


Abstract—In  this  paper,  we  describe  the  deep  object

comparison (DOC) algorithm, which is used for comparison of

general objects in Java programming language based on their

internal structures and values of primitive attributes. The DOC

algorithm was  designed to  be  utilized  in  our  interface-based

regression  testing  of  software  components,  which  enables  to

uncover subtle changes of the behavior of a component-based

application  under  test  with  a  newly  installed  version  of  a

software component in comparison to its behavior with an old

version of this component.

I. INTRODUCTION

HE component-based software development is a part of

software engineering for nearly two decades. It utilizes

isolated reusable software parts called software components,

which provide and/or require functionalities called services.

The  services  are  accessible  using  public  interfaces  of  the

components  and  the  components  are  expected  to  interact

solely using these interfaces. Specific details depend on the

utilized  component model, which defines the behavior, fea-

tures, and interactions of software components and is imple-

mented by a component framework [1].

T

Regardless the utilized component model, a common situ-

ation using the component-based  software  development  is

that a component can be used in different applications and

an application consists of multiple components, which can

originate by different manufacturers [1]. This underlines the

necessity for the testing, not only of the individual compo-

nents, but of the entire component-based application as well.

Additionally, many components exist in several versions,

which  can  mutually  differ  by  the  internal  behavior  (i.e.,

there are different computations),  by the external behavior

(i.e., different interactions with other components), or by the

public interface (i.e., different required and/or provided ser-

vices). In theory, the change of the component’s internal be-

havior should not affect its external behavior and therefore

should not affect the behavior of the entire component-based
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application. Nevertheless, in reality, an unwanted error can

be introduced into the new version of the component, a side

effect of a method invocation can be added or removed, a

computation can be prolonged leading to a time-out to ex-

pire, and so on. So, when installing a new version of a com-

ponent  to  a  functional  component-based  application,  ade-

quate regression testing is desirable even when there are no

apparent external changes of the new version of the compo-

nent in comparison to the old version [2].

During our previous research, we developed an approach

for  interface-based  regression  testing  of  software  compo-

nents, whose source code is not available (e.g., third-party

software components). The approach is tailored for the situ-

ation when there is a new version of a component installed

in a component-based application and we want to check if it

exhibits the same behavior within the application as its old

version [2].

The experimental implementation of the approach, which

was described in [2] in detail, was designed for the OSGi [3]

component model for Java programming language, but the

ideas behind it can be used for other component models and

programming languages as well. The overall process starts

with the analysis of the services and their methods of the

software  components  of  the  entire  component-based  ap-

plica-tion under  test.  For  each  method of  each  service  of

each component, a set of invocations is generated. Then, the

invocations are performed in an iterative phase. In each iter-

ation, all invocations are performed and their conse-quences

are  being  observed  and  stored.  New consequences  of  the

same invocations can emerge, because the inner states of the

components can change between iterations due to the invo-

cation of the methods. Besides the consequences, new invo-

cations can emerge during this phase as consequences of dif-

ferent invocations. Both the new consequences and new in-

vocations are stored only if they are not already stored. This

requires  comparison  of  the  already  stored  items  with  the

newly created items. The process stops when no new conse-

quences  are  created.  The  result  is  a  testing  scenario
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with actions (i.e., invocations) and their consequences, which 

can be saved to a file. If this process is performed prior and 

after the installation of a new version of a component to the 

component-based application under test, the detailed 

comparison of these two saved scenarios can uncover 

changes in the behavior of the application caused by the new 

version of the component [2]. 

In our experimental implementation, we used the standard 

equals() method for the comparison of the objects 

associated with the consequences and the invocations (e.g., 

return values, values of the parameters). Although this can 

work in many cases, it cannot be used universally. Some 

objects do not implement the equals() method, which 

leaves them with the default implementation corresponding 

to the identity (only the same objects are considered equal). 

Even if the equals() method is implemented in the object, 

it can be implemented incorrectly, as pointed out in [4], [5], 

or [6]. And even if it is implemented correctly, it does not 

mean that it considers all primitive values of the object 

recursively [7]. So, it is possible that, although the 

equals() method returns true for a pair of objects, their 

internal structures can be different and/or contain some 

different primitive values. These subtle differences can be 

important for our approach, since they could mean different 

behavior, which we want to detect. 

In order to mitigate this problem, in this paper, we 

describe the deep object comparison, which will replace the 

utilization of the equals() method. The deep object 

comparison enables to compare two objects based on the 

“shape” of their internal structures and all the corresponding 

primitive values. So, no changes in the objects are missed. 

This deep object comparison is suited to be used both during 

the generation of the scenario and during the comparison of 

two scenarios of our interface-based approach for regression 

testing of software components. The algorithm was 

implemented within our Interface Analysis Tool (InAnT). 

The deep object comparison was first tested as a stand-alone 

algorithm, before it will be incorporated into our approach. 

The description of the deep object comparison algorithm 

along with the description of the performed tests is the main 

contribution of this paper. 

The paper is structured as follows. The interface-based 

regression testing of software components is briefly descri-

bed in Section II. Related work is discussed in Section III. In 

Section IV, the deep object comparison is described in 

detail. The performed tests and results are described in 

Section V and the paper is concluded and the future work is 

discussed in Section VI. 

II. INTERFACE-BASED REGRESSION TESTING OF COMPONENTS 

As it was mentioned in Section I, the interface-based 

regression testing of software components is designed to 

uncover any changes in a component-based application’s 

behavior after the installation of a new version of a 

component [2]. The changes are detected during comparison 

of the testing scenario generated and stored from the 

application with the old version of the component and the 

scenario generated and stored from the application with the 

new version of the component [2]. 

A. Generation of the Testing Scenario 

Our approach assumes that the entire component-based 

application is under test, because the components within it 

interact with each other. Their interactions are observed 

during the generation of the scenario in order to uncover the 

behavior of the particular components [2]. 

First step in the generation of the testing scenario is the 

determination of all methods of all services of the 

components of the application under test. This can be done 

by any method capable to retrieve complete method signa-

ture. We use standard OSGi methods and Java reflection [8] 

for this purpose in our experimental implementation [2]. The 

components, their services, and their method are inserted 

into a tree data structure, which forms the basis of the testing 

scenario (see Fig. 1a). 

For each method of this structure, an initial set of 

invocations is generated and added into the structure. Each 

invocation contains a unique combination of values for all 

the parameters of the method. 

The invocations are then successively performed (i.e., the 

methods are invoked with the parameters stored in the 

invocations in the tree data structure) in the iterative phase, 

one at a time, and the consequences of each invocation are 

observed (i.e., what happened when the method was 

invoked). The possible consequences are a thrown exception, 

a return value, a value change in “out” parameters of the 

method,  a subsequent invocation of a service method of ano- 

 

 

Fig. 1 The tree structure of the scenario 
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ther component, and a change of the inner state of the 

component. The last consequence differs from the others, 

since it is not easily observable from outside. So, it is not 

considered by our approach. There can be several 

consequences per method invocation. All the observed 

consequences are added to the tree data structure to the 

invocation, which caused them (see Fig. 1b), but only if they 

are not already present. Each type of consequence contains 

its type and type-dependent data (e.g., the return value, the 

instance of an exception, the changed value of an “out” 

parameter, etc.) [2]. Based on the type and the data, the 

consequences can be mutually compared, which is necessary 

for the determination, whether a new consequence is already 

present or not. 

The most important consequences are the subsequent 

invocations. Each subsequent invocation is defined by the 

method, which it is invoking, and by the unique combination 

of its parameter values. When this consequence is observed, 

it is added to the tree data structure (if not already present) 

similarly to other types of consequences. Moreover, the 

invocation that the consequence represents is added to the 

invocations of the corresponding method into the tree data 

structure (again, only if not already present). These 

invocations are valuable, since their parameter values are 

genuine, originating in the internal logic of the component, 

which invoked the method [2]. 

The invocations contained in the tree data structure are 

performed several times in the iterative phase in order to 

exploit the subsequent invocations. The subsequent 

invocations generated in nth iteration can be performed in 

(n + 1)th iteration and their consequences can be thus 

observed. The iterative phase is stopped when no new 

consequences are generated in the current iteration. At this 

point, the testing scenario represented by the tree data 

structure is complete (see Fig. 1b). All invocations and 

consequences contain a number representing the iteration, in 

which they were added to the structure (starting with 1). The 

initial invocations created prior the iterative phase have this 

number set to 0. The generated scenario is saved to a XML 

file [2]. 

B. Comparison of the Testing Scenario 

When a new version of a component is installed into the 

component-based application under test, the process 

described in Section II.A is repeated and a new scenario is 

created. The saved scenario is then loaded from the XML 

file and both tree data structures are compared. The 

comparison is performed on each level of the structures, 

starting from the component level [2]. 

On each level, it is checked, whether there are correspon-

ding items (i.e., components, services, methods, invocations, 

consequences) in both tree data structures. If so, their sub-

tree is expanded and the comparison continues on the lower 

level. If not so, the difference (item is missing in one or 

second tree data structure) is reported, this item is not expan- 

 

Fig. 2 Result of the comparison of two scenarios (tree data structures) 

 

ded and its lower levels are not considered further [2]. The 

example of the result of the comparison is depicted in Fig. 2. 

The most important differences are on the invocations and 

invocation consequences levels. These differences mean 

different behavior of the application under test with the old 

and the new version of the component. Differences on the 

methods or services levels imply that there are changes in the 

public interface of the component. Our approach of course 

detects these changes, but, unlike the changes in the 

behavior, these changes can be detected by other means as 

well, such as advanced static analysis methods (e.g., see [9]) 

[2]. 

C. Object Comparison Issues 

Both during the generation of the scenario and during the 

comparison of two scenarios, we need to compare general 

objects, which is problematic. 

During the generation of the scenario, the comparison of 

general objects is necessary in the iterative phase when new 

consequences and invocations are generated. They are added 

to the tree data structure only if they are not already 

contained, requiring their comparison to other consequences 

and invocations. It should be noted that due to the tree nature 

of the data structure, a newly generated consequence is 

compared only to the consequences of the corresponding 

invocation. Similarly, a newly generated invocation is 

compared only to the invocations of the corresponding 

method. So, the number of comparison is limited, it is not 

necessary to compare the consequence or invocation to all 

consequences or invocations. 

Nevertheless, the comparison of two consequences lies in 

the comparison of their type and, if the type is the same, in 

the comparison of the type-related data. If the type of both 

compared consequences is the return value, then the 

associated return values are compared. The comparison is 
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trivial if the return values are of primitive types, but 

ambiguous if they are objects. In the experimental 

implementation of our approach, we use the standard 

equals() method for objects, which are not null. This 

can work in many cases, but cannot be used universally.  

For example, some objects do not implement the 

equals() method, which leaves them with the default 

implementation corresponding to the identity (only the same 

objects are considered equal). An example of such object is 

in Fig. 3a. The Point3D class represents a point in space, 

but does not override the equals() method, leaving it with 

its default implementation (from the Object class). When a 

method returns a new instance of the Point3D in every 

invocation (see Fig. 3b), the comparison of this instance to 

another instance using equals() will always return 

false, even with the same values of their corresponding 

coordinates (see Fig. 3c). If an invocation of the method 

depicted in Fig. 3b were performed repeatedly during the 

iterative phase, its return value consequence would always 

seem different, because the return values would not be 

identical (based on the equals() method), although they 

would contain the same values of their corresponding 

coordinates. So, each newly generated consequence would 

be added to the tree data structure in each iteration. The 

iterative phase would not stop until an out-of-memory 

exception would occur. This problem can be mitigated (not 

solved) by introduction of the maximal number of iterations, 

but it is clear that this is not the intended behavior. 

Moreover, there are further issues. Even if the equals() 

method is implemented in the object,  it can be implemented 

 
class Point3D { 

  public int x; 

  public int y; 

  public int z; 

 

  public Point3D(int x, int y, int z) { 

    this.x = x; 

    this.y = y; 

    this.z = z; 

  } 

} 

a) A class representing a point in space without overridden equals() 

method 
 

... 

public Point3D asPoint(int x, int y, int z) { 

  return new Point3D(x, y, z); 

} 

... 

 

b) A method returning a new instance of the Point3D class in every 

invocation 
 

... 

Point3D p1 = asPoint(1, 2, 3); 

Point3D p2 = asPoint(1, 2, 3); 

boolean comparison = p1 == p2; //comparison false 

... 

c) Two results of the method with the same primitive values compared 

Fig. 3 Example of a class without overridden equals() method and 

of following problems 

incorrectly, as pointed out in [4], [5], or [6]. And even if it is 

implemented correctly, it does not mean that it considers all 

primitive values of the object recursively [7]. So, it is 

possible that, although the equals() method returns true 

for a pair of objects, their internal structures can be different 

and/or contain some different primitive values. These subtle 

differences would not be detected using the equals() 

method. 

The described problem is not limited to the return value 

consequences. The same problem is with the comparison of 

consequences representing a change in the “out” parameters 

of a method and with the comparison of invocations. Each 

invocation contains the combination of parameter values of a 

method and these values, which can be general objects, are 

compared during the comparison of the invocations. 

During the comparison of two scenarios, the comparison 

of general objects is needed for the comparison of 

invocations and consequences, similarly to the generation of 

the scenario. Comparison of methods and higher levels of the 

tree data structure are based on data types and names, not 

general objects. The problem with the comparison of general 

objects is more pronounced here, though. The reason is that 

at least one of the compared scenarios is loaded from a XML 

file. In order to utilize the equals() method for the 

comparison, it would be necessary to recreate all the objects 

during the loading of the scenario. This would necessitate 

full-scale serialization of general objects during the saving of 

the scenario to the file. Hence, in the experimental 

implementation of our approach, the general objects 

contained in the invocations and consequences were 

compared only based on their classes and null values. 

More specifically, the information stored to the XML file 

for an object was its real class or null. Hence, during the 

comparison of two scenarios, it was only checked, whether 

both compared objects are null or whether both compared 

objects are of the same class. In these two cases, the objects 

were considered equal. The exception was the instances of 

the String class, which were compared using their content. 

The reason is that the String instances can be easily saved 

and loaded to/from a file. It is clear that this significantly 

reduces abilities of our interface-based regression testing of 

software components. The entire approach works correctly 

and is able to detect changes in behavior of the application 

under test (see [2]). However, many subtle differences in the 

compared scenarios can remain hidden, because the 

information is lost during the saving of the scenario to a file. 

So, some changes in behavior of the application under test 

could remain undetected. 

In order to solve all the described problems, we designed 

the deep object comparison (DOC) described in Section IV 

in detail. The DOC will be incorporated into our interface-

based regression testing of software components where it 

will replace the equals() method during the generation of 

the scenario and the class-based comparison during the 

comparison of two scenarios. 
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III. RELATED WORK 

The issue of object equality in object-oriented languages 

is discussed in scientific literature mainly in relation to 

memory optimization and to object equality implementation. 

Both branches are discussed in following subsections. 

Although none of these branches is related to software 

testing, the algorithms described in the discussed papers 

solve problems similar to our deep object comparison.  

We focused mainly on the papers regarding the Java 

programming language, since our current implementation is 

written in this language. However, the principles can be used 

in similar languages (e.g., C#) as well. 

A. Memory Optimization 

There are several papers focused on the optimization of 

memory management in languages, which utilize garbage 

collection (i.e., automatic disposal of objects, which are no 

longer in use by the program). The main idea behind these 

works is that there are a number of equivalent objects in the 

memory during the execution of a program, which can be 

replaced by a single instance while preserving the same be-

havior of the entire program (see [7], [10], [11], [12], etc.). 

In [7], a tool enabling detection of equivalent objects in a 

Java application, which can be replaced by a single instance, 

is described. The investigated application is instrumented 

and, during its execution, all relevant heap activity is 

recorded. After the execution, the post-mortem analysis is 

performed. The objects of the application are separated into 

equivalence classes. Each equivalence class can be replaced 

by a single instance. No automatic optimization is perfor-

med. The tool only uncovers and reports the sites (i.e., 

positions in source code) of the program with the potential 

for an optimization by replacing more equivalent objects 

with a single instance [7]. In order to determine, whether an 

object can be replaced by another object without affecting 

the behavior of the application, it is necessary to compare 

these objects thoroughly. It is pointed out that a full compa-

rison requires checking of two potentially cyclic labeled 

graphs for isomorphism. As a large number of comparisons 

is required in this approach, a hash value is calculated for 

each object, which is then used for faster comparison of the 

objects [7]. 

Similar approach is described in [10], although it is 

intended for a different programming language (Pharo). 

Again, the relevant heap activity is recorded during a run of 

the application under test and the post-mortem analysis is 

performed after the run. The main difference is that, in [10], 

the objects are divided into several types and only certain 

types of objects, which are susceptible to redundancy (e.g., 

instances of the String or Point classes), are considered 

as optimization opportunities. Directed vertex and edge 

labeled graph is used for the representation of the internal 

structure of objects for the comparison purposes. Based on 

it, a hash value is calculated for each considered object to 

speed up its comparison to other objects [10]. 

In [11], the conditions, which an object must satisfy to be 

considered for caching, are discussed. The paper is focused 

on immutability of objects, which is in some form often 

required by caching and similar techniques (including 

techniques described in [7] and [10]). It is pointed out that 

the border between construction and mutation of an object is 

not always clear [11]. 

In [13], an advanced method for the reduction of the 

duplication of strings is described. The comparison of 

objects is straightforward in this case, as the compared 

objects are instances of the String class. 

In [12], a similar yet different technique to [7] and [10] is 

described. Similarly to the [7] and [10], the technique 

searches the sites (i.e., positions in source code) in an 

application, which have the potential to be optimized by 

reusing existing objects or data structures [12]. Unlike [7] 

and [10], the technique is focused not only on finding 

equivalent objects, but on finding reusable instances as well. 

The idea is that it is not necessary to create a new (possibly 

internally complex) instance when there is another instance 

of the same class available, which is no longer in use. In that 

case, it is only necessary to change settings of its primitive 

values, but it is not necessary to create new object and its 

entire internal structure. Moreover, since the unused object is 

reused, its garbage collection is saved. Thus, the techniques 

tend to utilize objects, which are relatively short-lived. So, 

unlike [7], [10], which are focused mainly on the reduction 

of the memory consumption, [12] is focused also on the 

reduction of computation time. For the representation of the 

internal structure of the objects, modified balanced 

parenthesis algorithm is used [12].  

In contrast to [12], the technique described in [14] is 

focused on the long-lived objects, which are candidates for 

caching. For the speedup of the object comparison, a form of 

hash value called “fingerprint” of the object is used. In 

standard classes from the java.lang package, the 

equals() method is used [14]. 

In [15], the performance of the hash-consing (i.e., 

utilization of a global cache of objects) is discussed. The 

comparison of objects is based on the equals() method 

even when this method does not consider all attributes of the 

object. The authors also define weak immutability of an 

object based only on the values of the attributes, which are 

considered by the equals() method. Again, a hash value 

is used for the description of the objects [15]. 

B. Object Equality Implementation 

The other group of scientific papers regarding the object 

equality is focused on the implementation of the equals() 

method. In majority of this papers, the required features of 

the equals() method are cited – the reflexivity, symmetri-

city, and transitivity [4]. In some works, it is pointed out that 

many textbooks contain flawed implementations of the 

equals() method (e.g., [4], [6]). 
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In [4], a checker of the equals() methods is described. 

The checker is focused on the features of the equals() 

methods under test and reports any violation of these 

features. However, it is not focused on comparison of the 

entire internal structure of complex objects [4]. In [6], the 

right design of the equals() method using design patterns 

is discussed. 

A generator of the equals() methods for complex 

objects is described in [16]. In this work, the objects are 

compared on per-field basis. There are several “depths” of 

equality defined. Depth-0 corresponds to the referential 

equality, meaning that the objects are equal if both are the 

same object (corresponding to the comparison operator 

“==”). Depth-1 (shallow equality) means that, for all 

corresponding fields of two objects, the referential equality 

holds. The deep equality then means that, for all 

corresponding fields of two objects, the deep equality holds 

[16]. 

IV. DEEP OBJECT COMPARISON 

As it was mentioned in Section II.C, the deep object 

comparison (DOC) is designed for our interface-based 

regression testing of software components. It will replace the 

comparison of general objects using the equals() method 

during the generation of the testing scenario and the 

comparison of general objects using their classes and null 

values during the comparison of two scenarios. Hence, the 

DOC algorithm has two phases – the forming of the graph 

representation of the object and the comparison of two 

graphs of the compared objects. The main advantage of this 

approach is that the graph representation of the object can be 

easily saved to and loaded from a file. So, no information 

will be lost during the saving of the scenario. 

A. Object Equality 

As arises from Section III, there are various views on the 

equality of two objects. Nevertheless, since our goal is to 

uncover any difference of the compared objects, however 

subtle, we have to adopt the view of the deep equality 

described in [16]. Similar definitions are described also in 

[7], [10], or [11]. Nevertheless, all the definitions of the 

equality described in these works are recursive. Since the 

DOC algorithm creates a graph representing the internal 

structure of the object, our definition is based on this graph. 

It is not recursive, but expresses similar conditions as the 

definition of the deep equality described in [16]. 

Suppose there are two compared objects a and b and the 

graph representations of their internal structures were created 

(see Section IV.B). Objects a and b are considered equal if 

and only if they are of the same class, their graph 

representations are isomorphic (i.e., have the same “shape”), 

and all values of the corresponding primitive attributes in the 

corresponding vertices of the graphs are of the same type and 

equal. Fig. 4 shows several examples of pairs of objects, 

which are considered equal or different. 

 

Fig. 4 Examples of objects considered equal and different 

B. Forming of the Graph of an Object 

When we compare two objects, it is checked whether both 

objects are not null and whether they are of the same class. 

If not so, the objects are considered different. If so, the DOC 

algorithm is used. Its first step is the creation of the graph 

representations of both compared objects. The representation 

is a directed vertex- and edge-labeled graph. 

Each vertex of the graph corresponds to a single object of 

the internal structure of the object that we want to compare. 

The starting vertex of the graph corresponds to the object 

that we want to compare. Each vertex incorporates the ID, 

the state that is used during the comparison of two graphs 

(see Section IV.C) and the reference to the object that this 

vertex represents. It also incorporates a list containing types, 

names, and values of all primitive attributes of the object that 

this vertex represents. 

Each directed edge of the graph represents a reference 

attribute of the object and points to the vertex, representing 

the object, to which the reference attribute is pointing. Each 

edge incorporates the type (i.e., the class) and the name of 

the reference attribute it represents. 

The reference attributes that are arrays are treated 

specifically. If the attribute is an array of primitive values, 

each value is considered a primitive attribute with the name 

created from the name of the array attribute and the index of 

the value. If the attribute is an array of references, each value 

is considered a reference attribute, which means that it is 
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represented as an edge in the graph. The name is again 

constructed from the name of the array attribute and the 

index of the value. Similar approach is used for multi-

dimensional arrays. As these arrays are represented as an 

array of arrays in Java, each inner dimension of the array is 

treated as an object (i.e., it is represented by a vertex in the 

graph) with attributes corresponding to the values on 

particular indices. Since these attributes do not have names, 

their indices are used instead. The reference attributes, which 

are null, and array attributes pointing to empty arrays are 

treated as primitive attributes. 

The forming of the graph is based on the breadth-first 

search (BFS) algorithm starting in the object that we want to 

compare. There are a queue and a list of all vertices of the 

graph, which are empty at the start. First vertex is created 

from the object that we want to compare and is inserted to 

the list and to the queue. The forming of the graph then 

continues while the queue is not empty. First vertex is 

removed from the queue (current vertex) and all attributes of 

the object that is represented by this vertex are determined 

using reflection [8]. All primitive attributes are added to the 

list in this vertex. For each reference attribute, a new vertex 

is created. If this vertex is not in the list of all vertices, this 

new vertex is added to the queue and an edge is formed from 

the current vertex to the newly created vertex. If it is already 

present in the list, it is not added to the queue and a new 

edge is formed from the current vertex to the vertex from the 

list.  

The presence of the vertex in the list is determined using 

the sequence searching and the comparison of objects that 

the vertices represent using the comparison operator “==”. 

This way, it is ensured that already visited objects (e.g., due 

to cyclic references) are not visited again. 

 
allVertices = List(); 

queue = Queue(); 

vertex = Vertex(comparedObject); 

allVertices.add(vertex); 

queue.add(vertex); 

while (!queue.isEmpty()) { 

  vertex = queue.remove(); 

  vertex.primitives=getPrimitives(vertex.object); 

  references = getReferences(vertex.object); 

  for (r: references) { 

    neighbor = Vertex(r.object); 

    index = allVertices.indexOf(neighbor); 

    edge = Edge(r); 

    if (index >= 0) { 

      edge.vertex = allVertices[index]; 

    } 

    else { 

      edge.vertex = neighbor; 

      queue.add(neighbor); 

      allVertices.add(neighbor); 

    } 

    vertex.addEdge(edge); 

  } 

} 

for (i = 0; i < allVertices.length; i++) { 

  allVertices[i].ID = i; 

} 

Fig. 5 Pseudocode for the forming of the graph representation of an 

object 

 

Fig. 6 The resulting graph (on the right) with references to the object 

(on the left) 

 

When the queue is empty, the graph is fully formed. The 

last step is the assignment of the IDs to all vertices based on 

their indices in the list. These IDs are used during the saving 

of the graph to a file. The algorithm is described in Fig. 5 in 

pseudocode. The resulting graph for the object a from 

Fig. 4a is depicted in Fig. 6. 

C. Comparison of Graphs 

Two graphs created as described in Section IV.B can be 

easily compared without the references to the original 

objects, from which they were formed. The structure of each 

graph is represented by its vertices and edges, which also 

incorporate all necessary information – the values of primi-

tive attributes and the names and types of all attributes. This 

is important, because the graph can be saved to a file and 

then loaded from this file and it is not necessary to recreate 

the original object, from which the graph was formed.  

The graphs are compared using their parallel BFS 

exploration. Basically, in one loop, both graphs are explored.  

 
v1 = graph1.rootVertex; v1.state = GRAY; 

v2 = graph2.rootVertex; v2.state = GRAY; 

queue1 = Queue();  

queue2 = Queue(); 

queue1.add(v1);  

queue2.add(v2); 

equal = true; 

while (!queue1.isEmpty()) { 

  v1 = queue1.remove(); 

  v2 = queue2.remove(); 

  if (v2 == null) { 

    equal = false; 

    break; 

  } 

  if (!compare(v1.primitives, v2.primitives)) { 

    equal = false; 

    break; 

  } 

  for (e: v1.edges) { 

    if (e.vertex.state == WHITE) { 

      queue1.add(e.vertex); 

      e.vertex.state = GRAY; 

    } 

  } 

  for (e: v2.edges) { 

    if (e.vertex.state == WHITE) { 

      queue2.add(e.vertex); 

      e.vertex.state = GRAY; 

    } 

  } 

  v1.state = BLACK; 

  v2.state = BLACK; 

} 

if (!queue2.isEmtpy()) 

  equal = false; 

Fig. 7 Pseudocode for the comparison of two graphs 
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For each node, it is checked, whether they have the same 

count of primitive attributes with the same values. If a diffe-

rence is found, the loop is ended prematurely and the objects 

are considered different. The objects are also considered 

different, when the graph of one of the objects is fully 

explored and the other is not. The algorithm is described in 

Fig. 7 in pseudocode. 

V. VALIDATION AND RESULTS 

The described DOC algorithm was thoroughly tested using 

two sets of tests. In the first set, we focused on the correct 

functionality of the algorithm. The second set of tests was 

focused on the performance of the algorithm. All tests were 

performed on a standard notebook computer with dual-core 

Intel i5-6200U at 2.30 GHz with HyperThreading, 8 GB of 

RAM and 250GB SSD/500GB HDD. The software environ-

ment consisted of the Windows 7 SP1 (64 bit), Java 1.6 (32 

bit), and Equinox OSGi framework. 

A. Correct Functionality of the DOC Algorithm 

The correct functionality of the DOC algorithm was tested 

by comparison of pairs of similar or equal objects. There 

were 5 pairs with variously complicated internal structures. 

The structures of all objects were created manually using the 

A class depicted in Fig. 8. The class and the objects were 

designed to test various situations, which can occur in 

internal structures of general objects – primitive attributes, 

reference attributes, arrays, and lists. Similarly, the changes 

introduced into one object of each pair of equal objects in 

order to create a similar but slightly different object 

represent various differences, which can occur in general 

objects – different lengths of an array, different values of an 

primitive attribute, different references, different elements of 

an array and/or a list. The internal structures of the objects 

were reasonably small (see Fig. 9) in order to enable 

controlled manual introduction of the changes and checking 

whether the results of the DOC algorithm are correct. 

For each pair of objects, four tests were performed. In two 

tests, both objects of the pair were identical. In the remaining  

 
import java.util.List; 

 

public class A { 

  private A parent; 

  private int number; 

  private String string; 

  private List<A> list; 

  private A[] array; 

 

  public A(A parent, int number, String string,  

      List<A> list, A[] array) { 

    this.parent = parent; 

    this.number = number; 

    this.string = string; 

    this.list = list; 

    this.array = array; 

  } 

} 

Fig. 8 The class A used for the testing of the functionality of the DOC 

algorithm 

 

Fig. 9 Structures of objects used for the testing of the functionality of 

the DOC algorithm with highlighted differences 
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TABLE I THE RESULT OF THE COMPARISON OF PAIRS OF OBJECTS USING 

THE DOC ALGORITHM 

Both objects in memory One object saved & loaded Pair of 

objects Equal Different Equal Different 

1 true false true false 

2 true false true false 

3 true false true false 

4 true false true false 

5 true false true false 

 

two tests, one object was similar but slightly different. The 

differences are highlighted in Fig. 9. This way, both required 

results of the comparison (i.e., true and false) were 

tested. The graphs were created for both objects of the pair 

and then compared (once for identical objects and once for 

similar objects). Moreover, one of the graphs was saved to 

and loaded from a file and the comparison was performed 

again (once for identical objects and once for similar 

objects). This way, it was tested that the saving of the graph 

to a file will not affect the comparison. 

For pair 1, the objects were instances with empty lists, 

arrays with 5 null elements, null parents, but with set 

values of numbers and strings. The difference introduced 

into one object was one character longer string (see Fig. 9a). 

For pair 2, the objects were the same, only the difference was 

that one array was one element longer (see Fig. 9b). For pair 

3, the objects were again the same and the difference was 

that one array has one element (with index equal to 1) not 

null. Instead, it pointed to another instance of the A class 

with all attributes set to null or 0 (see Fig. 9c).  

For pairs 4 and 5, the arrays had 5 elements, one element 

(with index equal to 1) was null and the remaining 

elements were instances of the A class with null strings, 

arrays and lists, but with parents set to the zeroth element of 

the array (with the exception of the zeroth element, which 

had the parent set to null) and the number set to the index 

in the array. The list contained one element corresponding to 

the zeroth element of the array. For pair 4, the difference was 

a different number value in the fourth element of the array 

(see Fig. 9d). For pair 5, the difference was one added 

element to the list (second element of the array – see 

Fig. 9e).  

The results of the testing are summed in Table I. The 

algorithm returned the expected value (true or false) in 

every instance. 

B. Performance of the DOC Algorithm 

The performance of the DOC algorithm is important, 

because there is a significant number of object comparisons 

during both the generation of the testing scenarios and the 

comparison of two scenarios. Nevertheless, the number of 

comparisons is still far lower than it is necessary for the 

caching and similar techniques described for example in [7], 

[10], or [12]. For the testing, increasingly complex objects 

created using the A class were generated and compared. The 

compared   objects   were   always   equal.   Different   objects 

TABLE II THE PERFORMANCE OF THE DOC ALGORITHM 

Vertices count Edges count 
Graphs constru- 

ction time [ms] 

Graph compari- 

son time [ms] 

33 42 1.9 0.1 

333 442 7.6 0.7 

3 333 4 442 110.7 4.6 

33 333 44 442 10 131.2 28.8 

 

would cause premature ending of the comparison, because it 

is stopped on first uncovered difference (see Fig. 7). The 

results are summed in Table II. 

As can be seen in Table II, the graph construction phase is 

far more time-demanding than the graph comparison phase. 

There are several reasons for this. In the graph construction 

phase, the graphs of both the compared objects are created 

sequentially, which means that roughly half of the time is 

necessary to create the graph of a single object. More 

importantly, the sequential searching of the list of already 

visited objects is employed during this phase (see Fig. 5). 

Lastly, Java reflection is used during this phase, which is 

inherently slow [8]. 

The graph construction is not needed during the 

comparison of two testing scenarios, where the graphs are 

already constructed. However, it is necessary during the 

generation of the testing scenario for the comparison of 

invocations and consequences. Nevertheless, although these 

comparisons are numerous, the graph must be constructed 

only once per object. Multiple comparisons can then be 

performed using the graph representations of the objects 

only. So, the construction of the graph representations of the 

objects have a significant performance benefit in addition to 

the ability to easily save the graph representation to a file. 

VI. CONCLUSION AND FUTURE WORK 

In this work, we described the deep object comparison 

(DOC) algorithm. The algorithm was designed for our 

interface-based regression testing of software components 

for the comparison of general objects based on their internal 

structures and values of primitive attributes. Based on the 

performed tests, the algorithm works correctly for arbitrary 

objects, which can incorporate primitive and reference 

attributes, lists, and/or (single- or multi-dimensional) arrays. 

The performance of the algorithm seems to be reasonable, 

since the slower graph construction phase is expected to be 

performed by an order of magnitude less often than the faster 

graph comparison phase. 

In our future work, we will incorporate the DOC 

algorithm to our interface-based regression testing of 

software components. We will then perform thorough testing 

focused on the resulting performance of the entire approach 

as well as on its increased ability to detect subtle changes in 

behavior of the component-based applications with new 

versions of components.  

We will also consider the use of the DOC algorithm in 

another project focused on the generation of complex testing 

data (i.e., objects with complex internal structures). We plan 
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to employ particle swarm optimization [17] and/or combina-

torial testing [18] to minimize the amount of generated data.

The DOC algorithm can be utilized for the comparison of

generated objects and/or their parts to remove any duplicity.

REFERENCES

[1] C.  Szyperski,  D.  Gruntz,  and  S.  Murer,  Component  Software  –

Beyond Object-Oriented Programming, ACM Press, New York, 2000.

[2] T. Potuzak, R. Lipka, and P. Brada, “Interface-based Semi-automated

Testing of Software Components,” Proceedings of the 2017 Federated

Conference on Computer Science and Information Systems, Prague,

September  2017,  pp.  1335-1344,  http://dx.doi.org/10.15439/

2017F139

[3] The  OSGi  Alliance,  OSGi  Service  Platform  Core  Specification,

release 4, version 4.2, 2009.

[4] C. R. Rupakheti and D. Hou, “An Abstraction-Oriented, Path-Based

Approach for Analyzing Object Equality in Java,” 2010 17th Working

Conference on Reverse Engineering, Beverly, October 2010, pp. 205-

214, http://dx.doi.org/10.1109/WCRE.2010.30

[5] C. R. Rupakheti and D. Hou, “EQ: Checking the Implementation of

Equality  in  Java,”  2011  27th  IEEE  International  Conference  on

Software Maintenance (ICSM),  Williamsburg,  September  2011,  pp.

590-593, http://dx.doi.org/10.1109/ICSM.2011.6080837

[6] D.  E.  Stevenson  and  A.  T.  Phillips,  “Implementing  Object

Equivalence  in  Java  Using  the  Template  Method  Design  Pattern,”

Proceedings of the 34th SIGCSE technical symposium on Computer

science education, Reno, January 2003, pp. 278-282, http://dx.doi.org/

10.1145/611892.611987

[7] D.  Marinov  and  R.  O’Callahan,  “Object  Equality  Profiling,”

Proceedings  of  the  18th  annual  ACM  SIGPLAN  conference  on

Object-oriented  programing,  systems,  languages,  and  applications,

Anaheim,  October  2003,  pp.  313-325,  http://dx.doi.org/

10.1145/949305.949333

[8] I.  R.  Forman,  N.  Forman,  Java  Reflection  in  Action,  Manning

Publications, 2004.

[9] K. Jezek, L. Holy, A. Slezacek, and P. Brada, “Software Components

Compatibility Verification Based on Static Byte-Code Analysis,” 39th

Euromicro Conference Series on Software Engineering and Advanced

Applications,  Santander,  September  2013,  pp.  145-152,

http://dx.doi.org/10.1109/SEAA.2013.58

[10] A.  Infante,  A.  Bergel,  “Object  Equivalence:  Revisiting  Object

Equality Profiling (An Experience Report),” Proceedings of the 13th

ACM SIGPLAN International  Symposium on Dynamic  Languages,

Vancouver,  October  2017,  pp.  27-38,  http://dx.doi.org/

10.1145/3170472.3133844

[11] A.  Infante,  “Identifying  Caching  Opportunities,  Effortlessly,”

Companion  Proceedings  of  the  36th  International  Conference  on

Software  Engineering,  Hyderabad,  May  2014,  pp.  730-732,

http://dx.doi.org/10.1145/2591062.2591198

[12] G. Xu, “Finding Reusable Data Structures,” Proceedings of the ACM

international  conference  on  Object  oriented  programming  systems

languages and applications, Tuscon, October 2012,  http://dx.doi.org/

10.1145/2398857.2384690

[13] K. Nasartschuk, M. Dombrowski, K. B. Kent, A. Micic, D. Henshall,

and C. Gracie,  “String Deduplication During Garbage Collection in

Virtual  Machines,”  Proceedings  of  the  26th  Annual  International

Conference on Computer Science and Software Engineering, October

2016, pp. 250-256

[14] G. M. Rama and R. Komondoor, “A Dynamic Analysis to Support

Object-Sharing  Code  Refactorings,”,  Proceedings  of  the  29th

ACM/IEEE  international  conference  on  Automated  software

engineering, Vasteras, September 2014, pp. 713-723, http://dx.doi.org/

10.1145/2642937.2642992

[15] M. J. Steindorfer and J. J. Vinju, “Performance Modeling of Maximal

Sharing,”  Proceedings  of  the  7th  ACM/SPEC  on  International

Conference  on  Performance  Engineering,  Delft,  March  2016,

http://dx.doi.org/10.1145/2851553.2851566

[16] N.  Grech,  J.  Rathke,  and  B.  Fischer,  “JEqualityGen:  Generating

Equality  and  Hashing  Methods,”  Proceedings  of  the  ninth

international conference on Generative programming and component

engineering, Eindhoven, October 2010, pp. 177-186, http://dx.doi.org/

10.1145/1942788.1868320

[17] B.  S.  Ahmed,  L.  M.  Gambardella,  W.  Afzal,  and  K.  Z.  Zamli,

“Handling  constraints  in  combinatorial  interaction  testing  in  the

presence  of  multi  objective  particle  swarm  and  multithreading,”

Information and Software Technology, vol. 86, pp. 20–36, 2017 http://

dx.doi.org/10.1016/j.infsof.2017.02.004

[18] M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial

interaction  testing:  A  case  study,”  2017  IEEE  International

Conference on Software Quality, Reliability and Security Companion

(QRS-C),  July  2017,  pp.  69–76,  http://dx.doi.org/10.1109/QRS-

C.2017.20

1062 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


