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Abstract—A diagnostic procedure to predict the probability
of diagnosing a patient with Alzheimer’s Disease (AD) was
developed using features of pupil light reflex (PLR) waveforms.
15 features of PLRs for three colours of light pulses at two levels
of brightness were measured. Participants were 12 AD patients
and 7 control group subjects. A logistic regression analysis was
introduced to identify AD patients using two factor scores of
features of PLR. The prediction performance of combinations of
factor scores for features of PLRs were then evaluated using a
test of fitness. An MCMC technique was introduced to estimate
the parameters of the regression functions. The model provides
a distribution of the probability of diagnosis of AD patients and
control group subjects.

I. INTRODUCTION

The pupil light reflex (PLR), which produces changes in

pupil diameter in response to a light pulse of white or red,

has been introduced to diagnose Alzheimer’s Disease (AD)

[1], [2]. In addition to this, the recent discovery of intrinsically

photosensitive retinal ganglion cells (ipRGCs) [3] reveals the

possibility of using various diagnostic procedures that involve

a shorter light wavelength, such as blue light [4]. For example,

PLRs related to ipRGCs can be used to detect symptoms of

Age-Related Macular Degeneration (AMD) [5]. Some critical

studies have suggested that common sources may be the origin

of both AD and AMD diseases [6], [7], [8], [9]. Also, because

most AD patients are elderly, the influence of aging on PLRs

should be evaluated carefully.

The authors have been studying a diagnostic procedure for

detecting AD symptoms using PLRs of various types of light

pulses and observing the conditions the light pulses produce

[10]. Though these results show the possibility of aiding the di-

agnosis of the disease, a more flexible procedure is required. In

particular, the number of AD patients used in the experimental

survey was restricted, and the assessment of the prediction

of accuracy was insufficient. Therefore, significant features of

PLRs, which can be used in the diagnostic procedure, should

be extracted as necessary. If the distribution of features can be

estimated, the possibility of diagnosing AD patients may be

predicted using the Bayesian process.

In this paper, features of PLRs are extracted and the

differences between AD patients and control group subjects

are discussed. Some procedures for predicting the probability

of diagnosing AD patients are compared. The following topics

are addressed:

1) Features of PLRs are analysed and their factors are

extracted. The differences in features and factor scores

between AD patients and control group subjects are

compared. Also, the influence of aging is evaluated.

2) Logistic regression is introduced to calculate the prob-

ability of diagnosing the disease in AD patients and

control group subjects. The models of fitness of the

groups are then compared.

3) The MCMC technique is introduced to estimate the

parameters of the models, and the performance of the

models is discussed.

II. METHOD

A. Participants

A conventional PLR experiment was performed on 19

participants (42∼89 years old, mean age:70.6), 12 of which

were healthy individuals with normal vision (Control group:

62∼89 years old, mean age:72.1) and 7 of which were patients

with Alzheimer’s Disease (AD Patients: 42∼84 years old,

mean age:68.1) who had already been diagnosed by medical

doctors. It was not easy to invite volunteers who were aged

over 80. The age levels are summarised in Table I.

Informed consent was obtained from all participants prior

to the experiment.

B. PLR measurement

The stimuli consisted of three chromatic lights, red (635nm),

blue (470nm) and white (CIE x:0.28, y:0.31), at two levels of

TABLE I
NUMBER OF SUBJECTS BY AGE

Label Age Control Patient

L ≤ 70 5 3
M 71∼80 5 3
H 81≤ 2 1
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Fig. 1. An example of PLRs for a control group subject and an AD patient
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Fig. 2. Feature extraction from PLR responses

brightness (10 and 100 cd/m2). These stimuli were labelled

as r10, r100, b10, b100, w10 and w100.

The duration of observations was 10 seconds, with the first

2s being a pre-stimulus phase as a rest period, followed by a

1s light pulse and 7s as a restoration phase. Pupil diameters

were measured in mm at 60Hz using a system developed by

some of the authors [11]. PLRs for each stimuli were observed

in single trials using a repeated-measure design.

Examples of measurements for a healthy individual and for

an AD patient are shown in Figure 1. In these figures, PLRs

are illustrated in response to 6 stimuli, namely the 3 colours

and two levels of brightness.

III. RESULTS

1) Feature definitions: A typical PLR waveform shape is

illustrated in Figure 2. In the figure, the light pulse overlaps

for a period of 2∼3 seconds. As the figure illustrates, there

are pupillary response delays due to the shrinking of pupil and

its restoration to normal size.

Some features are extracted to specify the PLR response,

and these variable features are summarised in Table II. They

are pupil size, velocity of pupillary change, duration of change,

and integration of the waveform. These features are calculated

for each PLR response.

A. Comparison of features

The extracted features for each stimulus were compared

between two groups. The results are summarised in Table III.

TABLE II
DEFINITIONS OF PLR FEATURES

Variable Definition & notes

ps_base Mean of the pupil size for time before light pulse
ps_lon Pupil size where light pulse on
ps_loff Pupil size where light pulse off
ps_min Minimum pupil size

RA Range of pupil size (ps_lon - ps_min)

v_con Max amplitude of pupil construction velocity
v_rest Max amplitude of pupil re-constriction velocity

ac_max Min amplitude of pupil acceleration

t_delay Pupil response delay
t_min Time when “ps_min” appears

t_v_con Time when “v_con” appears
t_v_rest Time when “v_rest” appears

int_con Integration of constriction phase
int_rest Integration of restoration phase

int Overall integration (int_con + int_rest)

When there is a significant difference between pairs of values,

the values are displayed in bold face. As the table shows, there

are many significant pairs for the b100 and r10 conditions, but

few pairs for the white stimulus. In regards to the significant

differences for the b100 condition, such as pupil size, velocity

and acceleration of pupillary change, the pupil size for AD

patients is relatively small, and responds slowly.

All participants are elderly, and in addition to being AD

patients, their ages may affect pupil responses. Therefore, the

effect of two factors (participant group and age level) on

pupillary changes is examined using two-way ANOVA. The

variables with deviations which contribute most significantly

are selected and summarised in Table IV using means across

age levels. These means change along with age levels. Most

variables selected are related to velocity and time delay. Since

there are few significant interactions between the two factors,

they may be independent of each other in regards to PLR

features. Additionally, most significant differences between

age levels appeared for white stimulus and most differences

between two groups occurred when w100 light was used.

These results may be related to the mechanism of the PLR, and

thus a detailed analysis of this will be a topic of our further

study.

B. Factor analysis

There are significant differences in some of the PLR features

of the AD and control groups. Though their variables exhibit

the qualitative tendencies of a change, their sources could

not be determined, as the physical variables and measurement

units are completely different; some are expressed using sizes

and others are expressed as velocities or accelerations.

Factor analysis was used to extract latent sources of the

variables which were measured repeatedly. Since overall in-

tegration (int) is a summation of two parts such as int_con

and int_rest, it has been omitted during the analysis, thus 14

variables were measured. A two factor structure was estimated

using a principal component solution and a screw plot. A factor

loading matrix using Promax rotation was produced, as shown

in Table V.
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TABLE III
MEANS OF PLR FEATURES

Feature b10(N=19) b100(N=17) r10(N=18) r100(N=19) w10(N=19) w100(N=19)
Variable Control Patient Control Patient Control Patient Control Patient Control Patient Control Patient

ps_base 19.88 16.69 20.51 14.21 20.16 14.37 19.59 16.41 19.2 16.40 19.20 16.46
ps_lon 20.24 16.72 20.81 14.18 20.29 14.22 20.00 16.26 19.56 16.54 19.45 16.46
ps_loff 10.90 8.02 9.76 6.76 13.02 9.29 10.15 7.68 11.61 8.80 9.14 7.03
ps_min 10.68 7.59 9.20 5.88 12.75 8.96 9.76 7.21 11.31 8.56 8.77 6.29
RA 9.56 9.13 11.60 8.30 7.53 5.27 10.24 9.05 8.26 8.08 10.69 10.17

v_con -0.46 -0.47 -0.51 -0.31 -0.36 -0.22 -0.44 -0.37 -0.40 -0.40 -0.48 -0.42
v_rest 0.13 0.10 0.18 0.08 0.13 0.08 0.16 0.10 0.14 0.10 0.14 0.11
ac_max -0.06 -0.07 -0.07 -0.04 -0.05 -0.03 -0.06 -0.05 -0.06 -0.05 -0.07 -0.06

t_delay 0.24 0.26 0.23 0.24 0.25 0.26 0.24 0.25 0.26 0.28 0.23 0.23
t_min 1.13 1.31 1.30 1.43 1.09 1.26 1.22 1.36 1.10 1.22 1.26 1.41

t_v_con 0.34 0.35 0.33 0.36 0.35 0.39 0.37 0.37 0.37 0.38 0.32 0.33
t_v_rest 1.84 1.78 1.91 2.14 1.65 2.06 1.88 2.11 1.67 1.96 1.74 1.98

int_con 293.1 277.0 345.0 211.0 230.0 144.5 301.5 260 249.4 241.6 330.5 300.3
int_rest 748.5 823.0 1015.9 802.7 532.1 444.1 849.8 796.9 612.6 652.3 906.9 941.7
int 1041.6 1100 1361 1014 762.1 588.7 1151.3 1056.9 862.0 893.9 1237.3 1242.0

pairs of bold means show significant differences

TABLE IV
AGE AFFECTED FEATURES (LIST OF SIGNIFICANT VARIABLES)

age levels
Stimulus Variable L M H

b10 ac_max -.11 -.05 -.04

b100 ps_min 8.0 6.9 10.9

r10 t_v_con 0.37 0.36 0.43

r100 t_delay 0.23 0.24 0.31
int_con 381.4 249.5 176.3

w10 RA 11.2 7.9 4.7
v_con -.64 -.33 -.25
ac_max -.09 -.04 -.03

w100 RA 14.3 9.6 7.6
v_con -.64 -.39 -.33
t_v_con 0.28 0.34 0.36
int_con 459.6 280.8 217.9
int_rest 1279.1 853.7 659.8
int 1738.8 1134.5 877.7

Age factor is significant (p < 0.05)

The fundamental variables of each participant, such as pupil

sizes commonly contribute to both factors. The second factor

contains variables which are concerned with features of the

progress of restoration of the pupil after a pulse of light,

and the first factor contains the remaining variables of the

features of PLR. As mentioned above, both factors contain

two variables, and there is a significant correlation between

these two factors (r = 0.38). Since even the contribution ratio

of each factor when the other factors are eliminated is over

60%, the two factors can account for the deviation.

The factor scores (factor1,factor2) were calculated using

the factor loading matrix, and their means for each stimuli are

summarised in Figure 3 according to group. The horizontal

axis indicates the first factor, and the vertical axis indicates the

second factor. The error bars show standard errors. The two

groups are indicated using suffixes, such as “p” for patients,

or “c” for the control group.

When means between the two groups are compared for red

(r10 and r100) or white (w10 and w100) stimulus lights, they

TABLE V
FACTOR LOADING MATRIX FOR PLR FEATURES WITH PROMAX ROTATION

Variables Factor1 Factor2

ps_base 0.596 0.586

ps_lon 0.596 0.586

int_rest 1.007 -0.271
RA 0.997 -0.064
int_con 0.988 0.006
v_con -0.906 -0.067
ac_max -0.902 -0.021
t_v_con -0.737 0.110
t_delay -0.712 0.062
v_rest 0.643 0.099

ps_min -0.111 1.025

ps_loff -0.079 0.999

t_min 0.086 -0.643
t_v_rest 0.066 -0.438

Contribution ratio(1) 0.42 0.21
Contribution ratio(2) 0.52 0.32

Correlation between factors r=0.38

(1): Each factor with other factors eliminated
(2): Each factor with other factors ignored

are located in proximity to each other, but the means of the two

groups are relatively far apart from each other for blue stimulus

lights (b10 and b100). Pupil reactions in response to light

colours are represented in Figure 3. In the results of applying

t-tests to pairs of the means for the two subject groups, there

are significant differences in the first factor scores for b100

(t(15) = 2.64, p < 0.05), in the second factor scores for

b100(t(15) = 2.88, p < 0.05) and for w100(t(17) = 2.15,

p < 0.05). Also, differences without much significance were

observed for the second factor scores for b10(t(17) = 2.07,

p < 0.10) and for r10(t(17) = 1.77, p < 0.10).

The results show that between the two subject groups there

are significant differences in both factor scores for the b100

condition. As Table III shows many significant differences,

the factor scores also represent these differences. Also, the

second factor seems to reflect the difference in features of

PLR between the two groups.
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TABLE VI
PERFORMANCE OF MODELS

Stimulus AIC R2 Accuracy AUC

b10 25.16 0.26 82.1 0.82
b100 17.24 0.47 89.4 0.89
r10 27.33 0.17 73.8 0.74
r100 28.05 0.14 72.6 0.73
w10 27.35 0.18 69.0 0.69
w100 24.70 0.28 79.8 0.80

b(10+100) 21.07 0.48 89.4 0.89
r(10+100) 30.26 0.22 71.4 0.71
w(10+100) 22.94 0.47 90.5 0.91

b+r 18.50 0.73 100 1.00
r+w 29.70 0.50 95.2 0.95
b+w 18.00 0.73 100 1.00

b+r+w 26.00 0.73 100 1.00

Though the influence of age level on factor scores was

analysed, it did not affect either factor.

C. Introducing logistic regression

As mentioned in the introduction, this paper introduces

logistic regression analysis to estimate the probability of

diagnosing AD patients using a binary response variable (p)

and PLR features. Here, p = 1 for the control subject and

p = 0 for the AD patient, then p is given by the following

equation with logit function.

ŷi = a+ b1factor1i,j + b2factor2i,j

pi = logit−1(ŷi) =
1

1 + exp(−ŷi)

Suffix i represents the subject, and suffix j represents the

stimulus light condition.

Logistic regression analysis was applied to the above factor

scores for several conditions, such as the two factor scores for

a specific stimulus light condition (light intensity: 10 or 100),
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Fig. 4. Comparison of ROC curves

four factor scores for a colour condition (blue, red and white

including light intensity 10 and 100) and further combinations

such as two colours or all conditions (6 conditions and 2 factor

scores). Every model was evaluated for fitness of model using

AIC (Akaike Information Criteria), and prediction accuracy

using R2. The accuracy was measured using an appropriate

threshold, and performance was summarised using two dimen-

sional metrics such as true positive and false positive. The

relationships are then illustrated as ROC (Receiver Operating

Characteristics) curves. Figure 4 shows ROC curves of every

stimulus condition. The surface area of the curve is also a

measure of the AUC (the area under the ROC curve). Their

indices are summarised in Table VI.

Results of analyses suggest that discriminant performance

is higher for blue light stimuli, in particular for the b100

condition. The ROC curves show step-wise changes, since the

number of participants influenced the results. However, the

performance of AUC for b100 produced the highest reaction

of any single stimulus condition.

D. Model parameter estimation

As Table III shows the possibility of discriminating between

AD patients and control group subjects using a logistic regres-

sion function. However, the parameters of these functions can

not be estimated sufficiently because the amount of data is

too limited. Here, the Markov chain Monte Carlo (MCMC)

method was introduced for more accurate estimation of the

parameters. In regards to the data generation procedure using

the MCMC technique, the burn-in period was 2000 and the

number of samples was 10000 [12]. Using this procedure for

the b100 condition, the parameters are estimated as follows.

ŷi = 5.4229 + 0.4722 ∗ factor1i + 7.3801 ∗ factor2i

The magnitude of coefficient for the second factor (factor2)

is 15 times that of the coefficient for the first factor (factor1).

As an additional example, the parameters for blue light

stimuli were estimated as follows:
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ŷi = 9.1664 + 2.5320 ∗ factor1i,b10 − 1.1366 ∗ factor2i,b10

−1.4011 ∗ factor1i,b100 + 12.0891 ∗ factor2i,b100

The magnitude of these parameters suggests that the coeffi-

cient for the second factor at a high level of brightness (b100)

is relatively larger than for others (b10 and the first factor at a

low level of brightness). As the patterns of coefficients depend

on the light stimulus, the wavelengths of the stimuli may affect

these reactions.

In regards to the discussion in the previous section, the prob-

ability of control group subjects (1) or AD patients (0) may

be illustrated using two dimensional information (factor1
and factor2), as shown in Figure 5. Figure 5 shows that

the probability distribution against patients with AD depends

mainly on the scores of the second factor. Also, the score

of the first factor helps to more finely adjust the probability

during the period where the curve is steep.

In regards to the experimental procedure, the features of

PLR can be measured best during a one second high brightness

level pulse of blue light (b100). Also, factor scores were

calculated using the factor loading matrix shown in Table

V. Finally, the probability of diagnosing AD patients can be

predicted using the function above.

However, the possibility of developing a more flexible

procedure for use in future experiments involving additional

new participants will be a subject of our further study.

IV. SUMMARY

This paper presents a procedure for predicting the probabil-

ity of diagnosing AD patients using features of PLR, which

respond to the activities of ipRGCs.

Three colour lights at two levels of brightness were illumi-

nated for 1 second, and pupil light responses were observed. 15

features were extracted from each PLR, and two factor scores

were calculated using a factor loading matrix. The following

results were produced.

1) There are significant differences in some features be-

tween AD patients and control group subjects, in par-

ticular for the b100 condition. Also, for a few features

for white light there are significant differences between

age levels.

2) Logistic regression analysis was introduced to discrim-

inate AD patients from the control group using two

factor scores in response to chromatic stimuli. The

performance was evaluated using the indices of the

fitness of equations. As a result, the performance for

b100 was the highest.

3) The MCMC technique was introduced to estimate the

parameters of the regression functions. The model pro-

vides a distribution of probability for AD patients and

the control group.

The validity of the probability estimations should be con-

firmed using the PLR data of patients. This will be a subject

of our further study.
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