistically significant for the method effectiveness for

experiments using network 144 and 162. Such results are not

surprising since for both of these subgroups the average FFE

increase ration was the lowest. The third subgroup for which

the influence of PEACh benefits on results quality does not

seem statistically significant are experiments from Group A.

Note, that for this subgroup average FFE increase ratio was

the third lowest one.

The same statistical tests were performed for HEFAN 2.2.

As expected, for this method the results are less convincing

- the p-value of tests checking that HEFAN 2.2 effectiveness

with and without PEACh is equal is significantly higher and is

above 9% for 6 of 10 experiment groups. Nevertheless, when

all experiments are taken into account, the results are decisive.

Thus, it is allowed to state that for HEFAN 2.2 the influence

of PEACh significantly affects the results quality.

D. Results discussion

The results presented in this paper show that the influence

of PEACh effect may significantly optimize the computation

load used by a method. Thus, it may influence the method

effectiveness when the available resources are limited. The

research presented in this paper show that some methods

are more suitable to use PEACh benefits than other. Here,

MuPPetS-FuN Active that employs messy-coding was able to

perform from 123% up 311% of FFE that would be computed

without using PEACh. Such change seems significant. Note,

that messy-coding is not the only mechanism suitable for

using PEACh. For instance, the evolutionary method may

be hybridized with the local search algorithm. If the local

search is based on exchanging one gene value to the other,

the optimization of computation load brought by using PEACh

effect may be significant as well. In this paper we also show

that for some methods like standard GA the use PEACh is

limited. However, its influence may also lead to statistically

significant effectiveness increase.

Another interesting observation refers to computation load

measurement. When an evolutionary method is applied to

solve a practical problem, it seems reasonable to use PEACh

effect if possible. However, when PEACh is used the FFE

is not a fair computation load measure because the cost of

computing a single fitness evaluation may be significantly

different depending on the situation in which it is computed -

if fitness is computed after a small genotype change (eg. after

mutation) the cost will be low, in other cases it will be high.

Thus, in such cases, FFE is not a reliable computation load

measure.

VI. CONCLUSION

The objective of this paper was to check how significant

may be the optimization of computation load expenses when

PEACh effect is employed by methods applied to solve

hard, practical problem. The presented results show that the

influence of PEACh may be significant even if the method is

not suitable to employ it (HEFAN 2.2). On the other hand, for

methods using mechanisms like messy-coding, the efficiency

increase may exceed 300%. The results supported by statistical

tests point out that the result quality differences caused by

PEACh are significant. Thus, for the considered methods FFE

is not a fair computation load measure.

The key direction of future research is further investigation

of possible PEACh utilization, for instance in hybrid meth-

ods using local optimization to improve their effectiveness.

The use of PEACh may also enable significant effectiveness

breakthrough for methods employing the Baldwin effect [16]

as it may significantly reduce its computational costs. Finally,

new techniques that use problem features for computation load

reduction shall be identified and proposed.

64 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



ACKNOWLEDGMENT

This work was supported by the Polish National Science

Centre (NCN) under Grant 2015/19/D/ST6/03115.

REFERENCES

[1] L. Fratta M. Gerla, L. Kleinrock, “The Flow Deviation Method: An
Approach to Store-and-Forward Communication Network Design,” Net-

works, vol. 3, no. 2, 1973, pp. 97-133.
[2] D.E. Goldberg, B. Korb, K. Deb, “Messy genetic algorithms: Motivation,

analysis, and first results,” Complex Systems, vol. 3, 1989, pp. 493-530.
[3] B. W. Goldman, W. F. Punch, “Parameter-less Population Pyramid,” Pro-

ceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation (GECCO ’14), ACM, 2014, pp. 785-792.
[4] W. D. Grover, “Mesh-based Survivable Transport Networks: Options and

Strategies for Optical, MPLS, SONET and ATM Networking,” Prentice
Hall PTR, New Jersey, 2004.

[5] S.-H. Hsu, T.-L. Yu, “Optimization by Pairwise Linkage Detection,
Incremental Linkage Set, and Restricted / Back Mixing: DSMGA-II,”
Proceedings of the 2015 Annual Conference on Genetic and Evolution-

ary Computation (GECCO ’15), ACM, 2015, pp. 519-526.
[6] D.R. Jones, “A taxonomy of global optimization methods based on

response surfaces,” Journal of Global Optimization, vol. 21, 2001,
pp.345-383.

[7] M. M. Komarnicki, M. W. Przewozniczek, “The influence of fitness
caching on modern evolutionary methods and fair computation load mea-
surement,” Proceedings of the Genetic and Evolutionary Computation

Conference Companion (GECCO ’18), ACM, 2018, (in press).
[8] H. Kwasnicka, M. Przewozniczek, “Multi Population Pattern Searching

Algorithm: a new evolutionary method based on the idea of messy
Genetic Algorithm,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 5, pp. 715-734, 2011.

[9] P.B. Myszkowski, M. Przewozniczek, M. Skowronski, “Constructive
heuristics for technology-driven Resource Constrained Scheduling Prob-
lem,” Proceedings of the 2015 Federated Conference on Computer

Science and Information Systems, 2015.

[10] P.B. Myszkowski, M. Skowronski, L. Olech, K. Oslizlo, “Hybrid
Ant Colony Optimization in solving Multi-Skill Resource-Constrained
Project Scheduling Problem,” Soft Computing, vol. 19, issue 12, 2015,
pp 3599-3619.

[11] M. Pioro, D. Medhi, “Routing, Flow, and Capacity Design in Commu-
nication and Computer Networks,” Morgan Kaufmann Publishers, 2004.

[12] R. J. Povinelli, X. Feng, “Improving Genetic Algorithms Performance
By Hashing Fitness Values,” Artificial Neural Networks in Engineering,
1999, 399-404.

[13] M. Przewozniczek, K. Walkowiak, “Quasi-hierarchical Evolutionary
Algorithm for Flow Optimization in Survivable MPLS Networks ,”
Lecture Notes in Computer Science, vol. 4707, Springer Verlag, 2007,
pp. 330-342.

[14] M. Przewozniczek, R. Goscien, K. Walkowiak, M. Klinkowski, “To-
wards Solving Practical Problems of Large Solution Space Using a
Novel Pattern Searching Hybrid Evolutionary Algorithm - An Elastic
Optical Network Optimization Case Study” in Expert Systems with
Applications,” vol. 42, 2015, pp. 7781-7796.

[15] M. Przewozniczek, “Active Multi Population Pattern Searching Algo-
rithm for Flow Optimization in Computer Networks - the novel coevo-
lution schema combined with linkage learning,” Information Sciences,
vol. 355-356, 2016, pp. 15-36.

[16] M. W. Przewozniczek, K. Walkowiak, M. Aibin, “The evolutionary cost
of Baldwin effect in the routing and spectrum allocation problem in
elastic optical networks,” Applied Soft Computing, vol. 52, 2017, pp.
843-862.

[17] M. W. Przewozniczek, “Problem Encoding Allowing Cheap Fitness
Computation of Mutated Individuals,” Proceedings of 2017 Congress

on Evolutionary Computation (CEC 2017), 2017, pp. 308-316.
[18] D. Thierens, P. A. N. Bosman, “Hierarchical Problem Solving with

the Linkage Tree Genetic Algorithm,” Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation (GECCO’13),
2013, pp. 877-884.

[19] F. Zhang , X. Zheng, H. Zhang, Y. Guo, “A kind of topology aggregation
algorithm in hierarchical wavelength-routed optical networks,” Photonic

Network Communications, vol. 9, 2005, pp. 167-180.

MICHAŁ PRZEWOŹNICZEK, MARCIN KOMARNICKI: THE PRACTICAL USE OF PROBLEM ENCODING ALLOWING CHEAP FITNESS COMPUTATION 65


