Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 969-973 ISSN 2300-5963 ACSIS, Vol. 15

DOI: 10.15439/2018F53

Agile to Lean Software Development
Transformation: a Systematic Literature Review

Filip Kis§ and Bruno Rossi
Faculty of Informatics
Masaryk University, Brno, Czech Republic
Email: {390917,brossi} @mail.muni.cz

Abstract—Context: Lean development has been often proposed
as an adaptation to agile for scaling-up to larger contexts. Goals:
we wanted to better understand the “agile-to-lean” transforma-
tion, in terms of: i) reported benefits, ii) challenges faced, iii) met-
rics used. Method: we performed a Systematic Literature Review
(SLR) about agile-to-lean” transformations. Results: reduced
lead time, improved flow, continuous improvement, and improved
defect fix rate were the main reported benefits. Adaptation to lean
thinking, teaching the lean mindset, identification of the concept
of waste, and scaling flexibility were the main challenges. Lead
time was the most reported metric.

I. INTRODUCTION

OWADAYS, many software organizations use agile

methodologies for their software development processes,
finding benefits for process improvement [1]-[3]. Lean soft-
ware development [4] has been used to optimize development
processes, mainly due to the concept of waste reduction in-
volved in the optimization of all activities producing inefficien-
cies [4]. This view is complementary to agile principles, more
focused on all activities that create value for the customer.

The term lean software development originated from the
work of Mary and Tom Poppendieck [4]. Lean software
development can be characterized as a combination of lean
manufacturing with the lean IT principles and their application
into software development [5]. This approach is driven by a
series of seven principles: eliminate waste, decide as late as
possible, amplify learning, deliver as fast as possible, empower
the team, build integrity in, and see the whole [4], [5].

Many authors suggest that lean thinking can be used as
guiding principles to implement and adopt agile development
practices [4]. Wang [1] has identified and analyzed various
combinations of lean and agile as reported by previous re-
search: lean principles can either be used to adapt existing
agile practices or to scale-up the agile software development
practices [1]. However, there is no universal type of “agile-
lean” combination that can be used for every situation [1].

The goal of this paper is to identify benefits, challenges, and
metrics used in “agile-to-lean” transformations. Identification
of such factors can allow to better understand “agile-to-lean”
transformations, providing more evidence about how such
transformation is happening.

II. SLR

A Systematic Literature Review (SLR) is a process which
summarizes, organizes, and documents previous research of a

IEEE Catalog Number: CFP1885N-ART (©2018, PTI

field in a systematic way [6]. To conduct the review on “agile-
to-lean” transformations, we followed the SLR guidelines by
Kitchenham and Charters [6].

A. Needs for an SLR

”Agile-to-lean” is a less explored research area compared
to “waterfall-to-agile” (e.g., Middleton [7]). There are other
SLRs performed on lean methodologies but they are focused
either at the business level [8], or at the level of metrics used in
lean / agile software projects within industry [9]. One literature
review on the “agile-to-lean” transformation [10], focused on
categorizing and comparing the transformations including 30
experience reports. Compared to the study by Wang et al. [10],
our study is more focused on benefits, challenges and metrics.

B. Research questions

RQ1. What are the benefits that have been reported after the
adoption of lean principles in the context of an ongoing
agile development process?

What are the challenges that have been reported after
the adoption of lean principles in the context of an
ongoing agile development process?

Which metrics have been used to measure the “agile-

to-lean” transformation?

RQ2.

RQ3.

C. Search strategy & study selection

We have collected research papers available online in three
digital repositories: Web of Science (WoS), IEEExplore, ACM
Digital Library (DL) (on 2017-06-10, Fig. 1). We used ”lean
software development OR agile transformation OR lean trans-
formation” as search string, as we preferred to start with a
more general query and filter out results later.

The first stage of search strategy (automated search in
online databases) included only studies written in English. The
EndNote reference manager software was used for excluding
duplicates and narrowing down the initial search results from
1,787 to 856 research papers (Fig. 1). We have included
journals and conference papers published since 2003, after the
work of Mary and Tom Poppendieck [4].

In the second stage (filtering based on title and abstract),
multiple search criteria have been applied such as the exclusion
of papers that involved lean manufacturing or any other subject
areas outside software engineering. A total of 131 papers have
passed the second stage of the search strategy (Fig. 1).

969

970

Stage three (full-text filtering) was performed manually
going through the remaining entries. 18 papers were included
based on full text reading. Quality criteria (section II-D) were
applied to find papers involving organizational transformation
from agile to lean. After quality assessment, a total of 8 papers
were included in the final SLR list (Fig. 1).

:" Full Text \‘; :" Final

{ Reading | 18 | Review | g 8

Final set

¢ Duplicates \‘: i Title & Abs .";
1787 i removal | g5 | Filtering {131

-
1158

(-]
419

(-]
=
210

Fig. 1. SLR papers selection process

D. Study quality assessment criteria

After 18 papers were selected (Table I), we have conducted
a quality assessment process to select the papers fitting the
exact purpose of this research:

Cl. Is the agile methodology at the initial state of the

transformation?

C2. Is the reported company making a transformation to-
wards lean software development practices?

C3. Does the paper provide metrics used for the transfor-

mation and states clear outcomes?

Papers were given points from 0 (meaning "no”), 0.5
("partly”) to 1 ("yes”). All papers reaching the score marked
as > 2.5 for sum(C1,C2,C3) (Table I) were included for
conducting the literature review (Table II).

TABLE 1
QUALITY ASSESSMENT OF THE SELECTED PAPERS
SLR Article C1 C2 C3 Score
S1 Hayata et al. [11] yes no no 1.0
S2 Jakobsen and Poppendieck [12] yes yes yes 3.0
S3 Kuusela and Koivuluoma [13] yes partly no 1.5
S4 Middleton and Joyce [2] yes yes yes 3.0
S5 Misaghi and Bosnic [14] yes yes yes 3.0
S6 Paasivaara et al. [15] no yes yes 2.0
S7 Perera and Fernando [16] yes yes yes 3.0
S8 Petersen and Wohlin [17] yes yes yes 3.0
S9 Rodriguez et al. [18] no yes yes 2.0
S10 Rodriguez et al.[19] yes yes yes 3.0
S11 Samanta et al. [20] - yes yes 2.0
S12 Schnitter and Mackert [21] yes partly partly 2.0
S13 Sjgberg et al. [22] yes no partly 1.5
S14 Swaminathan and Jain [23] yes yes yes 3.0
S15 Trimble and Webster [24] no yes no 1.0
S16 Vilkki [25] no yes no 1.0
S17 Viswanath [26] no yes yes 2.0
S18 Walter et al. [27] yes yes partly 2.5

III. SLR RESULTS
A. Benefits (RQI)

To answer our first research question (RQ1, Fig. 2), we have
reviewed and categorized the reported benefits.

1) Reduced lead time: The most common benefit that has
been reported is reduced lead time as it was found in six
studies [2], [16], [17], [19], [23], [27]. Middleton and Joyce
[2] describe lead time as the total time recorded from a
customer request to the completed work delivery. Reducing

PROCEEDINGS OF THE FEDCSIS. POZNAN, 2018

64
14

D
Continuous improvement @
Improved Defect Fix Rate @@

S2 S4 S5 S7 S8 S10 S14 S18
Benefits mapped to papers. O = benefit reported in the paper

Reduced Lead Time

o
00

Improved Flow

000
90606

Fig. 2.

lead times contributes to flow improvement so that activities
are organized continuously, enabling smooth deliveries to
the customer. Middleton and Joyce [2] also state that they
have experienced 47% less variance and on average 37%
shorter lead time to deliver software, which is a significant
improvement. Moreover, Walter et al. [27] have recorded an
enhancement of approximately 70% which can dramatically
increase the time-to-market responsiveness. Early feedback
from the customer implies frequent integration, an important
factor to improve the software product quality.

2) Improved flow: Improved flow was reported in four cases
[12], [19], [23], [27]. Walter et al. [27] have discovered that
the secret to improve the flow is to control Work-in-Progress
(WiP) items. By reducing the number of simultaneous tasks
they have reached lean flow state with constant throughput.
Flow can be seen as the number of WiP items, so that
lowering the number of such items can speed-up the whole
process and more features can be implemented and eventually
delivered. Therefore, to speed-up the flow, it is essential to
remove waste in the inventory to avoid piling up user stories.
Rodriguez et al. [19], Middleton and Joyce [2] state that
limiting WiP is an important element for achieving flow.
Limited WiP leads to more organized activities so that the
improved flow can lead to smooth deliveries [19]. Additionally,
continuous integration and test automation significantly sup-
ported the flow by frequent and smaller builds [19]. According
to Swaminathan and Jain [23], tracking and acting on the
visual indicators provided by the cumulative flow diagram
helped to maintain a uniform flow. Moreover, it also helped
to identify and remove bottlenecks and improve the efficiency
of the process. This increase in efficiency also enforced rapid
development and continuous improvement to software delivery
[23]. Jakobsen and Poppendieck [12] have improved the flow
of story implementation from 30% to 60%. The flow was
improved in various areas such as test, development, project
start-up and customer activities related to contracting and
ongoing clarifications, major benefits for the company.

3) Continuous improvement: Four studies [2], [12], [23],
[27] experienced continuous improvement as a benefit of their
transformation. In Swaminathan and Jain [23], the story rate
per iteration was used as a metric to measure continuous im-
provement, which was proved by the evidence of cumulating
story points. On the other hand, the basis for the continuous
improvement in Walter et al. [27] was established by letting
each team self-organize and set their own WiP size.

Continuous improvement carried out on a daily basis
showed a significant increase in the software delivery pre-

FILIP KISS, BRUNO ROSSI: AGILE TO LEAN SOFTWARE DEVELOPMENT TRANSFORMATION: A SYSTEMATIC LITERATURE REVIEW

TABLE I
PRIMARY STUDIES LINKED TO THE REFERENCES WITH COUNTRY AND DOMAIN OF THE CASE STUDY/EXPERIMENT

Paper ID Reference Domain Type Year Country
S2 Jakobsen and Poppendieck [12] Software company: complex and critical IT solutions case study 2005 Denmark
S4 Middleton and Joyce [2] ‘Webmedia department software processes case study 2009 UK
S5 Misaghi and Bosnic [14] Software company: leading supplier of systems for the supply chain case study 2011 Brazil
S7 Perera and Fernando [16] Students groups during len-to-agile transformation experiment 2007 Sri Lanka
S8 Petersen and Wohlin [17] Large provider of ICT to service providers case study 2009 Sweden
S10 Rodriguez et al. [19] Wireless Embedded Systems case study 2010 Finland
S14 Swaminathan and Jain [23] Multinational IT consulting organization case study 2012 India
S18 Walter et al. [27] Software development for big telecommunication companies case study 2015 Brazil

dictability [2]. Moreover, data collected over a twelve months
period showed significant improvement as the time taken to
resolve issues was reduced by 81%.

4) Improved defect fix rate: Adopting lean principles to an
ongoing agile process has reflected in improved defect fix rate
in five papers [2], [12], [14], [16], [27]. Lean promotes finding
and fixing defects early, so there is a better and control over
quality from the beginning. Therefore, continuous integration
tools are often widely used in lean software development
paradigm. Middleton and Joyce [2] not only managed to fix
issues in a shorter period, but also experienced a lower amount
of bugs. As the bug rate decreased, the team had reportedly
more time for completing customer stories. Better product
quality was reported by Misaghi and Bosnic [14] with the
reduction of time spent on bug fixing. Similar to the study by
Middleton and Joyce [2], fewer errors were released because of
the higher amount of time for new features and improvements
[14]. Another success story of enhanced software quality has
been achieved with 50% bug reduction as reported by Walter
et al. [27]. Two experimental groups for measuring defect
rate had been observed during the experiment by Perera and
Fernando [16]. One group adopted the combination of lean
and agile, the other one just pure agile methodology. The
pure agile group experienced a lower amount of defects at
the beginning. However, this situation swapped at later stages
and the lean-agile sample had a minimal defects rate [16]. A
higher number of defects for the agile group was probably due
to unfixed hidden defects at the early stages.

B. Challenges (RQ2)

In general, it was difficult to extract information about
the challenges from the papers (RQ2, Fig. 3), as controver-
sial/negative aspects might be omitted from papers.

Lean mindset {} G <> <> <>
Identification of true waste <> {} {)
Iteration-related challenges {} <>
Scaling Flexibility {}

S2 S4 S5 S7 S8 S10 S14 S18

Fig. 3. Challenges mapped to papers. O = metric reported in the paper
An “agile-to-lean” transformation brings a series of chal-

lenges. Maintaining process visibility, managing sustainabil-

ity, and communication among teams are seen often as key

challenges [5]. The improvement of the testing process is also
reported as a key challenge, as the driving principle is perfec-
tionism and identification of root-causes for software defects
[5]. As such, placing lean on top of agile brings even more
importance to the testing process. Acquiring the proper mind-
set can be seen as a challenge in lean adoption [14], [20], as
lean requires a different mindset compared to the application
of pure agile practices. Another challenge of “agile-to-lean”
is to integrate the concepts of waste minimization and quality
improvements that are part of the lean philosophy, bringing to
a more complete development and management process [16].
Lean on top of agile brings more the focus on the end-to-end
value flow of the whole development process, thus putting lots
of emphasis on different tools and their support, like value
stream mapping or Kanban [17]. Constant management of
flow is also a relevant issue [27], together with building a
lean mindset towards defects reduction [23]. Scaling flexibility,
business management involvement and waste reduction were
found as challenges, with scaling flexibility problematic due
to the management of the whole value streaming, making
flexibility more difficult to reach [19].

1) Adapting to the Lean Mindset: In general, resistance to
change is a common problem when trying to adopt new ways
of working. This was the case in the reviewed studies [14],
[17], [19], [23], [27]. Therefore, getting the commitment to
this new paradigm is required from the longtime perspective
as it is a continuous process that needs to be enforced. Misaghi
and Bosnic [14] state that defining the criteria to implement the
”lean mindset” into the organization is a main challenge. On
the other hand, even though there are some tough challenges
at the beginning to get the team to think end-to-end and work
in a new way, once the team starts to see the added value,
such way becomes naturally accepted within the team [23].

2) Identification of “true waste”: Waste reduction is the
key principle to maintain when working with a lean mindset.
Rodriguez et al. [19], Walter et al. [27] found that it can be
hard to identify “what a true waste is” within the organization
and it may be even more challenging to eliminate such waste.
Although setting-up teams and establishing self-organization
within teams have not been hard to achieve, scaling flexibility
and involvement of business management tasks were much
more challenging in the lean way of working [14]. Aspects
like people multitasking, which may seem at first appropriate
to be more efficient, can also be seen as a waste as they might
be the major cause slowing down productivity [14].

971

972

3) Iteration-related challenges: Studies have faced chal-
lenges also with coaching, estimates, pair programming, all
during the run of development iterations [27]. In Walter et
al. [27], team coaches had difficulties to ensure that tasks
were delivered on time and with quality. For this reason,
the coaching process adopted some more visible indicators
(physical flags). Formation of pair programming couples and
iteration estimations were adapted to the needs of the pro-
cess [27]. In Rodriguez et al. [19], teams complained about too
long feedback loops, caused by the involvement of business
management in the whole value stream mapping process.

4) Scaling Flexibility: Scaling flexibility was defined as the
easiness of performing changes during the software develop-
ment process and was found as one of the key challenges in
Rodriguez et al. [19]. The issue in “agile-to-lean” is that flex-
ibility needs to pass through the whole value stream, making
the process more complex than in pure agile contexts [19].

C. Metrics (RQ3)

To answer our third research question (RQ3, Fig. 4), we
have reviewed and categorized findings of metrics that have
been used to measure the lean transformation.

-H-6-0--00
o

Lead Time

Number of Defects &) <>
Fix Time for Defect ‘) <>
Velocity (} <> <>

(o). ()
Q0

°
&

Lines of Code

o

Story Rate per Iteration

Release Frequency

©

S2 S4 S5 S7 S8 S10 S14 S18
Fig. 4. Metrics mapped to papers. O = metric reported in the paper

1) Lead time: Five studies [2], [12], [14], [17], [19] have
used lead time as one of the metrics to measure the progress of
their organizational transformation. As we have described ear-
lier (Section III-A about the benefits), lead time represents the
duration from the customer request until the time the product
is shipped to the customer. Lead time is usually measured in
working days and it is stopped when user acceptance testing is
complete and the product is ready for release [2]. Petersen and
Wohlin [17] achieved higher responsiveness to customer needs
by means of reduced lead time, managing to decrease time for
delivery. Petersen and Wohlin [17] claim that this metric is
highly important as the customer often needs frequent changes.
The ability to respond to these changes quickly is a powerful
competitive advantage. Along with this metric, Middleton and
Joyce [2] reported using also cycle time, that can be considered
as a sub-value of lead time. Cycle time is the time from actual
initiation of the feature development (start of the working on
the item) until the work on the feature is completed.

PROCEEDINGS OF THE FEDCSIS. POZNAN, 2018

2) Number of defects: The number of defects per given
time period was used as a metric in two studies [2], [16]. The
main focus of Perera and Fernando [16] was on minimizing the
number of defects. However, this study points out that higher
number of defects at the early stages is expected, as described
in section III-A4. Therefore, number of defects need to be
measured with a long time perspective in mind. Middleton and
Joyce [2] were measuring the number of defects per week for
a twelve-month time period. The mean numbers of bugs open
each week of their issue tracking system declined [2].

3) Fix time for defect: Similarly to the previous metric,
two other studies [12], [14] examined defects from the fixing
time perspective. Misaghi and Bosnic [14] have observed that,
as the time spent on developing new features increased, the
time spent on bug fixing decreased. The overall quality of the
product improved as the releases contained fewer defects [14].
Measurements have been observed for the period of one year,
that shows the positive long-term effect of lean.

4) Velocity: We have found this metric in four studies [12],
[16], [19], [27]. Velocity can be measured by dividing the
expected time of task completion by the actual time the task
has been closed. Walter et al. [27] have improved their velocity
by categorizing the time estimates using different sizes (extra-
small, small, medium, big, extra-big). The number of hours
was estimated based on their historical values and added
to each category [27]. In Jakobsen and Poppendieck [12],
velocity was measured as a sub-flow for story implementation,
ensuring that the stories were developed in a smooth flow,
eliminating the waste associated with context shifts and hand-
overs. To verify whether the project is achieving the goals
related to its schedule, expected work and actual work lev-
els were also used by Perera and Fernando [16]. However,
this time the metric was slightly modified by dividing the
divergence between actual and expected work level with the
expected work level [16].

5) Lines of code: Two studies [16], [17] have been mea-
suring lean performance by evaluating the number of Lines of
Code (LoC) developed. The outcome of the study by Perera
and Fernando [16] was that the hybrid lean-agile approach
produced more LoCs. Perera and Fernando [16] evaluated this
metric from various perspectives such as new LoCs, removed
LoCs and changed LoCs. On the other hand, Petersen and
Wohlin [17] used this metric in a slightly different way, by
measuring value efficiency: the difference between the value
of output and value of input within a given time-frame [17].

6) Story rate per iteration: Customer requirements are
captured in the form of user stories, which are afterwards
estimated and prioritized [28]. For visualizing the long-term
effect with this metric, data have been displayed mostly in
story flow diagrams and cumulative story flow diagrams to
measure continuous improvement from the longtime perspec-
tive, which also helped to identify the piling up of inventory
[23]. Depending on the time dedicated to development, each
story was given a story point value discussed and sorted
out by the developers of the team. Usually, developers were
estimating the story size as small and even, to better structure

FILIP KISS, BRUNO ROSSI: AGILE TO LEAN SOFTWARE DEVELOPMENT TRANSFORMATION: A SYSTEMATIC LITERATURE REVIEW

their work. Swaminathan and Jain [23] measured story rate
per iteration as the total number of story points approved and
closed by the customer in the given iteration. The flow of
requirements through the software development life-cycles was
the key topic also in Petersen and Wohlin [17]. However, this
study was measuring hand-overs within the stories as well as
the variance, to better predict the development cycle [17].

7) Release frequency: The only study which used the
number of releases was Middleton and Joyce [2], defining it
as the number of items released to customers. Time-frame for
measuring the frequency of releases was set to one month.
Even though this metric does not reveal how much value
is being delivered to the customers, it showed an eight-
fold increase in releases for a two years period [2]. This
is indicating an improvement in configuration management
discipline and capability [2], as the more frequent releases
are reducing technical and market risks, as the customer can
evaluate a real product in smaller increments rather than just
seeing temporary results from progress reports.

IV. CONCLUSION

The goal of this paper was to better understand the “agile-
to-lean” transformation process regarding benefits, challenges,
and metrics that primary studies reported in transformations
within companies. To reach the goal, we conducted a Sys-
tematic Literature Review (SLR) [6]. The most represented
benefits were reduced lead time, improved flow, continuous
improvement and improved defect fix rate. Seeking the chal-
lenges faced, the common problems were the adaptation to
the lean mindset, teaching and maintaining the “lean mindset”,
maintaining development flexibility, and the identification of
the concept of waste. The most used metric to measure a lean
transformation was lead time.

REFERENCES

[1] X. Wang, “The combination of agile and lean in software development:
An experience report analysis,” in 2011 Agile Conference, Conference
Proceedings. doi: 10.1109/AGILE.2011.36 pp. 1-9.

[2] P. Middleton and D. Joyce, “Lean software management: Bbc worldwide
case study,” IEEE Transactions on Engineering Management, vol. 59,
no. 1, pp. 20-32, 2012. doi: 10.1109/TEM.2010.2081675

[3] M. Kalenda, P. Hyna, and B. Rossi, “Scaling agile in large organiza-
tions: Practices, challenges, and success factors,” Journal of Software:
Evolution and Process, p. €1954. doi: 10.1002/smr.1954

[4] M. Poppendieck, T. Poppendieck, and T. Poppendieck, Lean Software
Development: An Agile Toolkit, ser. The agile software development
series. Addison-Wesley, 2003. ISBN 9780321150783

[S] A. Shalloway, G. Beaver, and J. R. Trott, Lean-agile software develop-
ment: achieving enterprise agility. Pearson Education, 2009.

[6] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[7]1 P. Middleton, “Lean software development: two case studies,” Software
Quality Journal, vol. 9, no. 4, pp. 241-252, 2001. doi: https://doi.org/
10.1023/A:1013754402981

[8] K. B. Stone, “Four decades of lean: a systematic literature review,”
International Journal of Lean Six Sigma, vol. 3, no. 2, pp. 112-132,
2012. doi: https://doi.org/10.1108/20401461211243702

[9] E. Kupiainen, M. V. Mintyl4, and J. Itkonen, “Using metrics in agile and
lean software development—a systematic literature review of industrial
studies,” Information and Software Technology, vol. 62, pp. 143-163,
2015. doi: https://doi.org/10.1016/j.infsof.2015.02.005

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

X. F. Wang, K. Conboy, and O. Cawley, “’leagile” software de-
velopment: An experience report analysis of the application of lean
approaches in agile software development,” Journal of Systems and Soft-
ware, vol. 85, no. 6, pp. 1287-1299, 2012. doi: 10.1016/j.jss.2012.01.061
T. Hayata, J. Han, and M. Beheshti, “Facilitating agile software de-
velopment with lean architecture in the dci paradigm,” in 2012 Ninth
International Conference on Information Technology - New Generations.
doi: 10.1109/ITNG.2012.157 pp. 343-348.

C. R. Jakobsen and T. Poppendieck, “Lean as a scrum troubleshooter,”
in 2011 Agile Conference, Conference Proceedings. doi: 10.1109/AG-
ILE.2011.11 pp. 168-174.

R. Kuusela and M. Koivuluoma, “Lean transformation framework for
software intensive companies: Responding to challenges created by
the cloud,” in 2011 37th EUROMICRO Conference on Software En-
gineering and Advanced Applications, Conference Proceedings. doi:
10.1109/SEAA.2011.74. ISBN 1089-6503 pp. 378-382.

M. Misaghi and I. Bosnic, “Lean mindset in software engineer-
ing: A case study in a software house in brazilian state of santa
catarina,” vol. 466, pp. 697-707, 2014. doi: https://doi.org/10.1007/
978-3-319-11854-3_60

M. Paasivaara, C. Lassenius, V. T. Heikkila, K. Dikert, and C. Engblom,
“Integrating global sites into the lean and agile transformation at
ericsson,” 2013 Ieee 8th Int. Conference on Global Software Engineering
(Icgse 2013), pp. 134-143, 2013. doi: 10.1109/icgse.2013.25

G. I. U. S. Perera and M. S. D. Fernando, “Enhanced agile software
development - hybrid paradigm with lean practice,” in 2007 Int. Confer-
ence on Industrial and Information Systems, Conference Proceedings.
doi: 10.1109/ICIINFS.2007.4579181. ISBN 2164-7011 pp. 239-244.
K. Petersen and C. Wohlin, “Measuring the flow in lean software
development,” Software-Practice and Experience, vol. 41, no. 9, pp.
975-996, 2011. doi: 10.1002/spe.975

P. Rodriguez, J. Markkula, M. Oivo, and K. Turula, “Survey on agile
and lean usage in finnish software industry,” in Proceedings of the ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’12. New York, NY, USA: ACM, 2012. doi:
10.1145/2372251.2372275. ISBN 978-1-4503-1056-7 pp. 139-148.

P. Rodriguez, J. Partanen, P. Kuvaja, and M. Oivo, “Combining lean
thinking and agile methods for software development: A case study
of a finnish provider of wireless embedded systems detailed,” in 2074
47th Hawaii International Conference on System Sciences, Conference
Proceedings. doi: 10.1109/HICSS.2014.586. ISBN 1530-1605 pp. 4770—
4779.

U. Samanta, V. S. Mani, and Ieee, “Successfully transforming to lean
by changing the mindset in a global product development team,” pp.
135-139, 2015. doi: 10.1109/icgse.2015.17

J. Schnitter and O. Mackert, “Large-scale agile software development
at sap ag,” vol. 230, pp. 209-220, 2011. doi: https://doi.org/10.1007/
978-3-642-23391-3_15

D. I. K. Sjgberg, A. Johnsen, and J. Solberg, “Quantifying the effect
of using kanban versus scrum: A case study,” IEEE Software, vol. 29,
no. 5, pp. 47-53, 2012. doi: 10.1109/MS.2012.110

B. Swaminathan and K. Jain, “Implementing the lean concepts of con-
tinuous improvement and flow on an agile software development project:
An industrial case study,” in 2012 Agile India, Conf. Proceedings. doi:
10.1109/AgileIndia.2012.12. ISBN 2326-6007 pp. 10-19.

J. Trimble and C. Webster, “From traditional, to lean, to agile devel-
opment: Finding the optimal software engineering cycle,” in 2013 46th
Hawaii Int. Conference on System Sciences, Conference Proceedings.
doi: 10.1109/HICSS.2013.237. ISBN 1530-1605 pp. 4826—4833.

K. Vilkki, When Agile Is Not Enough, ser. Lecture Notes in Business
Information Processing, 2010, vol. 65, pp. 44-47. ISBN 978-3-642-
16415-6

U. Viswanath, “Lean transformation: How lean helped to achieve quality,
cost and schedule: Case study in a multi location product development
team,” in 2014 IEEE 9th Int. Conference on Global Software Engineer-
ing, Conf. Proceedings. doi: 10.1109/ICGSE.2014.13 pp. 95-99.

M. Walter, R. Tramontini, R. M. Fontana, S. Reinehr, and A. Malucelli,
From Sprints to Lean Flow: Management Strategies for Agile Improve-
ment, ser. Lecture Notes in Business Information Processing, 2015, vol.
212, pp. 310-318.

M. Pergher and B. Rossi, “Requirements prioritization in software
engineering: a systematic mapping study,” in Empirical Requirements
Engineering (EmpiRE), 2013 IEEE Third International Workshop on.
IEEE, 2013. doi: 10.1109/EmpiRE.2013.6615215 pp. 40-44.

973

