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Abstract—The method of secret key sharing between units
that did not possess any secret keys in advance is considered.
It is assumed that between these units there are duplex wireless
MIMO fading channels. In a recent paper published by D. Qin
and Z. Dingh a new key sharing protocol has been proposed
between legitimate users based on eigenvalues which are invariant
under permutation of two matrices in their product. We extend
this statement to a characteristic polynomial and by the way to
matrix trace. Methods of key bits extraction are optimized both
theoretically and experimentally. On the contrary to a statement
of D. Qin and Z. Ding we prove that their key sharing protocol
occurs insecure if eavesdroppers have the same channels as
legitimate users. In order to provide reliability and security of the
shared keys both error correction codes and privacy amplification
methods can be used.

Index Terms—Physical layer security, key sharing protocol,
MIMO transmission system, characteristic polynomial, privacy
amplification, error correction codes

I. INTRODUCTION

T
HE pioneered paper devoted to key sharing protocol for

users that did not have any secret keys in advance belongs

to Diffie and Hellman [1]. It is well known that security of

this protocol rests on the intractability of the Diffie-Hellman

Problem or simply the related discrete logarithm computing

problem [2].

There is also a class of keyless cryptography (KC), where

encryption of messages can be provided secure even without

any prior secret key sharing. One of such KC can be im-

plemented by some protocol if we have encryption algorithm

satisfied to the following relation for any different keys KA,

KB and any plaintext M :

fKA
(fKB

(M)) = fKB
(fKA

(M)) (1)

where fK is the encryption algorithm for plaintexts given a key

K. Then the encryption/decryption protocol between users A

and B can be performed as shown in Table I. But unfortunately

the condition (1) is not valid for strong symmetric block

ciphers.

Alpern and Schneier [3] proposed a cryptographic technique

in which the security lies in hiding the identify of the message

ordinator.

TABLE I
ENCRYPTION/DECRYPTION PROTOCOL.

In [4] some extensions to the previous scheme was sug-

gested that was called as semi-anonymous channel. Although

the last scheme seems to be more realistic than the previous

one but both scenarios require serious restrictions regarding

communication network between users that want to share

secret keys.

On the other hand it was developed in recent years a new

domain known as physical layer security (PHY) in multiuser

wireless networks. In this setting it is assumed that users

are connected by some communication (mostly continuous)

channels and the properties of these channels allow either

implement directly secure information transmission between

users or to share secret keys for their further usage with

conventional encryption/decryption. It is worth to note that

such keyless cryptosystem was based firstly on Wyner’s wire-

tap channel concept proposed in 1975 [5]. This approach has

been developed later in fundamental papers [6]–[8].

But we should emphasize that in order to provide informa-

tion theoretic security in wireless networks it is necessary to

have in any case some advantages in legitimate communication

channels against eavesdropper’s channels. Such advantages are

presented in Table II jointly with list of references where they

were used in order to provide information security of messages

or key string sharing in frames of given conditions.

Summarizing the content of Table II, we can conclude

that no one of the keyless cryptosystems satisfy the natural

requirements: to be secure independently on eavesdropper

channel or equipment states. In fact, legal user cannot provide

that SNR in eavesdropper channel is not larger than some
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TABLE II
POSSIBLE ADVANTAGES OF THE LEGITIMATE CHANNELS AGAINST EAVESDROPPER CHANNELS.

Nr. Advantages of the legitimate channels Defect of such setting References

1. SNR in legitimate channels is superior to
SNR in eavesdropper channel

SNR as a rule is unknown in eavesdropper channel [5], [6], [8], [9]

2. Not all symbols of legally transmitted blocks
can be intercepted by eavesdropper

It is very specific and rare case [10], [11]

3. Legal users have authenticated channel for
public discussion

Even so authenticated channel is provided by
additional measures it is unknown SNR in the
eavesdropper channel in order to optimize param-
eters of legal transmission

[7], [12], [13]

4. Legal channels are sensitive to any adversary
intervention. (Quantum cryptography)

Special legal channels and devices are required [14], [15]

5. Legal users are mobile and communication
channels have multipath wave propagation.
(MIMO technology can be used also for
security enhancing)

Mobile units can stop sometimes. Eavesdropping
is still possible on very short distance from le-
gitimate units. Reciprocity theorem of radio wave
propagation can be invalid in some cases.

[16], [17], [18]

6. Smart antennais excited randomly by elec-
tronic means and a presence of multipath
communication channels is requested. (It is
not required that units can be nonstop; and
eavesdropper channel can be even noiseless)

Eavesdropping is possible on very short distance
from legitimate units. Reciprocity theorem of ra-
dio wave propagation can be invalid in some cases.

[19], [20]

7. The number of antennas in legitimate MIMO
system is not less than the number of eaves-
dropper antennas

Cryptosystem can be broken if the number of
eavesdropper antennas is larger than the number
of legitimate antennas

[21], [22], [23]

given value, that the number of antennas in eavesdropper

MIMO system is not larger than the number of legitimate

antennas and finally that reciprocity of channels is always

valid.

But fortunately, it has been published recently the paper [24]

in that some of mentioned above problems can be removed.

In Section II we describe one of key sharing schemes

presented in [24] that is on our opinion very interesting from

a practical point of view. Later we extend the protocol in [24]

and examine theoretically how to optimize its parameters.

In Section III we present experimental results obtained by

simulation. Section IV devoted to error correction and privacy

amplification of key string shared by legitimate units after

performing of protocol. Section V concludes the paper and

proposes some open problems for further investigations.

II. EXTENSION OF EVSKEY SCHEME

Let us remind the key sharing protocol proposed in [24]

and called there EVSkey scheme. The scenario corresponding

to this scheme is presented in Figure 1.

For simplicity reasons we restricted our consideration by

the condition of equality for the numbers of antennas of the

legitimate users Alice (A) and Bob (B), both at the transmitter

and at the receiver are n.

Before transmission, Alice and Bob generate their own

reference matrices XA, XB ∈ C
n×n, as well as randomly

generated unitary matrices GA, GB ∈ C
n×n. In line with our

previous assumption all matrices are square of order n× n.

Let the noise matrices NB1, NA1NB2, NA2 have additive

white Gaussian numbers (AWGN) as random values. After the

postmultiplication of the channel matrices HAB and HBA by

GB and GA, respectively and sending the resulting matrices

back, users Alice and Bob get the following matrices:

Alice: YA = PQXA + PNB1 +NA2 (2)

Bob: YB = QPXB +QNA1 +NB2 (3)

with P = HBAGB , Q = HABGA (4)

For small enough noises NB1, NA2, NA1, NB2 we get a good

estimation for the matrices PQ and QP respectively as

PQ ≈ YAX
−1
A , QP ≈ YBX

−1
B .

Since Alice knows YA, XA and Bob knows YB , XB , they are

able to compute the matrices PQ and QP although with some

errors due to the presence of noises.

In [24] it is suggested to extract a common key as the quan-

tized complex eigenvalues of matrices PQ and QP since those

eigenvalues coincide one to another although these matrices

may be completely different. We extend their statement and

prove the following:

Lemma 1: Given two non-singular complex matrices P,Q ∈
C

n×n, the matrices PQ and QP have the same characteristic

polynomials.

Proof. By definition, the characteristic polynomial of PQ

is π(λ) = det(PQ− λI), where I is the identity matrix.

Then the roots λ of the characteristic polynomials satisfy

the equation

det(PQ− λI) = 0. (5)

It follows from (5), being Q a unitary matrix,

0 = det(PQ− λI)

= detQ det(PQ− λI)

= det(QPQ− λQ)

= det(QPQ− λQ) detQ−1

= det(QP − λI)
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Fig. 1. The scenario corresponding to EVSKey scheme.

Then the roots of the characteristic polynomials of matrices

PQ and QP coincide one to another and hence these matrices

have the same characteristic polynomials. �

Thus we can calculate for the key bit generation not only

the eigenvalues but also all coefficients of the characteristic

polynomial and in particular case the traces of matrices PQ

and QP or their determinants. Let us investigate, at first the-

oretically, which of the main invariants-eigenvalues or traces

are less sensitive to channel noises, more closer to uniform

distribution and give the most number of reliable key bits for

legitimate users.

A. Using quantized matrix traces as shared key bits

Since the traces of matrices are complex values they can

be quantized both on amplitude and on phase. It is proved

in the Appendix that the quantization intervals on amplitude

of the traces in order to provide equal probabilities of their

occurrence should be chosen as follows:

rk−1 ≤ |Z| ≤ rk , k = 1, 2, . . . , N (6)

where Z is the trace of the matrices, rk = σ

√

− ln
(

1− k
N

)

and N is the number of intervals.

Then the probabilities that quantized trace amplitudes coin-

cide for users Alice and Bob will be determined by

p′ =
N
∑

k=1

(

(1− (k − 1)p)
1

γ2 − (1− kp)
)

(7)

where γ = 1
1+α

, α = σ2
(

1 + 1
N

)

, p = 1
N

.

In Table III there are presented the results of calculations

by (7) for some parameters. We see from this table that the

probability of errors are still acceptable for N = 16 if σ2 ≤
0.001 and for N = 32 if σ2 ≤ 0.0001.

TABLE III
THE PROBABILITIES OF KEY COINCIDING BY (7) AFTER A PERFORMANCE

OF KEY SHARING PROTOCOL BASED ON QUANTIZATION BY (6) THE

MATRIX TRACES ON AMPLITUDE.

N \ σ
2 0.01 0.001 0.0001

4 0.98 0.998 0.9998

8 0.96 0.996 0.9996

16 0.92 0.992 0.9992

32 0.84 0.984 0.998

64 0.68 0.968 0.9968

σ
2: SNR N : Number of quantization intervals

B. Using quantized matrix eigenvalues as the shared key bits

Then every eigenvalue can be quantized on phase and

amplitude intervals. Unfortunately there appears one problem:

how to compare the numbering of eigenvalues adopted by the

users?

Let us denote by NP , NA the numbers of quantization

intervals on phase and amplitude, respectively. Then total

number of quantization intervals is N = NA ·NP . We will fix

the number of eigenvalues that hit in each of the N intervals

(cells). After a completion of eigenvalues extraction, we get

a string of integers g1, g2, . . . , gi, where gi is the number

of the i-th cell containing at least one eigenvalue. If several

eigenvalues occur in the same cell, then the cell number is

repeated as gi, . . . gi. Next each number gi is presented as a

string of bits and such strings are connected in a consecutive

binary manner. The final binary string forms a part of the

shared key. It is easy to see that the total number of bits for

each session of protocol can be, if N ≫ n, approximately

computed [25] as:

log2

(

N + n− 1

n

)

= log2

[

1

n!

N+n−1
∏

i=N

i

]

(8)
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C. Security of the proposed key sharing protocol

As it is shown in Figure 1, the eavesdropper Eve is able to

receive only the matrices GAXA, GBXB , YA1, YB1, YA2, YB2

even for the ideal case when eavesdropping channels are

noiseless. It is claimed in [24] that even in the very unrealistic

case when Eve’s receivers are located very close to the

locations of Alice and Bob, and hence she is able to estimate

correctly the channel matrices HAB , HBA of legitimate users,

she is unable to compute the matrices P and Q (see eq (4))

because they are “randomized” by the unitary matrices GB

and GA. The last matrices cannot in turn be estimated by Eve

because they are “randomized” by the reference matrices XA

and XB .

In [24] it is concluded that such key sharing system is

ideal secure and its security is regardless of the state of the

channels and the SNR in the eavesdropper channel, in contrast

to all key distribution protocols described actually in Table II.

Unfortunately this statement is wrong. In fact, following the

steps below, Eve for sure is able to receive the key shared by

the legitimate users:

1. HBAGB = HBAGBHABGAXA (HABGAXA)
−1

2. XB = (HBAGB)
−1

HBAGBXB

3. QP = YBX
−1
B

4. QP → characteristic polynomial (equivalent to

the shared key)

The key bit string should have good statistical properties

as it is common for all secret cryptographic keys. (Such

property is verified in the next Section using the NIST tests

on pseudorandomness.)

On the other hand in order to provide a good key bit

agreement between legitimate users it is very important a

strong correlation between channel matrices in the first and

in the second steps of the key sharing protocol.

In fact, if they would be different, say HAB , HBA at the first

step and H ′
AB , H

′
BA at the second step, we would get (even

in noiseless channels) instead of relations (2-4) the following

ones:

Y ′
A = Y ′

A2 = H ′
BAGBHABGAXA

Y ′
B = Y ′

B2 = H ′
ABGAHBAGBXB

(9)

From the second equation in (9), there is no a matrix permu-

taition of the first one and hence the matrices Y ′
A and Y ′

B have

not necessarily equal characteristic polynomials.

In order to provide a strong correlation between channel

matrices in the first and in the second steps of the key sharing

protocol (channel coherence property – in other words) it is

necessary to agree physical channel properties with the rate of

communication.

Typical data rates for Wi-Fi network or celular communi-

cation (LTE, 56) lies in a range of several hundreds ms. Co-

herence time for channels used in mobile unit communication

is in range (1-10 ms) [26] and then during coherence time a

number between 103 and 106 of bits can be transmitted which

is sufficient to provide practical coincidence of YA, YB with

matrices Y ′
A, Y

′
B .

TABLE IV
SIMULATION RESULTS OF THE BIT ERROR PROBABILITIES (IN PERCENT )
FOR EXTRACTION THEM FROM EIGENVALUES. BOTH NUMBERS OF PHASE

QUANTIZATION INTERVALS AND AMPLITUDE ONE ARE 8.

SNR 1

α
(dB) \ n 4 8 16

20 21.6 22 24

30 7.7 10 12

40 2.7 3.5 4

Number of extracted bits 19 33 52
n is the number of antennas

TABLE V
LIST OF NIST TESTS ON PSEUDO RANDOMNESS.

Nr. Title of test

1 The frequency test

2 Frequency test within a block

3 The runs test

4 Tests for the longest-run-of-ones in a block

5 The binary matrix rank test

6 The discrete Fourier transform (spectral) test

7 The non-overlapping template matching test

8 The overlapping template matching test

9 Maurer’s “Universal Statistical” test

10 The linear complexity test

11 The serial test

12 The approximate entropy test

13 The cumulative sums (cusums) test

14 The random excursion test

15 The random excursions variant test

Unfortunately the considered system (as well as all PHY-

based systems) is vulnerable against active adversary. It is a

scenario where an adversary, say Mallet, is presented by Alice

or Bob as legitimate users and performs with any of them the

above mentioned protocol. It is obvious that then he is able to

share reliable key after completing the protocol. Such problem

has to be solved by some additional activity of legitimate users,

in order to reject falsely shared key before its implementation

for encryption of secure messages [27].

III. SIMULATION RESULTS FOR THE PROPOSED KEY

SHARING PROTOCOL

In order to verify our theoretical discussion it was under-

taken a simulation of the EVSkey protocol. The results of

simulation for extraction of key bits from matrix eigenvalues

are presented in Table IV, where is presented also the number

of key bits for different number of antennas n calculated by (8).

We see from Table IV that the acceptable SNR is at least

30 dB even for the case when we mean to use later error

correcting codes (see Section IV). As far as the lengths

of share key string they are too small for implementation

even for block ciphers like 3DES or AES. Thus one can

be recommended to repeat key sharing session several times.

(Such approach is also presented in Section IV.)

The generated key bits were investigated by NIST tests on

pseudo randomness [28]. The list of NIST tests is presented

in Table V, while the results of testing on pseudo randomness

in Table VI with their numbering taken from Table V.
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TABLE VI
RESULTS OF THE NIST-BASED TESTING FOR THE KEY BITS SEQUENCE

EXTRACTED FROM THE MATRIX EIGENVALUES UNDER THE CONDITION

SNR = 30 DB AND ALSO AFTER A SHIFTING AND SUMMATION

PROCEDURE.

(“1” – means that test is passed, “0” – that test is not passed).

Test number Original one
After shift and
addition mod 2

1 1 1

2 1 1

3 1 1

4 0 1

5 1 1

6 0 0

7 1 1

8 1 1

9 1 1

10 1 1

11 0 0

12 0 0

13 1 1

14 0 0

15 0 0

TABLE VII
SIMULATION RESULTS FOR PROBABILITY OF KEY (TRACE) COINCIDING

AFTER A PERFORMANCE OF KEY SHARING PROTOCOL BASED ON

QUANTIZATION BY (6) THE MATRIX TRACES ON AMPLITUDE (16
ANTENNAS).

The number
of rings

Number of
key bits

σ
2

Ptr

4 2 0.01 0.88
0.001 0.90
0.0001 0.98

8 3 0.01 0.82
0.001 0.94
0.0001 0.99

16 4 0.01 0.74
0.001 0.90
0.0001 0.98

32 5 0.01 0.68
0.001 0.83
0.0001 0.97

64 6 0.01 0.67
0.001 0.78
0.0001 0.92

In the same Table VI there are presented also the results

of NIST-based testing after a shifting right on the 20 bits and

addition mod 2 with the original sequence.

We see that after the transformation procedure the key

sequence occurs slightly better. The results of simulation for

extraction of key bits from matrix traces are presented in

Tables VII, VIII. Comparing the results in Table IV and

Tables VII, VIII we see that extraction of the key bits from

the matrix eigenvalues results in larger errors than for the

trace-based extraction but the number of extracted bits is

significantly less for the case of extraction from the traces

than for the extraction from eigenvalues.

The key bits extracted from traces were investigated by the

NIST tests given in Table V. The results of testing are shown in

Table IX jointly with “shift and addition” transformation. We

can see from this Table that now an additional transform is not

TABLE VIII
SIMULATION RESULTS OF THE BIT ERROR PROBABILITIES P

′ (IN

PERCENTS) FOR EXTRACTION THEM FROM MATRIX TRACES WITH

DIFFERENT SIZES OF QUANTIZATION LEVELS AND ANTENNA NUMBERS.

The num-
ber of an-
tennas

The num-
ber of sec-
tors

The
number
of rings

Number
of key
bits

σ
2

P
′

4 8 8 6 0.01 14.7
0.001 4.7

0.0001 2.1
16 4 6 0.01 14

0.001 4
0.0001 1.5

32 4 7 0.01 21
0.001 11

0.0001 3
16 8 7 0.01 18

0.001 7
0.0001 2

8 16 7 0.01 19
0.001 10

0.0001 2
32 8 8 0.01 19

0.001 10
0.0001 2

8 8 8 6 0.01 14.3
0.001 4.4

0.0001 1.1

16 8 8 6 0.01 12.3
0.001 6.7

0.0001 0.7

TABLE IX
RESULTS OF NIST-BASED TESTING FOR THE KEY BITS EXTRACTED FROM

MATRIX TRACES UNDER CONDITION OF SNR = 30 DBAND ALSO AFTER A

SHIFTING AND SUMMATION PROCEDURE.

Test number Original one
After shift and
addition mod 2

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 1 1

13 1 1

14 0 0

15 0 0

necessary. This means that this case is superior to extraction

from eigenvalues with point of key statistic view.

By comparing the results of Table III and Table VII we

conclude that the quantization procedure based on (6) is

acceptable. This is valid also for the case of 4 and 8 antennas.

IV. ERROR CORRECTION AND PRIVACY AMPLIFICATION

We assume that the length of the shared key should be at

least 256 bits, taken into account for example that the length

of key string for AES is 128 bits. This means that in order

to provide the requested key length it is necessary to arrange
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several sessions of key sharing protocol. Moreover in order

to provide a good statistic of shared key bits it is necessary

that states of channel matrices between sessions should be

statistically independent. In order to short the number of

such sessions the method of key bit extraction from matrix

eigenvalues occurs preferential because it allows to extract

more bits than matrix trace extraction during a single session

(see Table IV and Tables VII, VIII). But anyway the values of

bit error probabilities are too much for a good key agreement

between legitimate users. This fact requires to correct errors

by sending over public noiseless channel the check symbols

of some good error correction code. But on the other hand a

sending of check symbols over public (open) channel results in

a leaking to Eve some information about key string. In order

to guarantee that such leakage is limited by some value of

Shannon information it is necessary to use so called privacy

amplification. It can be provided by hashing of raw key

string to more shorter final key string. It has been proved

in [29] the enhanced privacy amplification theorem. This

theorem says that using special two-stage hashing procedure

the eavesdropper’s expected Shannon information Io about the

final key shared by legitimate parties, satisfies the inequality:

Io <
1

γ ln 2
2−(k−tc−ℓ−r) (10)

where k is the length of the raw key string shared by legitimate

users after a completing of protocol, tc is the Renyi (collision)

information obtained by Eve, r is the number of check symbols

sent from Alice to Bob in order to reconcile their key strings,

ℓ is the length of the final key string after hashing, γ is a

coefficient that approaches 0.42 for any fixed r, as k, ℓ and

k − ℓ increase.

Since we assume that Eve is not nearby legal users, she has

no eavesdropping at all, hence tc can be removed (tc = 0).

The probability Pd of error after decoding by some linear

binary error correcting code with the number of information

bits k, the number of check symbols r and for the probability

of bit error after a completing at protocol P’ has the following

upper bound [29]

Pd ≤ 2−k(1−R)
(

1 + 2
√

P ′(1− P ′)
)k

(11)

where R = k
k+r

.

Using the formulas (10), (11) we can optimize the parameter

r to provide the requested values Io and Pd.

But of course for practical implementation it is necessary

to use some constructive methods of encoding and decoding,

say for the thing, the LDPC codes [30].

V. CONCLUSION

In the current paper we considered some extension of key

sharing protocol proposed in [24]. It has been proved that key

extraction can be performed not only from matrix eigenvalues

but from matrix traces also. Moreover the extracted key bits

occur for the last case even closer to pseudo random sequence

in terms of NIST tests. But unfortunately the length of key

strings is significantly less in the last case in comparison

with extraction the key from matrix eigenvalues. Therefore

this method is superior for practical implementation against

matrix trace-based extraction.

We investigated how affect such parameters of key sharing

protocol as the number of antennas, SNR in the legitimate

channel and method of quantization. It was striked that key

sharing protocol does not work if eavesdroppers has the same

communication channels as legitimate users!

In fact it would be very strange to be the case because

then legitimate users could share secret key without a presence

of any fading channels and they could simply communicate

through any channels with constant parameters.

We believe that key sharing between mobile unit is a

promising approach because nothing restrictions on eavesdrop-

ping channels are suggested except of nearby locations of

eavesdroppers against legal users.

The future work can be devoted to a modification of quanti-

zation procedures for the case of extraction from eigenvalues

and investigation of constructive encoding and decoding for

the most effective error correction in the shared key string.
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APPENDIX

Proof of relation (7)

Let us consider an extraction of the key based on matrix

traces. Assume that the elements of both channel matrices

P = [pij ]1≤i,j≤n
, Q = [qij ]1≤i,j≤n

are random, mutually

independent and identically distributed: pij , qij ∼ CN(0, σ2
w).

Similarly these conditions hold and for the noise matrices

N1 = [nij1]1≤i,j≤n
, N2 = [nij2]1≤i,j≤n

: nij1, nij2 ∼

CN(0, σ2
e). We admit also that channel matrices and noisy are

mutual independent. The relation (3) entails

Y X−1 = PQ+ PN1X
−1 +N2X

−1 and

Tr(Y X−1) = Tr(PQ) + Tr(PN1X
−1) + Tr(N2X

−1).

It is easy to show that for large number of antennas (n ≫ 1)

due to Central Limit Theorem, the random variables

ZA = Tr(YA2X
−1
A ) , ZB = Tr(YB2X

−1
B )

have Gaussian distributions:

fA(z) = fB(z) =
1

πσ2
e−

|z|2

σ2 (12)

where σ2 = DZA = DZB = n2σ2
w(σ

2
w + σ2

e).
Let us estimate the dependence of the random variables ZA,

ZB using the notion of linear regression ZA onto ZB :

ZB − E(ZB) = γ
σA

σB

(ZA − E(ZA))

where

γ =
1

√

(DZA)(DZB)
cov (ZA, ZB)

is a correlation coefficient.

Since ZA, ZB are centered random variables with equal

variances, the equation of linear regression ZA onto ZB has

the form

ZB = γZA. (13)

It is easy to show that cov (ZA, ZB) = n2σ2
w. Thus we get

γ =
n2σ2

w

n2σ2
w(σ

2
w + σ2

e) + nσ2
e

=

(

1 +
σ2
e

σ2
w

(

1 +
1

nσ2
w

))−1

(14)

Since the correlation coefficient γ is real-valued, it results that

the random values ZA, ZB differ by modulus only.

If nσ2
w ≫ 1 and the noise-to- signal ratio

σ2

e

σ2
w

is small, then

we get by (14)

γ =
1

1 + α
≈ 1− α , α =

σ2
e

σ2
w

(

1 +
1

nσ2
w

)

≈
σ2
e

σ2
w

≪ 1.

Thus the dependence (13) between ZA, ZB is almost linear.

In order to get a uniformly distributed key, let us quantize

the range of values ZA (on the complex plane) in radial

direction in such a way that the probability to hit ZA into

each of N rings Rk = {z ∈ C| rk−1 ≤ |z| < rk}, r0 = 0,

rN = +∞, occurs equally likely:

Pr (rk−1 ≤ |z| < rk) =
1

N
=: p for k = 1, . . . , N (15)

Using (12) we are able to find the radial distribution function

of ZA:

F (r) = Pr (|z| < r) = 1− e−
r2

σ2
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Thus (15) holds if and only if

Pr (rk−1 ≤ |z| < rk) = F (rk)− F (rk−1)

= e−
r2
k−1

σ2 − e−
r2
k

σ2

= p

It results the relation

F (rk) = kp = 1− e−
r2
k

σ2 (16)

Eventually we get rk = σ
√

− ln(1− kp).
Let us estimate now the probability of key coincidence for

both legitimate users A and B. First we estimate the probability

pk to get ZA and ZB in the ring Rk. Taken into account

that the dependence (13) is almost linear ZB ≈ γZA, where

0 < γ ≤ 1, we get |ZB | = γ|ZA|. Hence

pk = Pr (ZA ∈ Rk & ZB ∈ Rk)

= Pr (rk−1 ≤ |ZA| < rk & rk−1 ≤ |ZB | < rk)

= Pr (rk−1 ≤ |ZA| < rk & rk−1 ≤ γ|ZA| < rk)

= Pr

(

rk−1 ≤ |ZA| < rk &
rk−1

γ
≤ |ZA| <

rk

γ

)

= Pr

(

rk−1

γ
≤ |ZA| < rk

)

.

Using (16), we find that

pk = F (rk)− F

(

(
rk−1

γ

)

= e
−

r2
k−1

γ2σ2 − e−
r2
k

σ2

= (1− (k − 1)p)
1

γ2 − (1− kp)

Then the probability that even legal users get the same key

(trace) under the condition γ > γcr = rk−1

rk
is equal to

p′ =
N
∑

k=1

pk

=
N
∑

k=1

(

(1− (k − 1)p)
1

γ2 − (1− kp)
)

.

It is worth to note that a quantization problem of the matrix

trace (in the case when legal users extract the key namely

from it) can be solved trivially because the distribution (12)

is independent of the “angle variable”. This is valid also for

all coefficients of characteristic polynomial including matrix

eigenvalues. In fact, it is a consequence of circular symmetry

of channel matrices and matrices of noises.
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