
Rapid Embedded Systems Prototyping – an effective

approach to embedded systems development

Robert Brzoza-Woch, Łukasz Gurdek, Tomasz Szydło

AGH University of Science and Technology

Al. Mickiewicza 30, 30-059 Krakow, Poland

Email: robert.brzoza@agh.edu.pl

Abstract—In this paper we introduce the Rapid Embedded
Systems Prototyping (RESP) approach aimed at accelerating
the development of novel, experimental, and proof-of-concept
implementations of embedded devices based on microcontrollers
and Field Programmable Gate Array (FPGA) chips. It is intended
to be used in the fast-paced business environment in which an
early working prototype is required. The RESP approach can be
useful for remote developing and temporary monitoring of var-
ious embedded devices: primarily for resource-constrained IoT
platforms, microcontroller-based sensor nodes, and customized
ad hoc systems. The RESP-compliant system uses a central server
and one or multiple Remote Reconfiguration and Monitoring
(RRM) modules. Each RRM allows the software developers
to manage reprogramming and monitoring of multiple target
embedded devices. It can be applied to a device that needs to
be remotely reconfigured, tested, or reprogrammed in its target
environment without implementing a reliable bootloader. The
RRM described in this paper has been successfully implemented
and its functionality and performance have been tested.

I. INTRODUCTION

I
N COURSE of research projects and at an early stage

of embedded systems development cycle there is often a

need to quickly develop a working prototype of an embedded

device which will operate in its target environment as an IoT

node or as an innovative solution for control, acquisition or

monitoring purposes. In the start-up business environment, a

client or an investor may wish to see a demonstration of a

working proof-of-concept prototype of an application-specific

embedded system. In a traditional approach, an embedded

device is handed to a customer after the device’s software

is developed to a point in which it has full functionality

and, usually, its bootloader program is working to update the

device’s program memory or its configuration. Developing a

fully functional embedded device with a reliable operating

bootloader may be a tedious and time-consuming task.

When utilizing an adaptive and evolutionary approach to

software development, the functionality of the final product

may not be precisely specified at an early development stage.

It can be beneficial to start developing the application-specific

embedded hardware and software for demonstration purposes

and then to continue the product development when initial

results are evaluated in practice and client’s expectations are

more specific. In this article we discuss various aspects of

The research presented in this paper was partially supported by the
National Centre for Research and Development (NCBiR) under Grant No.
LIDER/15/0144/L-7/15/NCBR/2016.

this strategy which we call the Rapid Embedded Systems

Prototyping (RESP). The approach is based on fast prototyping

iterations with an ability to remotely reconfigure or reprogram

a hardware platform using the Remote Reconfiguration and

Monitoring (RRM) module intended to support the RESP

development. The idea of RESP is to deliver a working

prototype of an embedded device as fast as possible to a

client and demonstrate its functionality. Then, the product is

evaluated in its target environment by the client or the investor.

The product’s operation can be monitored and its software

functionality may be easily tested or changed using the remote

reconfiguration and monitoring capabilities. Thus, following

the RESP approach can lead to more competitive time of

proof-of-concept prototype development which, in turn, may

result in gaining swifter funding for a project and better time-

to-market.

In the domain of extremely resource-constrained, cost-

sensitive, and tentative ad hoc devices with short-term support,

the RESP combined with RRM can also be useful during the

development in a target environment instead of a bootloader.

We hypothesize that in those classes of embedded devices the

bootloader itself could even be omitted and the development

can be done using the RESP approach with RRM.

The described RRM subsystem is primarily intended to be

utilized for embedded software development purposes when

the device under development is placed in its target envi-

ronment, but a reliable remote program memory upload or

reconfiguration with a bootloader is not available or is not

yet developed. After the successful software development with

RESP approach, the RRM module can be extracted from the

target platform and the device may work as a stand-alone

unit. Alternatively, depending on a specific use case, the RRM

can be utilized for the embedded system long-term testing

by monitoring its operation with a set of sensors and digital

interfaces. Then the RRM will operate as a remote sensing

node.

The concepts described in this paper can be applied to mul-

tiple classes of embedded systems including microcontroller-

based IoT platforms. The RESP approach is applicable for em-

bedded platforms (a) based on microcontroller units (MCUs)

in which program memory can be reprogrammed using com-

mon in-system programmers or debugging interfaces or (b)

platforms based on Field Programmable Gate Arrays (FPGAs).

When using FPGA hardware platforms, the presented RRM

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 629–636

DOI: 10.15439/2018F68

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 629

device can be used for convenient remote development of

both programmable hardware and embedded software. Also, if

the RESP augmented with RRM is utilized for programming

or reconfiguration of a remote device under development, the

Internet connection will be required. Alternatively, the system

can be utilized in a local network and in that case the Internet

connection is not necessary.

The physical hardware development is not in the scope of

this paper as present-today ad hoc prototypes can be based

on ready-to-use computing platforms such as well-known Ar-

duino boards family or inexpensive evaluation boards offered

by many semiconductor manufacturers, for example STM32

Discovery or Nucleo series from ST Microelectronics or

Freedom FRDM from NXP. Those boards can be enhanced

with a wide selection of sensor or actuator modules equipped

with common integrated extension circuits available at low

cost. In the case of the FPGA-based platforms, we assume the

use of an already developed physical hardware. The RRM can

then be utilized not only to modify the embedded software but

also the programmable part of the hardware project.

The rest of this paper is organized as follows. In Section II

we summarize recent related research in the area of effective

approaches to embedded systems development and remote

reconfiguration. In Section III we present the RESP method

of developing embedded device prototypes in time-critical

manner and in fast-paced business competition environment.

Section IV provides a general idea on how to implement a

RESP-compliant system. Section V describes the construction

methodology and a sample implementation of the RESP with

RRM device. Finally, in Section VI we summarize our work.

II. RELATED RESEARCH

The embedded hardware platforms are characterized by

their diversity when compared to the general-purpose com-

puting platforms. Some of the differences between embedded

software and computer application development are the results

of the fact that the embedded software must tightly cooperate

with usually non-standard, specialized hardware platform and

a set of peripheral devices. An embedded software developer

needs an access to either a good simulation environment or

to the real hardware platform. At the very early development

stages, the product requirements are not yet fully specified and

they may change multiple times. Engineers can then utilize a

general-purpose solution from a wide portfolio of ready-to-use

sensing, data acquisition, and actuation devices controlled with

e.g. National Instruments hardware and software solutions.

However, a prototype can be more enticing for the investor

if it could be backed up with a demonstration of a custom

working hardware and software even at an initial development

stage.

In commercial and industrial MCU firmware development

practice, the bootloader is one of the most specialized software

parts. There are multiple MCU platforms that provide a ded-

icated bootloader without any additional installation, but that

solution usually relies on a predefined interface and protocol.

Changing the default settings requires either to re-implement

the bootloader or to modify it. The Nordic Semiconductor’s

nRF52832 is a good example of integrated circuits (ICs) which

provide a very well developed Bluetooth Low Energy (BLE)

bootloader. However, not all ICs can utilize BLE to update

firmware and not all manufacturers provide such a convenient

firmware update functionality. Usually, a bootloader is a very

application-specific part of embedded software and it needs to

be either developed solely for a given platform and interface

or ported from another project. Embedded systems based on

an application microprocessor (with Memory Management

Unit and running e.g. Linux) often use U-Boot as a first

stages’ bootloader. For the MCU-based embedded devices it

is difficult to point out a most common bootloader solution

– different platforms offer different solutions, such as the

STM32 Bootloader [1]. An example of a custom bootloader

is described in [2]. The bootloader program must be well

designed and tested to avoid firmware corruption eventually

resulting in an inability to reprogram the device with the

provided bootloader. Another common problem in writing a

bootloader is to make it insensitive to transmission errors and

complete transmission interruption. Preventing those situations

require much time, engineering effort, and some design redun-

dancy (additional memory, correcting errors in software, etc.).

All the problems mentioned here can be solved, but it usually

costs additional development time.

The ability to remotely reprogram, reconfigure, and super-

vise an embedded system is especially useful in the domain

of programmable logic, mainly FPGA. We should also be

aware that the software and hardware development flows

may proceed in parallel, depending on a design (e.g. in [3]).

The reconfiguration allows developers and maintenance staff

not only to remotely update firmware, but also to change

the functionality of the system [4]. For example the FPGA-

accelerated smart camera described in [5] is able to run

multiple configurations which can be substituted depending on

a higher level adaptation policy. Enhancing an FPGA-based

device with the remote reconfiguration feature costs design

issues due to losing the programmable logic functionality

during the reconfiguration process [6]. In that case the partial

reconfiguration feature [7], [8] could be helpful, but it tends

to complicate the hardware-software design flow hence it may

be ineffective for time-critical project. Less sophisticated, but

much more convenient methods include using remote pro-

grammers, such as the Intel FPGA Ethernet Cable (formerly

the Altera EthernetBlaster II) as described for example in [9].

Those devices offer only limited computing capabilities at the

target side. In our solution we greatly increased the computing

power of the remote programmer by utilizing a single-board

computer (SBC). It allowed us not only to easily implement

modern communication protocols, but also to gain much more

flexibility compared to other solutions.

The idea of remote programming can be extended to the

remote firmware management. It is also a well-known topic,

and some aspects of networked systems performing such

tasks are patented e.g. in [10], [11]. Currently the remote

reconfiguration and management are, however, typically per-

630 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

formed by using similar architecture and by utilizing e.g.

OMA Lightweight M2M (LWM2M) protocol. The LWM2M

is an increasingly popular remote management protocol for

intelligent connected and IoT devices [12], [13]. It has low

transmission overhead and its implementation can be relatively

easily ported to many connected platforms. LWM2M also

supports a framework for a remote firmware update which was

especially desirable in the solution described in this paper.

Despite the fact that the embedded and general computing

hardware platforms are different, embedded software devel-

opment can be based on similar principles as the computer

software development. For example, agile development model

has been adapted to embedded systems [14], [15]. Other

approaches to embedded systems development, such as the

V-Model descibed in e.g. [16], can also be applied to fast

development of embedded software.

As presented in this section, there are multiple systems,

methods and approaches to fast development of embedded

software. There are also multiple solutions for remote re-

configuration, programming, and management of embedded

systems. Those methods can be applied to ad-hoc embedded

systems firmware and software development process. Based

on the presented state of the art we propose the following

solutions. First, we suggest, that the remote programmers and

firmware management systems can be improved. To prove

that statement we propose the practical implementation of the

RRM described further in this paper. Moreover, the RRM can

be utilized to implement the RESP approach. We state and

prove that utilizing the proposed RESP approach can reduce

time-to-market and allow developers to deliver a working

prototype of the resource-constrained embedded system faster

compared to traditional approaches.

III. PROPOSED DEVELOPMENT METHOD

To explain and justify the proposed RESP development

method, we introduce a simplified model of the experimental

embedded system software development. The model reflects

practical experiences while cooperating on an innovative IoT

solution with actual business representatives. We assume that

the model is applicable when the MCU-based embedded

hardware platform is developed and it is ready for initial

firmware implementation.

The simplified development flow is following. We assume

that the development time can be represented by a number

of iterations. In this case the iteration can be perceived

e.g. as a time interval or as a programming task. In our

considerations each iteration represents an amount of work

required for one developer or for a team to complete a given

task. Many developers can work on the project concurrently,

but in the simplified model we just count the total number of

iterations as if the project was developed in a fully sequential

manner. A goal is specified for each iteration. Reaching Alpha

development stage requires at least two iterations: the initial

development stage and the actual Alpha development-testing

stage.

In this model the device is ready to be shipped to the

potential customer or an investor for further review if the

following two conditions are met: 1) the application has at

least minimum experimental functionality with basic Alpha

stage tests done, and 2) the device firmware can be reliably

and remotely updated or changed to allow developers and the

client to collaborate on the final firmware version and further

features. The consequence of the latter prerequisite is that the

bootloader should be developed up to the final release version

unless the RESP approach is used. In this model the embedded

device is passed to the potential customer or investor after

its development reaches the Alpha stage. Then the customer

initially evaluates the product. If the customer accepts the

initial results, the developers shall continue to work on the

product’s software (success). Otherwise the development of

the product in the current form shall be ceased (failure). That

situation can happen e.g. when the product is unable to meet

the requirements or it needs a major redesign. In the failure

case, most of the recent developing effort is wasted because

the project or the idea has been rejected by the investor or the

client.

Figure 1 shows a graphical representation of a sample

embedded system development time line using the presented

model. The goals of each iteration are denoted inside a box

representing that iteration. Two cases are analyzed.

The first case, which is shown in Figure 1 (a), represents a

scenario with a classic approach applied. In order to reach

the product development stage at which the prototype can

be passed to the client, the developers require six iterations:

four iterations for the bootloader development and two for

the initial application development. In case of success, only

the application needs to be further developed, but in case of

Fig. 1. Sample development time lines for the described model and: typical
approach (a), utilizing RESP approach with RRM module (b).

ROBERT BRZOZA-WOCH ET AL.: RAPID EMBEDDED SYSTEMS PROTOTYPING - AN EFFECTIVE APPROACH TO EMBEDDED SYSTEMS 631

failure, the six iterations are wasted.

In the second scenario shown in Figure 1 (b), the developers

utilize the RESP approach with the dedicated RRM module.

The device can be shipped to the client even at an early

development stage, after just two iterations and the bootloader

development can be postponed for later stages. In case of the

project failure, only two iterations are wasted.

IV. IMPLEMENTATION CONCEPT AND OVERVIEW

In this section we present a general ideas which concern

realization of RESP approach with the RRM module.

To implement the RESP development approach the devel-

opers should utilize the RESP-compliant system. The RESP-

compliant system consists of a management unit and the

RRM hardware with a dedicated software. One RRM can be

connected to one or multiple instances of the device under

development. The number of devices under development con-

nected to one RRM depends on hardware interface capabilities

of the utilized RRM embedded computer. Moreover, it is

possible to manage multiple RRMs using a single server

with a remote application. Those features allow software

developers to manage hundreds of devices with a single server.

The sample set-up of a multi-node reconfiguration-debugging

system using RRMs is presented in Figure 2.

Fig. 2. Sample RESP-compliant hardware architecture with multiple RRMs
capable of managing several devices under development.

After the embedded software development is complete, the

RRM can either be disconnected from the device under devel-

opment, or it can be left connected to monitor the operation of

the embedded system by utilizing e.g. external sensors, such

as temperature, voltage or current.

To provide flexibility and advanced functionality, the im-

plementation of RRM is based on an SBC. The use of SBC

allows developers to implement much more advanced features

compared to typical programmers with network interface.

The choice of generic hardware platforms combined with

free and open source software solutions is one of the key

concepts in the implementation of RESP-compliant system.

The configuration needs to be performed with the use of script-

ing languages. Combining those features allows the RESP-

compliant system to be very flexible and easily adapted to

new target hardware platforms and specialized use cases. The

SBC-based RRM can potentially log, filter, and transmit the

debug messages printed on e.g. a serial port of the device

under development. The messages then can be transmitted

over Internet to developers and testers in a remote location.

The functionality of RRM can be extended even further. As

an example, the RRM after extending its software may allow

developers to obtain even a live view of the system under

development. That feature obviously cannot be utilized to

reliably monitor the operation of a safety-critical equipment,

however it can be utilized to determine overall environment

conditions for which sensors were not included in the initial

design or to detect some obvious reasons of malfunction. For

example the camera can facilitate determining if the light

intensity in general is low or high, if the device has been

covered, or if it has been moved.

V. PRACTICAL IMPLEMENTATION OF THE

RESP-COMPLIANT SYSTEM

This section contains technical description of the sample

RESP-compliant reconfiguration and monitoring architecture

developed according to the information in previous sections

of this paper.

A. RRM hardware design

Currently there are many different SBCs available at very

low cost. In our sample implementation we have chosen Rasp-

berry Pi Zero to implement the RRM. The Raspberry Pi Zero

has multiple advantages as a choice for RRM. That computer

is characterized by its very low cost and compact size. Another

advantage of it is a General-Purpose Input-Output (GPIO)

interface presence and its 3.3 V logic levels compatibility,

which makes it well suited to implement versatile digital

interfaces, including programming interfaces.

The network interface is provided with a generic Wi-Fi

dongle with Universal Serial Bus (USB) interface. Depend-

ing on the SBC used, the network interface could also be

implemented using a built-in peripheral as in e.g. full-sized

Raspberry Pi computers.

Devices under development are connected to RRMs directly

using Joint Test Action Group (JTAG) or Serial Wire Debug

(SWD) interface for programming and reconfiguration pur-

poses. Those interfaces are implemented using GPIO hardware

of the SBC. Devices equipped with a built-in programmer with

USB interface, can connect to the SBC with that interface. In

the proof-of-concept implementation no additional protection

circuits were added, but they should be considered in the RRM

hardware.

Another important aspect of the RRM implementation is

the possibility to measure various physical quantities: the

operation parameters of the device under development (e.g.

input-output voltages, temperature, logic states, power sup-

ply current) and the general parameters of the environment

(e.g. temperature, humidity). We have chosen Inter-Integrated

Circuit (I2C) as a typical interface for RRM external sensors

because it is supported in hardware and software of many

SBC platforms or it can be relatively easily implemented using

GPIO. There is also a wide selection of compatible sensors

632 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

with I2C interface and, what is very convenient, multiple

sensors can be connected to a single bus.

As a sensor for the first implementation of the RRM we have

chosen a current sensor intended to monitor a power supply

current of the target device under development. The reason

was to provide a sensor which is commonly needed during

the process of developing embedded software. In our practice,

the power management of an embedded system is one of the

vital parameters that needs to be monitored and we often need

embedded systems to be optimized for energy efficiency. The

choice of INA219 current sensor appeared to be reasonable

because it is equipped with digital I2C interface and it is able

to measure current at the power supply rail (high-side).

B. RESP-compliant system logic and software architecture

The internal structure of RRM and its sample connections

to multiple devices under development are shown in Figure 3.

We intended to chose a free, open source, and highly con-

figurable solution for interfacing management software with

hardware reconfiguration-programming interfaces of target de-

vices under development. An actively developed project that

seems a very good choice for that purpose is OpenOCD. It is

a powerful and flexible debugging and memory programming

tool which can be configured with TCL scripts and which

provides multiple convenient control interfaces.

As the management interface needs to easily cooperate with

standard software solutions, we decided to utilize the more

and more popular OMA LWM2M protocol. The management

node is implemented as a server for the OMA LWM2M

protocol. Eclipse Leshan LWM2M server demo was chosen for

the project implementation purposes. It provides basic unified

network interface and Representational State Transfer (REST)

application programming interface (API). Custom LWM2M

object definitions have been added to the server in order

to properly recognize custom resources which are specific

to the project. The LWM2M API utilizes Firmware Update

object from the specification and three custom LWM2M

objects: OpenOCD LWM2M RPC, Firmware Target Selector

and INA219 current sensors interface.

Fig. 3. General block diagram of the RRM and an example of connecting
devices under development.

The internal software architecture of the RRM is shown in

Figure 4. The software operates as multiple separate LWM2M

client instances, one for each device connected to the RRM

hardware. The LWM2M allows software developers to repro-

gram the target device and fetch sensors readings. It holds an

OpenOCD instance for each device.

The software is written in Java with Eclipse Leshan

libraries. For every device instance it creates a separate

LWM2M client instance and runs OpenOCD. In our imple-

mentation the OpenOCD uses remote procedure call (RPC)

interface for clients to issue TCL commands and obtain results

from TCL engine. The commands are generated according

to information derived from configuration files passed as

arguments. The configuration files are described in detail

further in this paper (please refer to Section V-C).

When using Eclipse Leshan the binary image for the re-

configuration purposes of the device under development can

be transferred from the management server. Alternatively, the

reconfiguration can be initiated from the server along with

providing an Unified Resource Identifier (URI) to a location in

which the binary image is available. We have implemented the

latter option, because in practice it proved to be more flexible

and convenient for the developer who manages the process of

reconfiguration or reprogramming. In current implementation,

two protocols are supported for transferring firmware im-

ages: Hypertext Transfer Protocol (HTTP) and HTTP Secure

(HTTPS).

Fig. 4. Software architecture (gray block means external process managed
by parent process).

C. Configuration

The configuration method was devised especially for RRMs.

YAML was chosen as a file format for its simplicity and read-

ability. SnakeYAML library was chosen to load YAML files

into configuration objects. It also provides runtime validation

of configuration syntax.

There are two types of configuration: the first for each

device class and the second for device instances connected

to RRM. Device class configuration is stored in files separate

for each device class (such as STMF4DISCOVERY, ZYBO).

It contains OpenOCD initialization and flash commands. In-

stance configuration specifies communication interface and

sensors for each of the actual devices connected to RRM (such

as stm-prod, zybo1).

Listing 1. Sample instances configuration file for two identical devices
connected to the RRM hardware.
i n s t a n c e s :
− name: stm−by−gp io

d e v i c e C o n f i g P a t h : s t m f 4 d i s c o v e r y / c o n f i g . yml
i n t e r f a c e :

bcm2835gpio:

ROBERT BRZOZA-WOCH ET AL.: RAPID EMBEDDED SYSTEMS PROTOTYPING - AN EFFECTIVE APPROACH TO EMBEDDED SYSTEMS 633

swdNum1: 25
swdNum2: 24
t r s tNum: 7
srs tNum: 18
t r a n s p o r t : swd

− name: stm−with−c u r r e n t −s e n s o r s
d e v i c e C o n f i g P a t h : s t m f 4 d i s c o v e r y / c o n f i g . yml
i n t e r f a c e :

custom:
ini tCommands:

- s o u r c e [f i n d i n t e r f a c e / s t l i n k −v2 . c f g]
- t r a n s p o r t s e l e c t h la_swd

s e n s o r s :
- i n a 2 1 9 :

i2cAddr : 0 x40
i2cBus : 1
s h u n t R e s i s t a n c e : 0 . 1

A sample configuration is shown in Listing 1. It is a

configuration file for two identical device instances connected

to the RRM hardware. The first instance is connected by JTAG

directly to the GPIO ports of the SBC, whilst the second

instance is using board built-in USB debugger and also has

current sensor attached. It was prepared for BCM2835 chip

present in Raspberry Pi boards. It eliminates the necessity of

writing OpenOCD commands, yet allowing to specify custom

GPIO port numbers and transport.

An example of the device configuration file is shown

in Listing 2. It allows system developers to define device

class specific OpenOCD initialization commands as well as

commands that are executed as a result of executing Update

resource on Firmware Update object.

Listing 2. Device configuration file

in i tCommands:
- s o u r c e [f i n d t a r g e t / s tm32f4x . c f g]
- r e s e t _ c o n f i g s r s t _ o n l y

f i r m w a r e T a r g e t s :
- name: mcu

flashCommands:
- r e s e t i n i t
- f l a s h w r i t e _ i m a g e {{ image }}
- r e s e t

D. Implemented sensor support

In the sample implementation, the RRM software sup-

ports multiple sensors connected using I2C bus supported by

the physical interface of the utilized SBC. In the presented

software implementation, each RRM instance supports zero,

one or many INA219 current sensors as a sample imple-

mentation of that functionality. The RRM software fetches

data from sensors using Pi4J library and provides on-demand

access with multi-instance INA219 sensors LWM2M object

(urn:oma:lwm2m:ext:3403). For convenience, current, voltage,

and power values are provided.

E. Reconfiguration flow

Reconfiguration flow is presented as a sequence diagram in

Figure 5. The reconfiguration process consists of two depen-

dent stages. In the first stage, the developer provides a URI

for a new binary image to be uploaded to the target embedded

system using Eclipse Leshan and LWM2M protocol. In the

second stage, the execution of the reconfiguration itself takes

place – the RRM performs the reconfiguration with an instance

of OpenOCD.

F. Basic security considerations

The RRM is primarily intended to be applied only temporar-

ily during the embedded system’s development stage, but the

security is still an important issue. The basic transport-level

security using Datagram Transport Layer Security (DTLS) is

supported by default for LWM2M. RRM software supports

HTTPS to enable secure path of fetching images. User might

want to add another layer of security such as an encrypted

virtual private network (VPN) or Secure Shell (SSH) tunnel.

G. Achieved prototype functionality and practical verification

We have successfully developed a working prototype of

RRM device according to the ideas described in previous sec-

tions. The presented example of the RESP-compliant system

provides LWM2M-based remote firmware upgrade API for a

wide variety of embedded systems. Thanks to the fact that

we have chosen OpenOCD as the software for reconfiguration

control, the RRM supports virtually any target platform that

can be reconfigured or reprogrammed with OpenOCD – the

main requirement is that the system administrator provides

adequate configuration scripts. We have designed and im-

plemented a specialized configuration scheme using YAML

scripts. The utilization of free and open source software and

common versatile off-the-shelf hardware allows developers to

easily modify, extend, and tailor the functionality of the RRM

for a particular use case. The implemented and presented sen-

sor extension for measuring a target’s power consumption may

be extremely useful in remote debugging and development of

energy constrained embedded systems.

We have measured reconfiguration times achieved with

RRM and the module’s average power consumption. The

reconfiguration time results are summarized in Table I and

visualized in Figure 6. Each reconfiguration time is an av-

erage computed from 10 sample transmissions. The results

were obtained during reprogramming or reconfiguring MCU

and FPGA on development boards. The reprogrammed MCU

was STM32F407VGT6 and the programming interface was

SWD implemented with GPIO of Raspberry Pi Zero. The

reconfigured FPGA was Xilinx Zynq-7000 on Digilent Zybo

ARM/FPGA SoC Trainer Board with the JTAG programming

interface connected to SBC using USB interface. The SBC

was connected to a local network using a generic Wi-Fi card

with USB interface. We have measured power consumption

of the RRM hardware. It averages to 1.3 W when idle (Wi-Fi

connectivity enabled, LWM2M server is during registration)

and to 1.4 W when performing firmware update. To set-up a

Wide-Area Network (WAN) we used a virtual machine (VM)

located in New York which was hosting LWM2M server and

binary images. The LWM2M client was located in Krakow,

Poland. The measured WAN Round Trip delay Time (RTT)

was 120 ms at maximum transfer rate of 12 Mb/s. The

634 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Fig. 5. Reconfiguration flow

TABLE I
RESULTS OF PRACTICAL EXPERIMENTS

Target
type

Firmware/
config-
uration
file
size
(KiB)

Network
for
LWM2M

Image
server
proto-
col

DTLS
for
LWM2M

Total
recon-
figu-
ration
time
(s)

Binary
upload
time
(s)

MCU 21.8 LAN HTTP disabled 1.9 1.3
MCU 21.8 WAN HTTPS enabled 3.3 1.3
MCU 295.3 LAN HTTP disabled 10.5 9.1
MCU 295.3 WAN HTTPS enabled 12.1 9.1
MCU 978.9 LAN HTTP disabled 26.0 23.9
MCU 978.9 WAN HTTPS enabled 28.3 23.9
FPGA 4185 LAN HTTP disabled 12.2 9.1
FPGA 4185 WAN HTTPS enabled 14.7 9.1

M
C

U
 2

1
.8

 K
iB

L
A

N
,

H
T

T
P

M
C

U
 2

1
.8

 K
iB

W
A

N
,

H
T

T
P

S
,

D
T

L
S

M
C

U
 2

9
5
.3

 K
iB

L
A

N
 H

T
T

P

M
C

U
 2

9
5
.3

 K
iB

W
A

N
,

H
T

T
P

S
,

D
T

L
S

M
C

U
 9

7
8
.9

 K
iB

L
A

N
,

H
T

T
P

M
C

U
 9

7
8
.9

 K
iB

W
A

N
,

H
T

T
P

S
,

D
T

L
S

F
P

G
A

 4
1
8
5
 K

iB
L
A

N
,

H
T

T
P

F
P

G
A

 4
1
8
5
 K

iB
W

A
N

,
H

T
T

P
S

,
D

T
L
S

0

5

10

15

20

25

30

0

5

10

15

20

25

30

Total
reconfiguration
time (s)

Binary
upload
time (s)

Fig. 6. Remote reconfiguration and programming times comparison.

reconfiguration time consisted of two components: an actual

binary image upload time (target memory programming) and

a communication overhead. According to the results the actual

binary image upload was always taking an overwhelming

amount of time.

VI. CONCLUSION AND FUTURE WORK

In this article we present the RESP approach for fast

embedded systems prototyping. The presented RESP approach

may be one of the future directions in embedded software

development, especially for experimental and ad hoc systems,

because it is aimed at effectiveness, low development cost,

short time-to-market, and minimizing implications of a project

failure. We propose a theoretical justification for the pro-

posed solution and a sample practical implementation of the

compliant system that supports the described approach. The

RESP approach does not limit the use of common software

development techniques and approaches, such as agile, but it

may extend their possibilities and simplify their application in

practice.

We also propose a new approach to remote programming

and reconfiguration of microcontrollers and FPGAs by imple-

menting much more advanced functionality in the RRM than

in common off-the-shelf programmers. The use of the RRM

can speed-up the embedded software development before the

final version of an application-specific bootloader is developed.

We present a sample working implementation of the RRM.

It supports modern and promising network protocols, mainly

OMA LWM2M, and flexible monitoring features. Thanks to

the application of OpenOCD software along with the described

implementation of scripting configuration, the RRM can be

adapted for a wide variety of embedded hardware platforms,

MCU-based IoT nodes, and their respective memory program-

ming interfaces. It can be a versatile remote reconfiguration

and development hardware-software tool. Thanks to the use

of compact but full-fledged computer platform, the devel-

oped RRM system has far superior versatility compared to

commercially available remote programmers-debuggers. The

comparison between the RESP-RRM approach and solutions

reviewed in Section II is summarized in Table II.

The RRM can be used not only for RESP development,

but also as a multi-purpose remote reconfiguration and man-

agement extension as well as long-term operation monitor or

ROBERT BRZOZA-WOCH ET AL.: RAPID EMBEDDED SYSTEMS PROTOTYPING - AN EFFECTIVE APPROACH TO EMBEDDED SYSTEMS 635

TABLE II
COMPARISON BETWEEN THE REVIEWED AND THE PROPOSED SOLUTIONS.

Reviewed solution Aspects which can be improved Aspects improved by utilizing the RESP
approach and/or the RRM

Bootloaders for embedded MCU-based devices [1],
[2]

Bootloaders require much development time
and effort.

Bootloader is not required during initial
development, and can be added at later
development stages.

Remote FPGA reconfiguration, programmable logic
partial reconfiguration with traditional design flow
approach [5], [6], [7], [8]

Complex design which includes a reconfigu-
ration subsystem and more elaborate design
flow when considering partial reconfigura-
tion.

RESP can improve time-to-market by al-
lowing for remote development of both
programmable hardware and software. The
RRM substitutes additional fixed hardware
and logic resources for remote reconfigura-
tion. Later, the RRM can be disconnected
when not needed.

Remote programmers for FPGA designs as utilized
for example in [9]

Single-purpose hardware, no advanced man-
agement features, not customizable.

High flexibility of the hardware and soft-
ware. Possibility to implement advanced
firmware and configuration management.

General approach to remote firmware management
[10], [11], [12], [13]

More versatile and general-purpose ap-
proach with standardized protocols can be
considered.

The proposed solution can be easily cus-
tomized to various applications.

Common approaches to embedded software develop-
ment [14], [15], [16]

Usually considered for software develop-
ment with hardware available locally.

RESP does not interfere with a selected em-
bedded software development approach, but
it allows developers to achieve a working
prototype faster and without a direct access
to a hardware platform.

logger for various embedded and connected devices, including

IoT nodes. We plan to implement some of that features during

further development. An example of a very useful extension is

an integration of a camera module for basic visual inspection

of the device under development. The RRM could also be

considered as a tool which allows remote access to specialized

embedded systems for educational and training purposes.

REFERENCES

[1] “Stm32 bootloader,” https://github.com/akospasztor/stm32-bootloader,
accessed: 2017-12-29.

[2] R. J. Landeo Márquez, “Can bus bootloader for the stm32f407vg,”
Master’s thesis, Universitat Politècnica de Catalunya, 2017.

[3] A. V. Parkhomenko, O. Gladkova, E. Ivanov, A. Sokolyanskii, and
S. Kurson, “Development and application of remote laboratory for
embedded systems design,” International Journal of Online Engineering

(iJOE), vol. 11, no. 3, pp. 27–31, 2015. doi: 10.1109/REV.2015.7087265
[4] M. D. V. Pena, J. J. Rodriguez-Andina, and M. Manic, “The in-

ternet of things: The role of reconfigurable platforms,” IEEE In-

dustrial Electronics Magazine, vol. 11, no. 3, pp. 6–19, 2017. doi:
10.1109/MIE.2017.2724579

[5] R. Brzoza-Woch, A. Ruta, and K. Zieliński, “Remotely reconfigurable
hardware–software platform with web service interface for automated
video surveillance,” Journal of Systems Architecture, vol. 59, no. 7, pp.
376–388, 2013. doi: https://doi.org/10.1016/j.sysarc.2013.05.007

[6] R. Brzoza-Woch and P. Nawrocki, “Fpga-based web services–infinite
potential or a road to nowhere?” IEEE Internet Computing, vol. 20,
no. 1, pp. 44–51, 2016. doi: 10.1109/MIC.2015.23

[7] R. Hymel, A. D. George, and H. Lam, “Evaluating partial recon-
figuration for embedded fpga applications,” in Proceedings of High-

Performance Embedded Computing Workshop (HPEC’07), 2007, pp. 1–
2.

[8] C. Conger, R. Hymel, M. Rewak, A. D. George, and H. Lam, “Fpga
design framework for dynamic partial reconfiguration,” in Proceedings

of Reconfigurable Architectures Workshop (RAW), 2008.
[9] J. Belleman, D. Belohrad, L. Jensen, M. Krupa, and A. Topaloudis, “The

lhc fast beam current change monitor,” WEPF29, IBIC, 2013.
[10] M. Ogura, “Remote management system, intermediary apparatus there-

for, and method of updating software in the intermedary apparatus,” U.S.
Patent US7 516 450B2, 2003.

[11] R. Pathak, “Remote firmware management for electronic devices,” U.S.
Patent US9 112 891B2, 2007.

[12] S. Rao, D. Chendanda, C. Deshpande, and V. Lakkundi, “Implementing
lwm2m in constrained iot devices,” in Wireless Sensors (ICWiSe), 2015

IEEE Conference on. IEEE, 2015. doi: 10.1109/ICWISE.2015.7380353
pp. 52–57.

[13] J. Prado, “Oma lighweight m2m resource model,” in IAB IoT Semantic

Interoperability Workshop, 2016.
[14] J. Grenning, “Agile embedded software development,” ESC Boston,

2011.
[15] D. Dahlby, “Applying agile methods to embedded systems develop-

ment,” Embedded Software Design Resources, vol. 41, p. 1014123, 2004.
[16] “Embedded System development Process Reference guide,”

Information-technology Promotion Agency, Reference Guide, 2012.

636 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

