
Assertional Reasoning for Concurrent and

Communicating BPEL-like Programs

Longfei Zhu

Key Laboratory of

Ministry of Public Security,

Zhejiang Police College,

Zhejiang, China

Email: zhulongfei@zjjcxy.cn

Qiwen Xu §

Faculty of Science and Technology,

University of Macau,

Macao SAR, China

Email: qwxu@umac.mo

Huibiao Zhu

Shanghai Key Laboratory of

Trustworthy Computing,

East China Normal University,

Shanghai, China

Email: hbzhu@sei.ecnu.edu.cn

Abstract—This paper studies verification of programs similar
to BPEL4WS (BPEL), the latter being a de facto standard for
the web services composition and orchestration. Traditionally, in
verification of concurrent and distributed programs, the model
was either based on shared variables or message passing and was
studied separately. BPEL-like programs have features that are
present in both models: several flows within one service can be
executed in parallel and they can access shared variables, whereas
several services communicate by message passing. Therefore,
it is natural that for verification of BPEL-like programs, the
verification methods developed for shared variables and message
passing be integrated. In this paper, we combine the proof rules
for shared variable programs from Owicki and Gries, the proof
rules for CSP like programs from Apt, Francez and de Roever,
together with proof rules for compensation and fault handling,
to cover all major features of BPEL. An operational semantics is
presented and the proof rules can be justified over that. Examples
are provided to show the feasibility of verification framework.

Index Terms—BPEL, Hoare logic, shared variables, message
passing.

I. INTRODUCTION

WEB services and other web-based applications have

been becoming more and more important in practice.

Various web-based business process languages have been in-

troduced, such as XLANG [1], WSFL [2], BPEL4WS (BPEL)

[3] and StAC [4], which are designed for the description of

services composed of a set of processes across the Internet.

Their goal is to achieve the universal interoperability between

applications by using web standards, as well as to specify the

technical infrastructure for carrying out business transactions.

BPEL4WS (BPEL) is the OASIS standard for web services

composition and orchestration. To support long-running trans-

actions, it provides the ability to define fault and compensation

handling. In addition, BPEL allows several flows executing in

parallel in a service, and several services running concurrently.

Due to the interesting features of BPEL programs mentioned

above, the verification of BPEL programs is challenging.

Much research has been done on verification of concurrent

and distributed programs. Typically, the model is either based

on shared-variables or message passing. Owicki and Gries [5],

and Apt, Francez and de Roever [6], respectively extended

§ Qiwen Xu is corresponding author.

Hoare logic to concurrent programs with shared variables

and distributed programs with message passing. BPEL-like

programs have features that are present in both models: several

parallel flows within one service can access shared variables,

whereas several concurrent services communicate by message

passing. Therefore, it is natural that for verification of BPEL

like programs, the verification methods developed for shared

variables and message passing be integrated. In this paper, we

combine the proof rules for shared variable programs from

Owicki and Gries, the proof rules for CSP like programs from

Apt, Francez and de Roever, together with proof rules for

compensation and fault handling, to cover all major features

of BPEL.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces a language based on BPEL together with an

operational semantics. In section 3, we provide the verification

rules, including the rules for dealing with compensation, fault

handling, parallel flows through shared variables, and multiple

services through message passing. A few simple examples are

given to illustrate the rules. Section 4 concludes the paper with

a discussion.

II. AN OPERATIONAL MODEL

In this section, we present the operational semantics of a

BPEL-like language, based on the work in [7] and [8].

A. The Syntax of BPEL

Our language contains the following categories of syntactic

elements:

BA ::= skip | x := e | rec a x | rep a e | throw

A ::= BA | g ◦A | A; A | A⊳ b⊲A | b ∗A

| A ‖ A | A ⊓A | undo n | {A ?A, A}n

W ::= (A, · · · , A)

where:

• The category BA stands for the basic activity. Activity

x := e assigns the value of e to variable x. Activity

skip behaves the same as x := x. A variable may be

shared among parallel flows within one service.

In order to implement the communications between

concurrent services, two statements are introduced, i.e.,

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 241–247

DOI: 10.15439/2018F148

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 241

rec a x and rep a e. Activity rec a x represents the

receiving of a value through channel a and storing in

x. To avoid complications, we assume variable x is not

shared by parallel flows. If the information is needed by

another flow, it has to be copied to another variable first.

Sending a message is represented by rep a e. Activity

throw indicates that the program encounters a fault.

• The category A stands for the activities within one

service. Several constructs are similar to those in tra-

ditional programming languages. A;B stands for se-

quential composition. A ⊳ b ⊲ B is the conditional

construct and b ∗ A is the iteration construct. A ⊓ B
stands for the nondeterministic choice. g ◦ A awaits

the Boolean condition g to be set true. {A ?C, F}n
stands for the scope based compensation statement,

where n stands for the scope name, A, C and F for

the primary activity, compensation program and fault

handler correspondingly. If A terminates successfully,

program C is installed in the compensation list for later

compensating. On the other hand, if A encounters a

fault during its execution, the fault handler F will be

activated. Further, the compensation part C does not

contain scope activity. Statement “undo n” activates the

execution of the programs with scope name n.

A service may contain one or several flows running in

parallel. We use the notation A ‖ B to stand for two

such flows.

• The category W stands for the coordination of several

concurrent services. Such a set of services is denoted by

(A1, · · · , An), and their communication is modelled by

message passing.

B. An Operational Model

For the operational semantics of BPEL, its transitions are

of the two types.

C −→ C ′ or C
a.m
−→ C ′

where C and C ′ are the configurations describing the states of

an execution mechanism before and after a step respectively.

The first type is used to denote non-communication transitions.

The second type is used to represent communication between

concurrent services where a is the channel and m is the

message that is passed.

A configuration is expressed as 〈P, σ, Cp〉, where

(1) The first component P is a program that remains to be

executed.

(2) The second element σ is the state for all the variables.

(3) The third element Cp stands for a compensation set; i.e.,

containing the scope names whose compensation parts

need to be executed. Cp can contain several copies of the

same element. Therefore, it is in fact a bag. For a scope

n, the compensation program is denoted by C(n). When

statement undo n is executed, C(n) will be invoked.

For the program P in configuration 〈P, σ, Cp〉, it can either

be a normal program or one of the following special forms:

ε : A program has terminated successfully. We use ε to

represent the empty program.

⊠ : A program has encountered a fault and stops at the faulty

state, represented by a special symbol ⊠.

C. Transition Rules

Transition rules are presented below.

(1) Basic Commands

Firstly we list the operational semantics for basic commands.

The execution of x := e assigns the value of expression e to

variable x, and leaves other variables unchanged.

〈x := e, σ, Cp〉 −→ 〈ε, σ[x 7→ e(σ)], Cp〉

For communication commands, statement rec a x receives

message m through channel a. The received message will be

stored in variable x.

〈rec a x, σ, Cp〉
a.m
−→ 〈ε, σ[x 7→ m], Cp〉

rep a e stands for the sending of e on channel a, and the

message is e(σ) when sent in state σ.

〈rep a e, σ, Cp〉
a.e(σ)
−→ 〈ε, σ, Cp〉

throw encounters a fault after activation, while leaving all

variables and the compensation set unchanged.

〈throw, σ, Cp〉 −→ 〈⊠, σ, Cp〉

undo n invokes the compensation program corresponding to

scope name n.

〈undo n, σ, Cp〉 −→ 〈C(n), σ, Cp \ n〉, where

n ∈ Cp

Here function C(n) represents the program whose name is n
(i.e, the scope name). Cp \ n represents that scope name n is

removed once from Cp.

(2) Sequential Constructs

For sequential composition P ;Q, if P does not encounter

a fault, the transition rules are the same as usual. Below

in this section,
β

−→ denotes either a communication or

non-communication transition.

〈P, σ, Cp〉
β

−→ 〈P ′, σ′, Cp′〉 and P ′ 6= ε,⊠

〈P ;Q, σ, Cp〉
β

−→ 〈P ′;Q, σ′, Cp′〉

〈P, σ, Cp〉
β

−→ 〈ε, σ′, Cp′〉

〈P ;Q, σ, Cp〉
β

−→ 〈Q, σ′, Cp′〉

If P encounters a fault during its execution, P ;Q also encoun-

ters a fault during its execution.

〈P, σ, Cp〉
β

−→ 〈⊠, σ′, Cp′〉

〈P ;Q, σ, Cp〉
β

−→ 〈⊠, σ′, Cp′〉

The usual await statement g ◦ P waits for the Boolean guard

g to be set true.

〈g ◦ P, σ, Cp〉 −→ 〈P, σ, Cp〉, if g(σ)

P ⊓ Q either behaves like P or like Q. The choice between

242 COMMUNICATION PAPERS. POZNAŃ, 2018

them is nondeterministic.

〈P ⊓Q, σ, Cp〉 −→ 〈P, σ, Cp〉

〈P ⊓Q, σ, Cp〉 −→ 〈Q, σ, Cp〉

The conditional P ⊳ b⊲Q starts process P if the value of b
is true. Otherwise it executes Q instead.

〈P ⊳ b⊲Q, σ, Cp〉 −→ 〈P, σ, Cp〉, if b(σ)

〈P ⊳ b⊲Q, σ, Cp〉 −→ 〈Q, σ, Cp〉, if ¬b(σ)

The transition rules for iteration are similar to conditional.

〈b ∗ P, σ, Cp〉 −→ 〈P ; b ∗ P, σ, Cp〉, if b(σ)

〈b ∗ P, σ, Cp〉 −→ 〈ε, σ, Cp〉, if ¬b(σ)

(3) Parallel Flows

Now we consider the transition rules for parallel composition.

First we define a function par(P,Q), which can be used in

defining the transition rules for parallel composition. Let

par(P,Q) =df























ε if P = ε ∧Q = ε
⊠ if P = ⊠ ∧Q = ⊠

∨P = ⊠ ∧Q = ε
∨P = ε ∧Q = ⊠

P ‖ Q otherwise

It indicates the program status for two parallel flows after

executing a transition. If both components are in the empty

states, the whole service is also in the empty state. If both are

in the faulty states, or one is in the faulty state and another one

is in the empty state, then the whole service is also in faulty

state. If one flow performs a transition, the whole service can

also perform the transition.

〈P, σ, Cp〉
β

−→ 〈P ′, σ′, Cp′〉

〈P ‖ Q, σ,Cp〉
β

−→ 〈par(P ′, Q), σ′, Cp′〉

〈Q, σ,Cp〉
β

−→ 〈Q′, σ′, Cp′〉

〈P ‖ Q, σ,Cp〉
β

−→ 〈par(P,Q′), σ′, Cp′〉

(4) Scope

For scope {A?C, F}n, if the primary activity A performs a

transition which does not lead to the faulty state, the whole

scope can also perform the successful transition of the same

type.

〈A, σ, Cp〉
β

−→ 〈A′, σ′, Cp′〉 and A′ 6= ⊠

〈{A?C, F}n, σ, Cp〉
β

−→ 〈{A′?C, F}n, σ′, Cp′〉

When the primary activity has been terminated, the compen-

sation program is added into the compensation set. This is

represented by the following rule.

〈{ε?C, F}n, σ, Cp〉 −→ 〈ε, σ, Cp ∪ {n → C} 〉

On the other hand, if the primary activity performs a transition

leading to the faulty state, the fault handler in the scope will

be activated.

〈A, σ, Cp〉
β

−→ 〈⊠, σ′, Cp′〉

〈{A?C, F}n, σ, Cp〉
β

−→ 〈F, σ′, Cp′〉

(5) Communicating Services

A collection of concurrent services is represented as W =
(P1, P2, · · · , Pn), and we use σi and Cpi to denote the state

and compensation set of service Pi respectively.

If one service does non-communication transitions, the whole

system can also do a transition of the same type.

〈Pi, σi, Cpi〉 −→ 〈P ′

i , σ′

i, Cp′i〉

〈W, σ, Cp〉 −→ 〈W ′, σ′, Cp′〉

where W ′ = (P1, P2, · · · , P
′

i , · · · , Pn), σ = (σ1, σ2, · · · , σi,
· · · , σn), σ′ = (σ1, σ2, · · · , σ

′

i, · · · , σn) and Cp′ =
(Cp1, Cp2, · · · , Cp′i · · · , Cpn).

If two services involve the communication via the same

channel, the whole system also does the communication via

the channel.

〈Pi, σi, Cpi〉
a.m
−→ 〈P ′

i , σ
′

i, Cp′i〉,〈Pj , σj , Cpj〉
a.m
−→ 〈P ′

j , σ
′

j , Cp′j〉

〈W, σ, Cp〉 −→ 〈W ′, σ′, Cp′〉

where W ′ = (P1, · · · , P
′

i , · · · , P
′

j , · · · , Pn), σ
′ = (σ1, · · · ,

σ′

i, · · · , σ
′

j , · · · , σn), Cp′ = (Cp1, · · · , Cp′i, · · · , Cp′j , · · · ,
Cpn).

III. VERIFICATION RULES

In this section, we study the verification rules for the BPEL-

like programs.

A. Correctness Formula

The verification rules are in the form of a Hoare triple:

{p}S {q}

here S stands for the program, p and q stand for the pre-

condition and the postcondition respectively. If the program

S is started in a state that satisfies p, after the execution,

postcondition q should be satisfied.

To deal with the two typical features of BPEL, i.e., fault

handling and compensation, we introduce two variables ok
and comp.

B. General Rules

Boolean variable ok is used to identify whether a program

is in the faulty state or not. For a configuration 〈P, σ, Cp〉,
ok is true if and only if P 6= ⊠. Since the initial configuration

is never faulty, we have the following general rule

OK-rule
{p ∧ ok}S {q}

{p}S {q}

ok may be false in the postcondition, indicating that the current

system has encountered faults in the execution.

LONGFEI ZHU ET AL.: ASSERTIONAL REASONING FOR CONCURRENT AND COMMUNICATING BPEL-LIKE PROGRAMS 243

The other general rule is the usual consequence rule:

Consequence-rule

p ⇒ p1, {p1}S {q1}, q1 ⇒ q

{p}S {q}

C. Rules for Basic Commands

(1) Assignment:

The rule for assignment is the same as in the traditional Hoare

logic and ok is true in the postcondition.

{p[e/x]}x := e {p ∧ ok}

(2) throw:

For throw, it immediately enters into the faulty state while

leaving the states unchanged.

r does not contain variable ok

{r} throw {¬ok ∧ r}

To verify communicating processes, Apt, Francez and de

Roever [6] suggested the verification be divided into two

phases. The first phase is the “local verification” for each

process, and the second phase is the “cooperation test” where

the local verification of the processes are checked to be

matching.

(3) Replying:

Obviously, sending a message does not change the state

{p} rep a y {p}

ok actually holds in the postcondition, but we can deduce this

fact by applying the OK-rule.

(4) Receiving:
q ⇒ ok

{p} rec a x {q}

This rule at first would look odd, as the postcondition can be

anything (in our context, as long as ok is true). Whether the

postcondition is really valid is checked in the cooperation test.

The rule for conditional choice is the same as the traditional

one.

(5) Conditional choice:

{p ∧ b}S1 {q}, {p ∧ ¬b}S2 {q}

{p}S1 ⊳ b⊲ S2 {q}

(6) Sequential Composition

For sequential composition, there are two rules. The first

rule stands for the case that the first program successfully

terminates. The second rule indicates that the first program

encounters fault during its execution.

Rule 1:

r ⇒ ok, {p}A {r}, {r}B {q}

{p}A ; B {q}

Rule 2:
r ⇒ ¬ok, {p}A {r}

{p}A ; B {r}

(7) Iteration

For simplicity, we only present the rules for partial correctness.

Rule 1:

{p ∧ b}S {p}

{p}while b do S{p ∧ ¬b}

Rule 2:

q ⇒ ¬ok, {p ∧ b}S {q}

{p}while b do S{q}

D. Scope and Compensation

A compensation may be installed several times, so we

introduce a function comp to record that. More specifically,

for a scope n, we use comp.n to stand for the number

that the compensation program has been installed. For the

compensated program named n, we use function C(n) to

represent it.

For scope, the verification rules are divided into two cases.

(1) Scope

The first rule deals with the case that the primarily activity A
can successfully terminate. The compensation program C is

installed.

Rule 1:

{p}A {q[comp.n+ 1/comp.n]}, q ⇒ ok

{p} {A?C,F}n {q}

The second rule handles the case that A encounters the fault.

The fault handler will be triggered.

Rule 2:

{p}A {r ∧ ¬ok}, {r}F {q}

{p} {A?C,F}n {q}

(2) Compensation

For undo n, the compensation program C(n) will be executed.

In addition, it has the effect of reducing comp.n by 1.

Therefore, in the precondition of C(n), the number of the

recorded program named n should be one less.

{p[comp.n+ 1/comp.n]}C(n) {q}

{p} undo n {q}

Example 1 Consider the program below.

{x := x+ 1?x := x− 1, skip}n ;

{x := x+ 2?x := x− 2, skip}m ;

undo m;

undo n

By applying the verification rules, we can obtain the following

proof outline:

{ok ∧ x = 0 ∧ comp.n = 0 ∧ comp.m = 0}

{x := x+ 1?x := x− 1, skip}n ;

{ok ∧ x = 1 ∧ comp.n = 1 ∧ comp.m = 0}

{x := x+ 2?x := x− 2, skip}m ;

244 COMMUNICATION PAPERS. POZNAŃ, 2018

{ok ∧ x = 3 ∧ comp.n = 1 ∧ comp.m = 1}

undo m ;

{ok ∧ x = 1 ∧ comp.n = 1 ∧ comp.m = 0}

undo n

{ok ∧ x = 0 ∧ comp.n = 0 ∧ comp.m = 0}

in which the verification of undo m is supported by

{ok ∧ x = 3 ∧ comp.n = 1 ∧ comp.m+ 1 = 1}

x := x− 2

{ok ∧ x = 1 ∧ comp.n = 1 ∧ comp.m = 0}

and of undo n by

{ok ∧ x = 1 ∧ comp.n+ 1 = 1 ∧ comp.m = 0}

x := x− 1

{ok ∧ x = 0 ∧ comp.n = 0 ∧ comp.m = 0}

In this example, the compensation programs completely undo

the effect of the forward activities, so it should be expected

that final postcondition is exactly the same as the initial

precondition.

E. Parallel Flows

In one service, several flows may be executed in parallel and

information is exchanged via shared variables. In the classic

verification method due to Owicki and Gries [5], the central

concept is the interference freedom. Intuitively, it means that

assertions in the local proofs of one process should not be

invalidated by the execution of a parallel process. Suppose

{p}S {q} is a Hoare triple in the local verification for the

statement S, statement T from another process is said to be

interference free to {p}S {q} if the following two conditions

are satisfied:

(1) {∃ok.p ∧ pre(T)}T {∃ok.p}
(2) {∃ok.q ∧ pre(T)}T {∃ok.q}

where pre(T) is the precondition of T . Note the interference

freedom is concerned with the shared program variables, and

hence ok is removed from the assertions by the quantification.

Adopting the parallel rule to our setting, the postcondition is

modified to take into account the faulty states.

{pi}Si {qi} are interference-free

{p1 ∧ p2}S1 ‖ S2 {Merge(q1, q2)}

where Merge(q1, q2) =df ∃ok1, ok2 • q1[ok1/ok] ∧
q2[ok2/ok] ∧ ok = ok1 ∧ ok2. This combines the two

postconditions, for the information about local variables and

compensation, and the parallel flow is in the faulty state if at

least one component is in the faulty state.

Example 2 Let S1 =df x := x+ 1 ; throw, S2 =df x :=
x+ 2.

For S1, we have the following local proof outline

{x = 0}
{ok ∧ (x = 0 ∨ x = 2)}

x := x+ 1
{ok ∧ (x = 1 ∨ x = 3)}

throw

{¬ok ∧ (x = 1 ∨ x = 3)}

For S2, the proof outline is

{x = 0}
{ok ∧ (x = 0 ∨ x = 1)}

x := x+ 2
{ok ∧ (x = 2 ∨ x = 3)}

For interference freedom test, we need to check assertions
(x = 0∨x = 2) and (x = 1∨x = 3) in S1 are not invalidated
by x := x + 2 in S2, whereas (x = 0 ∨ x = 1) and (x =
2 ∨ x = 3) in S2 are not invalidated by x := x + 1 in S1.
Formally, this is shown by the following

{(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)} x := x+ 2 {x = 0 ∨ x = 2}
{(x = 1 ∨ x = 3) ∧ (x = 0 ∨ x = 1)} x := x+ 2 {x = 1 ∨ x = 3}
{(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 2)} x := x+ 1 {x = 0 ∨ x = 1}
{(x = 2 ∨ x = 3) ∧ (x = 0 ∨ x = 2)} x := x+ 1 {x = 2 ∨ x = 3},

which are all trivial. By the rule for parallel flows, we have

{x = 0}S1 ‖ S2 {¬ok ∧ x = 3}

F. Communicating Services

Different services do not share variables and communicate

by passing messages. The central concept in the method de-

veloped by Apt, Francez and de Roever [6] is the cooperation

test. It checks that the postcondition of an input command is

indeed ensured by the sending command. The Hoare triples

of two matching communication pairs

{p1} rec a x {q1}
{p2} rep a e {q2}

cooperate, if the following is true

{∃ok. p1 ∧ p2}x := e {∃ok. q1 ∧ q2}

For a set of services, the proof outlines cooperate if the Hoare

triples of every two matching communication pairs does. Note

the assertions in the verification of each service may contain

ok and comp, and we rename them as oki and compi to avoid

conflicts among different services, and arrive at the following

rule for services

proof of {pi}Pi {qi} cooperate, i = 1, 2, . . . , n

{p1 ∧ p2 ∧ · · · ∧ pn} (P1, P2, . . . , Pn) {q′1 ∧ q′2 ∧ · · · ∧ q′n}

where q′i = qi[oki/ok, compi/comp].

Example 3 Let P1 =df x1 := 0; rep a (x1 + 1), P2 =df

rec a x2; rep b (x2 + 2), P3 =df rec b x3.

LONGFEI ZHU ET AL.: ASSERTIONAL REASONING FOR CONCURRENT AND COMMUNICATING BPEL-LIKE PROGRAMS 245

For P1, we have the following proof outline

{true}
{ok}

x1 := 0
{ok ∧ x1 = 0}
rep a (x1 + 1)
{ok ∧ x1 = 0}

For P2,
{true}
{ok}

rec a x2

{ok ∧ x2 = 1}
rep b (x2 + 2)
{ok ∧ x2 = 1}

For P3,
{true}
{ok}

rec b x3

{ok ∧ x3 = 3}

There are two matching communication pairs. For cooperation

test, we need to check

{x1 = 0} x2 := x1 + 1 {x2 = 1}
{x2 = 1} x3 := x2 + 2 {x3 = 3}

which are all trivial. It follows that

{true}
(P1, P2, P3)

{ok1 ∧ ok2 ∧ ok3 ∧ x1 = 0 ∧ x2 = 1 ∧ x3 = 3}

IV. CONCLUSION

There has been some work on applying formal methods to

web services. An operational semantics of StAC (Structured

Activity Compensation) [9], another business process mod-

eling language where compensation acts as one of its main

features, has also been studied in [4]. StAC and the B method

has been combined in [10] to describe business transactions.

Bruni et al. [11] have studied the transaction calculi for Sagas.

The long-running transactions were discussed and a process

calculi was proposed in [12] in the context of a Java API,

namely the Java Transactional Web Services. Laneve and

Zavattaro [13] explored the application of π-calculus in the

formalization of the semantics of the transactional construct of

BPEL. They also studied a standard pattern of Web Services

composition using π-calculus. For verifying the properties of

long-running transactions, Lanotte et al. [14] have explored

their approach in a timed framework, where a Communicating

Hierarchical Timed Automata was developed. Model checking

techniques have been applied in the verification of properties

of long-running transactions.

In comparison, there has been little work on deductive

reasoning of BPEL-like programs. As far as we know, Luo

et al. [15] were the first to study a Hoare logic for BPEL-like

programs. The work has not covered concurrent behaviours.

Parallelism in one service has been considered in [8], and

the rely/guarantee [16] approach to verifying shared vari-

able programs is adopted. The same approach (instead of

rely/guarantee, usually named as assumption/commitment) for

message passing, although also available, e.g., see [17] for

a survey, is more difficult to use. Therefore, in this paper,

we decide to adopt the earlier cooperation test approach from

Apt, Francez and de Roever. To be consistent in the style, the

method of interference freedom test from Owicki and Gries is

adopted to deal with shared variables.

In this paper, we focus on the deductive reasoning of

BPEL-like programs in one unified framework, especially the

verification of concurrent communicating BPEL programs.

Verification methods developed for shared variables and mes-

sage passing are integrated. To deal with the compensation and

fault handling of web services and facilitate the verification,

we introduce ok and present the corresponding rules. There

are a few minor technical improvements over [8] in the way

ok is used. Examples are provided to show the feasibility of

verification framework.

ACKNOWLEDGMENT

This work is supported in part by National Key R&D

Program of China (No. 2017YFC0803700), Macao Science

and Technology Development Fund under the EAE project

(No. 072/2009/A3), Ministry of Public Security of China (No.

2017GABJC16), Natural Science Foundation of China (No.

61602177 and No. 61402176). The authors would like to thank

J.W. Sanders, C. Ma and X. Liu for discussions.

REFERENCES

[1] S. Thatte, XLANG: Web Service for Business Process Design.
Microsoft, 2001, http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.html.

[2] F. Leymann, Web Services Flow Language (WSFL 1.0). IBM, 2001,
http://www-3.ibm.com/software/solutions/webservices/pdf/WSDL.pdf.

[3] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, M. Satish Thatte,
and S. Weerawarana, Business Process Execution Language for Web

Service, 2003, http://www.siebel.com/bpel.

[4] M. J. Butler and C. Ferreira, “An operational semantics for StAC, a
language for modelling long-running business transactions,” in Proc.

COORDINATION 2004: 6th International Conference on Coordination

Models and Languages, Pisa, Italy, February 24–27, 2004, ser. Lecture
Notes in Computer Science, vol. 2949. Springer-Verlag, 2004, pp.
87–104.

[5] S. S. Owicki and D. Gries, “An axiomatic proof technique
for parallel programs I,” Acta Informatica, vol. 6, pp.
319–340, 1976. doi: 10.1007/BF00268134. [Online]. Available:
https://link.springer.com/article/10.1007/BF00268134

[6] K. R. Apt, N. Francez, and W. P. D. Roever, “A proof
system for communicating sequential processes,” vol. 2, no. 3,
pp. 359–385. doi: 10.1145/357103.357110. [Online]. Available:
http://dl.acm.org/citation.cfm?id=357110

[7] Z. Qiu, S. Wang, G. Pu, and X. Zhao, “Semantics of BPEL4WS-Like
fault and compensation handling,” in Proc. FM 2005: International

Symposium of Formal Methods Europe, Newcastle, UK, July 18–22,

2005, ser. Lecture Notes in Computer Science, vol. 3582. Springer-
Verlag, 2005, pp. 350–365.

[8] H. Zhu, Q. Xu, C. Ma, S. Qin, and Z. Qiu, “The rely/guarantee
approach to verifying concurrent bpel programs,” in Software

Engineering and Formal Methods - 10th International Conference,

SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings,
ser. Lecture Notes in Computer Science, vol. 7504. Springer, 2012.
doi: 10.1007/978-3-642-33826-7 12 pp. 172–187. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-33826-7 12

246 COMMUNICATION PAPERS. POZNAŃ, 2018

[9] M. J. Butler and C. Ferreira, “A process compensation language,” in
Proc. IFM 2000: 2nd International Conference on Integrated Formal

Methods, Dagstuhl Castle, Germany, November 1–3, 2000, ser. Lecture
Notes in Computer Science, vol. 1945. Springer-Verlag, 2000, pp.
61–76.

[10] M. J. Butler, C. Ferreira, and M. Y. Ng, “Precise modelling of com-
pensating business transactions and its application to BPEL,” Journal of

Universal Computer Science, vol. 11, no. 5, pp. 712–743, 2005.
[11] R. Bruni, H. C. Melgratti, and U. Montanari, “Theoretical

foundations for compensations in flow composition languages,”
in Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, ser. POPL ’05. ACM.
doi: 10.1145/1040305.1040323. ISBN 978-1-58113-830-6 pp. 209–220.
[Online]. Available: http://doi.acm.org/10.1145/1040305.1040323

[12] R. Bruni, G. L. Ferrari, H. C. Melgratti, U. Montanari, D. Strollo,
and E. Tuosto, “From theory to practice in transactional composition
of web services,” in Formal Techniques for Computer Systems and

Business Processes, ser. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg. doi: 10.1007/11549970 20 pp. 272–286. [Online].
Available: https://link.springer.com/chapter/10.1007/11549970 20

[13] C. Laneve and G. Zavattaro, “Web-pi at work,” in Proc. TGC 2005:

International Symposium on Trustworthy Global Computing, Edinburgh,

UK, April 7–9, 2005, ser. Lecture Notes in Computer Science, vol. 3705.
Springer-Verlag, 2005, pp. 182–194.

[14] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina,
“Design and verification of long-running transactions in a timed
framework,” Science Computer Programming, vol. 73, no. 2-3, pp.
76–94, 2008. doi: 10.1016/j.scico.2008.07.001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642308000774

[15] C. Luo, S. Qin, and Z. Qiu, “Verifying bpel-like programs with hoare
logic,” in Proc. TASE 2008: 2nd IEEE International Symposium on

Theoretical Aspects of Software Engineering. Nanjing, China: IEEE
Computer Society, June 2008, pp. 151–158.

[16] C. B. Jones, “Tentative steps toward a development method for
interfering programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4,
pp. 596–619, 1983. doi: 10.1145/69575.69577. [Online]. Available:
http://dl.acm.org/citation.cfm?id=69577

[17] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
and M. P. J. Zwiers, Concurrency Verification: Introduction to Composi-

tional and Noncompositional Methods. Cambridge Tracts in Theoretical
Computer Science 54, Cambridge University Press, 2001.

LONGFEI ZHU ET AL.: ASSERTIONAL REASONING FOR CONCURRENT AND COMMUNICATING BPEL-LIKE PROGRAMS 247

