

Abstract—In this paper, we describe the deep object

comparison (DOC) algorithm, which is used for comparison of

general objects in Java programming language based on their

internal structures and values of primitive attributes. The DOC

algorithm was designed to be utilized in our interface-based

regression testing of software components, which enables to

uncover subtle changes of the behavior of a component-based

application under test with a newly installed version of a

software component in comparison to its behavior with an old

version of this component.

I. INTRODUCTION

HE component-based software development is a part of

software engineering for nearly two decades. It utilizes

isolated reusable software parts called software components,

which provide and/or require functionalities called services.

The services are accessible using public interfaces of the

components and the components are expected to interact

solely using these interfaces. Specific details depend on the

utilized component model, which defines the behavior, fea-

tures, and interactions of software components and is imple-

mented by a component framework [1].

T

Regardless the utilized component model, a common situ-

ation using the component-based software development is

that a component can be used in different applications and

an application consists of multiple components, which can

originate by different manufacturers [1]. This underlines the

necessity for the testing, not only of the individual compo-

nents, but of the entire component-based application as well.

Additionally, many components exist in several versions,

which can mutually differ by the internal behavior (i.e.,

there are different computations), by the external behavior

(i.e., different interactions with other components), or by the

public interface (i.e., different required and/or provided ser-

vices). In theory, the change of the component’s internal be-

havior should not affect its external behavior and therefore

should not affect the behavior of the entire component-based

This work was supported by Ministry of Education, Youth and Sports of

the Czech Republic, project PUNTIS (LO1506) under the program NPU I

and by European structural and investment funds (ESIF), project

CZ.02.1.01/0.0/0.0/17_048/0007267.

application. Nevertheless, in reality, an unwanted error can

be introduced into the new version of the component, a side

effect of a method invocation can be added or removed, a

computation can be prolonged leading to a time-out to ex-

pire, and so on. So, when installing a new version of a com-

ponent to a functional component-based application, ade-

quate regression testing is desirable even when there are no

apparent external changes of the new version of the compo-

nent in comparison to the old version [2].

During our previous research, we developed an approach

for interface-based regression testing of software compo-

nents, whose source code is not available (e.g., third-party

software components). The approach is tailored for the situ-

ation when there is a new version of a component installed

in a component-based application and we want to check if it

exhibits the same behavior within the application as its old

version [2].

The experimental implementation of the approach, which

was described in [2] in detail, was designed for the OSGi [3]

component model for Java programming language, but the

ideas behind it can be used for other component models and

programming languages as well. The overall process starts

with the analysis of the services and their methods of the

software components of the entire component-based ap-

plica-tion under test. For each method of each service of

each component, a set of invocations is generated. Then, the

invocations are performed in an iterative phase. In each iter-

ation, all invocations are performed and their conse-quences

are being observed and stored. New consequences of the

same invocations can emerge, because the inner states of the

components can change between iterations due to the invo-

cation of the methods. Besides the consequences, new invo-

cations can emerge during this phase as consequences of dif-

ferent invocations. Both the new consequences and new in-

vocations are stored only if they are not already stored. This

requires comparison of the already stored items with the

newly created items. The process stops when no new conse-

quences are created. The result is a testing scenario

Deep Object Comparison for Interface-based Regression Testing of

Software Components

Tomas Potuzak
Department of Computer Science and Engineering/

NTIS – New Technologies for the Information Society,

European Center of Excellence, Faculty of Applied

Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: tpotuzak@kiv.zcu.cz

Richard Lipka
NTIS – New Technologies for the Information

Society/Department of Computer Science and

Engineering, European Center of Excellence, Faculty

of Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: lipka@kiv.zcu.cz

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1053–1062

DOI: 10.15439/2018F51

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 1053

with actions (i.e., invocations) and their consequences, which

can be saved to a file. If this process is performed prior and

after the installation of a new version of a component to the

component-based application under test, the detailed

comparison of these two saved scenarios can uncover

changes in the behavior of the application caused by the new

version of the component [2].

In our experimental implementation, we used the standard

equals() method for the comparison of the objects

associated with the consequences and the invocations (e.g.,

return values, values of the parameters). Although this can

work in many cases, it cannot be used universally. Some

objects do not implement the equals() method, which

leaves them with the default implementation corresponding

to the identity (only the same objects are considered equal).

Even if the equals() method is implemented in the object,

it can be implemented incorrectly, as pointed out in [4], [5],

or [6]. And even if it is implemented correctly, it does not

mean that it considers all primitive values of the object

recursively [7]. So, it is possible that, although the

equals() method returns true for a pair of objects, their

internal structures can be different and/or contain some

different primitive values. These subtle differences can be

important for our approach, since they could mean different

behavior, which we want to detect.

In order to mitigate this problem, in this paper, we

describe the deep object comparison, which will replace the

utilization of the equals() method. The deep object

comparison enables to compare two objects based on the

“shape” of their internal structures and all the corresponding

primitive values. So, no changes in the objects are missed.

This deep object comparison is suited to be used both during

the generation of the scenario and during the comparison of

two scenarios of our interface-based approach for regression

testing of software components. The algorithm was

implemented within our Interface Analysis Tool (InAnT).

The deep object comparison was first tested as a stand-alone

algorithm, before it will be incorporated into our approach.

The description of the deep object comparison algorithm

along with the description of the performed tests is the main

contribution of this paper.

The paper is structured as follows. The interface-based

regression testing of software components is briefly descri-

bed in Section II. Related work is discussed in Section III. In

Section IV, the deep object comparison is described in

detail. The performed tests and results are described in

Section V and the paper is concluded and the future work is

discussed in Section VI.

II. INTERFACE-BASED REGRESSION TESTING OF COMPONENTS

As it was mentioned in Section I, the interface-based

regression testing of software components is designed to

uncover any changes in a component-based application’s

behavior after the installation of a new version of a

component [2]. The changes are detected during comparison

of the testing scenario generated and stored from the

application with the old version of the component and the

scenario generated and stored from the application with the

new version of the component [2].

A. Generation of the Testing Scenario

Our approach assumes that the entire component-based

application is under test, because the components within it

interact with each other. Their interactions are observed

during the generation of the scenario in order to uncover the

behavior of the particular components [2].

First step in the generation of the testing scenario is the

determination of all methods of all services of the

components of the application under test. This can be done

by any method capable to retrieve complete method signa-

ture. We use standard OSGi methods and Java reflection [8]

for this purpose in our experimental implementation [2]. The

components, their services, and their method are inserted

into a tree data structure, which forms the basis of the testing

scenario (see Fig. 1a).

For each method of this structure, an initial set of

invocations is generated and added into the structure. Each

invocation contains a unique combination of values for all

the parameters of the method.

The invocations are then successively performed (i.e., the

methods are invoked with the parameters stored in the

invocations in the tree data structure) in the iterative phase,

one at a time, and the consequences of each invocation are

observed (i.e., what happened when the method was

invoked). The possible consequences are a thrown exception,

a return value, a value change in “out” parameters of the

method, a subsequent invocation of a service method of ano-

Fig. 1 The tree structure of the scenario

1054 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

ther component, and a change of the inner state of the

component. The last consequence differs from the others,

since it is not easily observable from outside. So, it is not

considered by our approach. There can be several

consequences per method invocation. All the observed

consequences are added to the tree data structure to the

invocation, which caused them (see Fig. 1b), but only if they

are not already present. Each type of consequence contains

its type and type-dependent data (e.g., the return value, the

instance of an exception, the changed value of an “out”

parameter, etc.) [2]. Based on the type and the data, the

consequences can be mutually compared, which is necessary

for the determination, whether a new consequence is already

present or not.

The most important consequences are the subsequent

invocations. Each subsequent invocation is defined by the

method, which it is invoking, and by the unique combination

of its parameter values. When this consequence is observed,

it is added to the tree data structure (if not already present)

similarly to other types of consequences. Moreover, the

invocation that the consequence represents is added to the

invocations of the corresponding method into the tree data

structure (again, only if not already present). These

invocations are valuable, since their parameter values are

genuine, originating in the internal logic of the component,

which invoked the method [2].

The invocations contained in the tree data structure are

performed several times in the iterative phase in order to

exploit the subsequent invocations. The subsequent

invocations generated in nth iteration can be performed in

(n + 1)th iteration and their consequences can be thus

observed. The iterative phase is stopped when no new

consequences are generated in the current iteration. At this

point, the testing scenario represented by the tree data

structure is complete (see Fig. 1b). All invocations and

consequences contain a number representing the iteration, in

which they were added to the structure (starting with 1). The

initial invocations created prior the iterative phase have this

number set to 0. The generated scenario is saved to a XML

file [2].

B. Comparison of the Testing Scenario

When a new version of a component is installed into the

component-based application under test, the process

described in Section II.A is repeated and a new scenario is

created. The saved scenario is then loaded from the XML

file and both tree data structures are compared. The

comparison is performed on each level of the structures,

starting from the component level [2].

On each level, it is checked, whether there are correspon-

ding items (i.e., components, services, methods, invocations,

consequences) in both tree data structures. If so, their sub-

tree is expanded and the comparison continues on the lower

level. If not so, the difference (item is missing in one or

second tree data structure) is reported, this item is not expan-

Fig. 2 Result of the comparison of two scenarios (tree data structures)

ded and its lower levels are not considered further [2]. The

example of the result of the comparison is depicted in Fig. 2.

The most important differences are on the invocations and

invocation consequences levels. These differences mean

different behavior of the application under test with the old

and the new version of the component. Differences on the

methods or services levels imply that there are changes in the

public interface of the component. Our approach of course

detects these changes, but, unlike the changes in the

behavior, these changes can be detected by other means as

well, such as advanced static analysis methods (e.g., see [9])

[2].

C. Object Comparison Issues

Both during the generation of the scenario and during the

comparison of two scenarios, we need to compare general

objects, which is problematic.

During the generation of the scenario, the comparison of

general objects is necessary in the iterative phase when new

consequences and invocations are generated. They are added

to the tree data structure only if they are not already

contained, requiring their comparison to other consequences

and invocations. It should be noted that due to the tree nature

of the data structure, a newly generated consequence is

compared only to the consequences of the corresponding

invocation. Similarly, a newly generated invocation is

compared only to the invocations of the corresponding

method. So, the number of comparison is limited, it is not

necessary to compare the consequence or invocation to all

consequences or invocations.

Nevertheless, the comparison of two consequences lies in

the comparison of their type and, if the type is the same, in

the comparison of the type-related data. If the type of both

compared consequences is the return value, then the

associated return values are compared. The comparison is

TOMAS POTUZAK, RICHARD LIPKA: DEEP OBJECT COMPARISON FOR INTERFACE-BASED REGRESSION TESTING OF SOFTWARE COMPONENTS 1055

trivial if the return values are of primitive types, but

ambiguous if they are objects. In the experimental

implementation of our approach, we use the standard

equals() method for objects, which are not null. This

can work in many cases, but cannot be used universally.

For example, some objects do not implement the

equals() method, which leaves them with the default

implementation corresponding to the identity (only the same

objects are considered equal). An example of such object is

in Fig. 3a. The Point3D class represents a point in space,

but does not override the equals() method, leaving it with

its default implementation (from the Object class). When a

method returns a new instance of the Point3D in every

invocation (see Fig. 3b), the comparison of this instance to

another instance using equals() will always return

false, even with the same values of their corresponding

coordinates (see Fig. 3c). If an invocation of the method

depicted in Fig. 3b were performed repeatedly during the

iterative phase, its return value consequence would always

seem different, because the return values would not be

identical (based on the equals() method), although they

would contain the same values of their corresponding

coordinates. So, each newly generated consequence would

be added to the tree data structure in each iteration. The

iterative phase would not stop until an out-of-memory

exception would occur. This problem can be mitigated (not

solved) by introduction of the maximal number of iterations,

but it is clear that this is not the intended behavior.

Moreover, there are further issues. Even if the equals()

method is implemented in the object, it can be implemented

class Point3D {

 public int x;

 public int y;

 public int z;

 public Point3D(int x, int y, int z) {

 this.x = x;

 this.y = y;

 this.z = z;

 }

}

a) A class representing a point in space without overridden equals()

method

...

public Point3D asPoint(int x, int y, int z) {

 return new Point3D(x, y, z);

}

...

b) A method returning a new instance of the Point3D class in every

invocation

...

Point3D p1 = asPoint(1, 2, 3);

Point3D p2 = asPoint(1, 2, 3);

boolean comparison = p1 == p2; //comparison false

...

c) Two results of the method with the same primitive values compared

Fig. 3 Example of a class without overridden equals() method and

of following problems

incorrectly, as pointed out in [4], [5], or [6]. And even if it is

implemented correctly, it does not mean that it considers all

primitive values of the object recursively [7]. So, it is

possible that, although the equals() method returns true

for a pair of objects, their internal structures can be different

and/or contain some different primitive values. These subtle

differences would not be detected using the equals()

method.

The described problem is not limited to the return value

consequences. The same problem is with the comparison of

consequences representing a change in the “out” parameters

of a method and with the comparison of invocations. Each

invocation contains the combination of parameter values of a

method and these values, which can be general objects, are

compared during the comparison of the invocations.

During the comparison of two scenarios, the comparison

of general objects is needed for the comparison of

invocations and consequences, similarly to the generation of

the scenario. Comparison of methods and higher levels of the

tree data structure are based on data types and names, not

general objects. The problem with the comparison of general

objects is more pronounced here, though. The reason is that

at least one of the compared scenarios is loaded from a XML

file. In order to utilize the equals() method for the

comparison, it would be necessary to recreate all the objects

during the loading of the scenario. This would necessitate

full-scale serialization of general objects during the saving of

the scenario to the file. Hence, in the experimental

implementation of our approach, the general objects

contained in the invocations and consequences were

compared only based on their classes and null values.

More specifically, the information stored to the XML file

for an object was its real class or null. Hence, during the

comparison of two scenarios, it was only checked, whether

both compared objects are null or whether both compared

objects are of the same class. In these two cases, the objects

were considered equal. The exception was the instances of

the String class, which were compared using their content.

The reason is that the String instances can be easily saved

and loaded to/from a file. It is clear that this significantly

reduces abilities of our interface-based regression testing of

software components. The entire approach works correctly

and is able to detect changes in behavior of the application

under test (see [2]). However, many subtle differences in the

compared scenarios can remain hidden, because the

information is lost during the saving of the scenario to a file.

So, some changes in behavior of the application under test

could remain undetected.

In order to solve all the described problems, we designed

the deep object comparison (DOC) described in Section IV

in detail. The DOC will be incorporated into our interface-

based regression testing of software components where it

will replace the equals() method during the generation of

the scenario and the class-based comparison during the

comparison of two scenarios.

1056 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

III. RELATED WORK

The issue of object equality in object-oriented languages

is discussed in scientific literature mainly in relation to

memory optimization and to object equality implementation.

Both branches are discussed in following subsections.

Although none of these branches is related to software

testing, the algorithms described in the discussed papers

solve problems similar to our deep object comparison.

We focused mainly on the papers regarding the Java

programming language, since our current implementation is

written in this language. However, the principles can be used

in similar languages (e.g., C#) as well.

A. Memory Optimization

There are several papers focused on the optimization of

memory management in languages, which utilize garbage

collection (i.e., automatic disposal of objects, which are no

longer in use by the program). The main idea behind these

works is that there are a number of equivalent objects in the

memory during the execution of a program, which can be

replaced by a single instance while preserving the same be-

havior of the entire program (see [7], [10], [11], [12], etc.).

In [7], a tool enabling detection of equivalent objects in a

Java application, which can be replaced by a single instance,

is described. The investigated application is instrumented

and, during its execution, all relevant heap activity is

recorded. After the execution, the post-mortem analysis is

performed. The objects of the application are separated into

equivalence classes. Each equivalence class can be replaced

by a single instance. No automatic optimization is perfor-

med. The tool only uncovers and reports the sites (i.e.,

positions in source code) of the program with the potential

for an optimization by replacing more equivalent objects

with a single instance [7]. In order to determine, whether an

object can be replaced by another object without affecting

the behavior of the application, it is necessary to compare

these objects thoroughly. It is pointed out that a full compa-

rison requires checking of two potentially cyclic labeled

graphs for isomorphism. As a large number of comparisons

is required in this approach, a hash value is calculated for

each object, which is then used for faster comparison of the

objects [7].

Similar approach is described in [10], although it is

intended for a different programming language (Pharo).

Again, the relevant heap activity is recorded during a run of

the application under test and the post-mortem analysis is

performed after the run. The main difference is that, in [10],

the objects are divided into several types and only certain

types of objects, which are susceptible to redundancy (e.g.,

instances of the String or Point classes), are considered

as optimization opportunities. Directed vertex and edge

labeled graph is used for the representation of the internal

structure of objects for the comparison purposes. Based on

it, a hash value is calculated for each considered object to

speed up its comparison to other objects [10].

In [11], the conditions, which an object must satisfy to be

considered for caching, are discussed. The paper is focused

on immutability of objects, which is in some form often

required by caching and similar techniques (including

techniques described in [7] and [10]). It is pointed out that

the border between construction and mutation of an object is

not always clear [11].

In [13], an advanced method for the reduction of the

duplication of strings is described. The comparison of

objects is straightforward in this case, as the compared

objects are instances of the String class.

In [12], a similar yet different technique to [7] and [10] is

described. Similarly to the [7] and [10], the technique

searches the sites (i.e., positions in source code) in an

application, which have the potential to be optimized by

reusing existing objects or data structures [12]. Unlike [7]

and [10], the technique is focused not only on finding

equivalent objects, but on finding reusable instances as well.

The idea is that it is not necessary to create a new (possibly

internally complex) instance when there is another instance

of the same class available, which is no longer in use. In that

case, it is only necessary to change settings of its primitive

values, but it is not necessary to create new object and its

entire internal structure. Moreover, since the unused object is

reused, its garbage collection is saved. Thus, the techniques

tend to utilize objects, which are relatively short-lived. So,

unlike [7], [10], which are focused mainly on the reduction

of the memory consumption, [12] is focused also on the

reduction of computation time. For the representation of the

internal structure of the objects, modified balanced

parenthesis algorithm is used [12].

In contrast to [12], the technique described in [14] is

focused on the long-lived objects, which are candidates for

caching. For the speedup of the object comparison, a form of

hash value called “fingerprint” of the object is used. In

standard classes from the java.lang package, the

equals() method is used [14].

In [15], the performance of the hash-consing (i.e.,

utilization of a global cache of objects) is discussed. The

comparison of objects is based on the equals() method

even when this method does not consider all attributes of the

object. The authors also define weak immutability of an

object based only on the values of the attributes, which are

considered by the equals() method. Again, a hash value

is used for the description of the objects [15].

B. Object Equality Implementation

The other group of scientific papers regarding the object

equality is focused on the implementation of the equals()

method. In majority of this papers, the required features of

the equals() method are cited – the reflexivity, symmetri-

city, and transitivity [4]. In some works, it is pointed out that

many textbooks contain flawed implementations of the

equals() method (e.g., [4], [6]).

TOMAS POTUZAK, RICHARD LIPKA: DEEP OBJECT COMPARISON FOR INTERFACE-BASED REGRESSION TESTING OF SOFTWARE COMPONENTS 1057

In [4], a checker of the equals() methods is described.

The checker is focused on the features of the equals()

methods under test and reports any violation of these

features. However, it is not focused on comparison of the

entire internal structure of complex objects [4]. In [6], the

right design of the equals() method using design patterns

is discussed.

A generator of the equals() methods for complex

objects is described in [16]. In this work, the objects are

compared on per-field basis. There are several “depths” of

equality defined. Depth-0 corresponds to the referential

equality, meaning that the objects are equal if both are the

same object (corresponding to the comparison operator

“==”). Depth-1 (shallow equality) means that, for all

corresponding fields of two objects, the referential equality

holds. The deep equality then means that, for all

corresponding fields of two objects, the deep equality holds

[16].

IV. DEEP OBJECT COMPARISON

As it was mentioned in Section II.C, the deep object

comparison (DOC) is designed for our interface-based

regression testing of software components. It will replace the

comparison of general objects using the equals() method

during the generation of the testing scenario and the

comparison of general objects using their classes and null

values during the comparison of two scenarios. Hence, the

DOC algorithm has two phases – the forming of the graph

representation of the object and the comparison of two

graphs of the compared objects. The main advantage of this

approach is that the graph representation of the object can be

easily saved to and loaded from a file. So, no information

will be lost during the saving of the scenario.

A. Object Equality

As arises from Section III, there are various views on the

equality of two objects. Nevertheless, since our goal is to

uncover any difference of the compared objects, however

subtle, we have to adopt the view of the deep equality

described in [16]. Similar definitions are described also in

[7], [10], or [11]. Nevertheless, all the definitions of the

equality described in these works are recursive. Since the

DOC algorithm creates a graph representing the internal

structure of the object, our definition is based on this graph.

It is not recursive, but expresses similar conditions as the

definition of the deep equality described in [16].

Suppose there are two compared objects a and b and the

graph representations of their internal structures were created

(see Section IV.B). Objects a and b are considered equal if

and only if they are of the same class, their graph

representations are isomorphic (i.e., have the same “shape”),

and all values of the corresponding primitive attributes in the

corresponding vertices of the graphs are of the same type and

equal. Fig. 4 shows several examples of pairs of objects,

which are considered equal or different.

Fig. 4 Examples of objects considered equal and different

B. Forming of the Graph of an Object

When we compare two objects, it is checked whether both

objects are not null and whether they are of the same class.

If not so, the objects are considered different. If so, the DOC

algorithm is used. Its first step is the creation of the graph

representations of both compared objects. The representation

is a directed vertex- and edge-labeled graph.

Each vertex of the graph corresponds to a single object of

the internal structure of the object that we want to compare.

The starting vertex of the graph corresponds to the object

that we want to compare. Each vertex incorporates the ID,

the state that is used during the comparison of two graphs

(see Section IV.C) and the reference to the object that this

vertex represents. It also incorporates a list containing types,

names, and values of all primitive attributes of the object that

this vertex represents.

Each directed edge of the graph represents a reference

attribute of the object and points to the vertex, representing

the object, to which the reference attribute is pointing. Each

edge incorporates the type (i.e., the class) and the name of

the reference attribute it represents.

The reference attributes that are arrays are treated

specifically. If the attribute is an array of primitive values,

each value is considered a primitive attribute with the name

created from the name of the array attribute and the index of

the value. If the attribute is an array of references, each value

is considered a reference attribute, which means that it is

1058 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

represented as an edge in the graph. The name is again

constructed from the name of the array attribute and the

index of the value. Similar approach is used for multi-

dimensional arrays. As these arrays are represented as an

array of arrays in Java, each inner dimension of the array is

treated as an object (i.e., it is represented by a vertex in the

graph) with attributes corresponding to the values on

particular indices. Since these attributes do not have names,

their indices are used instead. The reference attributes, which

are null, and array attributes pointing to empty arrays are

treated as primitive attributes.

The forming of the graph is based on the breadth-first

search (BFS) algorithm starting in the object that we want to

compare. There are a queue and a list of all vertices of the

graph, which are empty at the start. First vertex is created

from the object that we want to compare and is inserted to

the list and to the queue. The forming of the graph then

continues while the queue is not empty. First vertex is

removed from the queue (current vertex) and all attributes of

the object that is represented by this vertex are determined

using reflection [8]. All primitive attributes are added to the

list in this vertex. For each reference attribute, a new vertex

is created. If this vertex is not in the list of all vertices, this

new vertex is added to the queue and an edge is formed from

the current vertex to the newly created vertex. If it is already

present in the list, it is not added to the queue and a new

edge is formed from the current vertex to the vertex from the

list.

The presence of the vertex in the list is determined using

the sequence searching and the comparison of objects that

the vertices represent using the comparison operator “==”.

This way, it is ensured that already visited objects (e.g., due

to cyclic references) are not visited again.

allVertices = List();

queue = Queue();

vertex = Vertex(comparedObject);

allVertices.add(vertex);

queue.add(vertex);

while (!queue.isEmpty()) {

 vertex = queue.remove();

 vertex.primitives=getPrimitives(vertex.object);

 references = getReferences(vertex.object);

 for (r: references) {

 neighbor = Vertex(r.object);

 index = allVertices.indexOf(neighbor);

 edge = Edge(r);

 if (index >= 0) {

 edge.vertex = allVertices[index];

 }

 else {

 edge.vertex = neighbor;

 queue.add(neighbor);

 allVertices.add(neighbor);

 }

 vertex.addEdge(edge);

 }

}

for (i = 0; i < allVertices.length; i++) {

 allVertices[i].ID = i;

}

Fig. 5 Pseudocode for the forming of the graph representation of an

object

Fig. 6 The resulting graph (on the right) with references to the object

(on the left)

When the queue is empty, the graph is fully formed. The

last step is the assignment of the IDs to all vertices based on

their indices in the list. These IDs are used during the saving

of the graph to a file. The algorithm is described in Fig. 5 in

pseudocode. The resulting graph for the object a from

Fig. 4a is depicted in Fig. 6.

C. Comparison of Graphs

Two graphs created as described in Section IV.B can be

easily compared without the references to the original

objects, from which they were formed. The structure of each

graph is represented by its vertices and edges, which also

incorporate all necessary information – the values of primi-

tive attributes and the names and types of all attributes. This

is important, because the graph can be saved to a file and

then loaded from this file and it is not necessary to recreate

the original object, from which the graph was formed.

The graphs are compared using their parallel BFS

exploration. Basically, in one loop, both graphs are explored.

v1 = graph1.rootVertex; v1.state = GRAY;

v2 = graph2.rootVertex; v2.state = GRAY;

queue1 = Queue();

queue2 = Queue();

queue1.add(v1);

queue2.add(v2);

equal = true;

while (!queue1.isEmpty()) {

 v1 = queue1.remove();

 v2 = queue2.remove();

 if (v2 == null) {

 equal = false;

 break;

 }

 if (!compare(v1.primitives, v2.primitives)) {

 equal = false;

 break;

 }

 for (e: v1.edges) {

 if (e.vertex.state == WHITE) {

 queue1.add(e.vertex);

 e.vertex.state = GRAY;

 }

 }

 for (e: v2.edges) {

 if (e.vertex.state == WHITE) {

 queue2.add(e.vertex);

 e.vertex.state = GRAY;

 }

 }

 v1.state = BLACK;

 v2.state = BLACK;

}

if (!queue2.isEmtpy())

 equal = false;

Fig. 7 Pseudocode for the comparison of two graphs

TOMAS POTUZAK, RICHARD LIPKA: DEEP OBJECT COMPARISON FOR INTERFACE-BASED REGRESSION TESTING OF SOFTWARE COMPONENTS 1059

For each node, it is checked, whether they have the same

count of primitive attributes with the same values. If a diffe-

rence is found, the loop is ended prematurely and the objects

are considered different. The objects are also considered

different, when the graph of one of the objects is fully

explored and the other is not. The algorithm is described in

Fig. 7 in pseudocode.

V. VALIDATION AND RESULTS

The described DOC algorithm was thoroughly tested using

two sets of tests. In the first set, we focused on the correct

functionality of the algorithm. The second set of tests was

focused on the performance of the algorithm. All tests were

performed on a standard notebook computer with dual-core

Intel i5-6200U at 2.30 GHz with HyperThreading, 8 GB of

RAM and 250GB SSD/500GB HDD. The software environ-

ment consisted of the Windows 7 SP1 (64 bit), Java 1.6 (32

bit), and Equinox OSGi framework.

A. Correct Functionality of the DOC Algorithm

The correct functionality of the DOC algorithm was tested

by comparison of pairs of similar or equal objects. There

were 5 pairs with variously complicated internal structures.

The structures of all objects were created manually using the

A class depicted in Fig. 8. The class and the objects were

designed to test various situations, which can occur in

internal structures of general objects – primitive attributes,

reference attributes, arrays, and lists. Similarly, the changes

introduced into one object of each pair of equal objects in

order to create a similar but slightly different object

represent various differences, which can occur in general

objects – different lengths of an array, different values of an

primitive attribute, different references, different elements of

an array and/or a list. The internal structures of the objects

were reasonably small (see Fig. 9) in order to enable

controlled manual introduction of the changes and checking

whether the results of the DOC algorithm are correct.

For each pair of objects, four tests were performed. In two

tests, both objects of the pair were identical. In the remaining

import java.util.List;

public class A {

 private A parent;

 private int number;

 private String string;

 private List<A> list;

 private A[] array;

 public A(A parent, int number, String string,

 List<A> list, A[] array) {

 this.parent = parent;

 this.number = number;

 this.string = string;

 this.list = list;

 this.array = array;

 }

}

Fig. 8 The class A used for the testing of the functionality of the DOC

algorithm

Fig. 9 Structures of objects used for the testing of the functionality of

the DOC algorithm with highlighted differences

1060 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

TABLE I THE RESULT OF THE COMPARISON OF PAIRS OF OBJECTS USING

THE DOC ALGORITHM

Both objects in memory One object saved & loaded Pair of

objects Equal Different Equal Different

1 true false true false

2 true false true false

3 true false true false

4 true false true false

5 true false true false

two tests, one object was similar but slightly different. The

differences are highlighted in Fig. 9. This way, both required

results of the comparison (i.e., true and false) were

tested. The graphs were created for both objects of the pair

and then compared (once for identical objects and once for

similar objects). Moreover, one of the graphs was saved to

and loaded from a file and the comparison was performed

again (once for identical objects and once for similar

objects). This way, it was tested that the saving of the graph

to a file will not affect the comparison.

For pair 1, the objects were instances with empty lists,

arrays with 5 null elements, null parents, but with set

values of numbers and strings. The difference introduced

into one object was one character longer string (see Fig. 9a).

For pair 2, the objects were the same, only the difference was

that one array was one element longer (see Fig. 9b). For pair

3, the objects were again the same and the difference was

that one array has one element (with index equal to 1) not

null. Instead, it pointed to another instance of the A class

with all attributes set to null or 0 (see Fig. 9c).

For pairs 4 and 5, the arrays had 5 elements, one element

(with index equal to 1) was null and the remaining

elements were instances of the A class with null strings,

arrays and lists, but with parents set to the zeroth element of

the array (with the exception of the zeroth element, which

had the parent set to null) and the number set to the index

in the array. The list contained one element corresponding to

the zeroth element of the array. For pair 4, the difference was

a different number value in the fourth element of the array

(see Fig. 9d). For pair 5, the difference was one added

element to the list (second element of the array – see

Fig. 9e).

The results of the testing are summed in Table I. The

algorithm returned the expected value (true or false) in

every instance.

B. Performance of the DOC Algorithm

The performance of the DOC algorithm is important,

because there is a significant number of object comparisons

during both the generation of the testing scenarios and the

comparison of two scenarios. Nevertheless, the number of

comparisons is still far lower than it is necessary for the

caching and similar techniques described for example in [7],

[10], or [12]. For the testing, increasingly complex objects

created using the A class were generated and compared. The

compared objects were always equal. Different objects

TABLE II THE PERFORMANCE OF THE DOC ALGORITHM

Vertices count Edges count
Graphs constru-

ction time [ms]

Graph compari-

son time [ms]

33 42 1.9 0.1

333 442 7.6 0.7

3 333 4 442 110.7 4.6

33 333 44 442 10 131.2 28.8

would cause premature ending of the comparison, because it

is stopped on first uncovered difference (see Fig. 7). The

results are summed in Table II.

As can be seen in Table II, the graph construction phase is

far more time-demanding than the graph comparison phase.

There are several reasons for this. In the graph construction

phase, the graphs of both the compared objects are created

sequentially, which means that roughly half of the time is

necessary to create the graph of a single object. More

importantly, the sequential searching of the list of already

visited objects is employed during this phase (see Fig. 5).

Lastly, Java reflection is used during this phase, which is

inherently slow [8].

The graph construction is not needed during the

comparison of two testing scenarios, where the graphs are

already constructed. However, it is necessary during the

generation of the testing scenario for the comparison of

invocations and consequences. Nevertheless, although these

comparisons are numerous, the graph must be constructed

only once per object. Multiple comparisons can then be

performed using the graph representations of the objects

only. So, the construction of the graph representations of the

objects have a significant performance benefit in addition to

the ability to easily save the graph representation to a file.

VI. CONCLUSION AND FUTURE WORK

In this work, we described the deep object comparison

(DOC) algorithm. The algorithm was designed for our

interface-based regression testing of software components

for the comparison of general objects based on their internal

structures and values of primitive attributes. Based on the

performed tests, the algorithm works correctly for arbitrary

objects, which can incorporate primitive and reference

attributes, lists, and/or (single- or multi-dimensional) arrays.

The performance of the algorithm seems to be reasonable,

since the slower graph construction phase is expected to be

performed by an order of magnitude less often than the faster

graph comparison phase.

In our future work, we will incorporate the DOC

algorithm to our interface-based regression testing of

software components. We will then perform thorough testing

focused on the resulting performance of the entire approach

as well as on its increased ability to detect subtle changes in

behavior of the component-based applications with new

versions of components.

We will also consider the use of the DOC algorithm in

another project focused on the generation of complex testing

data (i.e., objects with complex internal structures). We plan

TOMAS POTUZAK, RICHARD LIPKA: DEEP OBJECT COMPARISON FOR INTERFACE-BASED REGRESSION TESTING OF SOFTWARE COMPONENTS 1061

to employ particle swarm optimization [17] and/or combina-

torial testing [18] to minimize the amount of generated data.

The DOC algorithm can be utilized for the comparison of

generated objects and/or their parts to remove any duplicity.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software –

Beyond Object-Oriented Programming, ACM Press, New York, 2000.

[2] T. Potuzak, R. Lipka, and P. Brada, “Interface-based Semi-automated

Testing of Software Components,” Proceedings of the 2017 Federated

Conference on Computer Science and Information Systems, Prague,

September 2017, pp. 1335-1344, http://dx.doi.org/10.15439/

2017F139

[3] The OSGi Alliance, OSGi Service Platform Core Specification,

release 4, version 4.2, 2009.

[4] C. R. Rupakheti and D. Hou, “An Abstraction-Oriented, Path-Based

Approach for Analyzing Object Equality in Java,” 2010 17th Working

Conference on Reverse Engineering, Beverly, October 2010, pp. 205-

214, http://dx.doi.org/10.1109/WCRE.2010.30

[5] C. R. Rupakheti and D. Hou, “EQ: Checking the Implementation of

Equality in Java,” 2011 27th IEEE International Conference on

Software Maintenance (ICSM), Williamsburg, September 2011, pp.

590-593, http://dx.doi.org/10.1109/ICSM.2011.6080837

[6] D. E. Stevenson and A. T. Phillips, “Implementing Object

Equivalence in Java Using the Template Method Design Pattern,”

Proceedings of the 34th SIGCSE technical symposium on Computer

science education, Reno, January 2003, pp. 278-282, http://dx.doi.org/

10.1145/611892.611987

[7] D. Marinov and R. O’Callahan, “Object Equality Profiling,”

Proceedings of the 18th annual ACM SIGPLAN conference on

Object-oriented programing, systems, languages, and applications,

Anaheim, October 2003, pp. 313-325, http://dx.doi.org/

10.1145/949305.949333

[8] I. R. Forman, N. Forman, Java Reflection in Action, Manning

Publications, 2004.

[9] K. Jezek, L. Holy, A. Slezacek, and P. Brada, “Software Components

Compatibility Verification Based on Static Byte-Code Analysis,” 39th

Euromicro Conference Series on Software Engineering and Advanced

Applications, Santander, September 2013, pp. 145-152,

http://dx.doi.org/10.1109/SEAA.2013.58

[10] A. Infante, A. Bergel, “Object Equivalence: Revisiting Object

Equality Profiling (An Experience Report),” Proceedings of the 13th

ACM SIGPLAN International Symposium on Dynamic Languages,

Vancouver, October 2017, pp. 27-38, http://dx.doi.org/

10.1145/3170472.3133844

[11] A. Infante, “Identifying Caching Opportunities, Effortlessly,”

Companion Proceedings of the 36th International Conference on

Software Engineering, Hyderabad, May 2014, pp. 730-732,

http://dx.doi.org/10.1145/2591062.2591198

[12] G. Xu, “Finding Reusable Data Structures,” Proceedings of the ACM

international conference on Object oriented programming systems

languages and applications, Tuscon, October 2012, http://dx.doi.org/

10.1145/2398857.2384690

[13] K. Nasartschuk, M. Dombrowski, K. B. Kent, A. Micic, D. Henshall,

and C. Gracie, “String Deduplication During Garbage Collection in

Virtual Machines,” Proceedings of the 26th Annual International

Conference on Computer Science and Software Engineering, October

2016, pp. 250-256

[14] G. M. Rama and R. Komondoor, “A Dynamic Analysis to Support

Object-Sharing Code Refactorings,”, Proceedings of the 29th

ACM/IEEE international conference on Automated software

engineering, Vasteras, September 2014, pp. 713-723, http://dx.doi.org/

10.1145/2642937.2642992

[15] M. J. Steindorfer and J. J. Vinju, “Performance Modeling of Maximal

Sharing,” Proceedings of the 7th ACM/SPEC on International

Conference on Performance Engineering, Delft, March 2016,

http://dx.doi.org/10.1145/2851553.2851566

[16] N. Grech, J. Rathke, and B. Fischer, “JEqualityGen: Generating

Equality and Hashing Methods,” Proceedings of the ninth

international conference on Generative programming and component

engineering, Eindhoven, October 2010, pp. 177-186, http://dx.doi.org/

10.1145/1942788.1868320

[17] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,

“Handling constraints in combinatorial interaction testing in the

presence of multi objective particle swarm and multithreading,”

Information and Software Technology, vol. 86, pp. 20–36, 2017 http://

dx.doi.org/10.1016/j.infsof.2017.02.004

[18] M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial

interaction testing: A case study,” 2017 IEEE International

Conference on Software Quality, Reliability and Security Companion

(QRS-C), July 2017, pp. 69–76, http://dx.doi.org/10.1109/QRS-

C.2017.20

1062 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

