
Automated generator for complex and realistic test

data—a case study

Richard Lipka

NTIS - New Technologies for Information Society

Faculty of Applied Sciences, University of West Bohemia

Plzen, Czech republic

Email: lipka@kiv.zcu.cz

Tomas Potuzak

Department of Computer Science and Engineering

Faculty of Applied Sciences, University of West Bohemia

Plzen, Czech republic

Email: tpotuzak@kiv.zcu.cz

Abstract—Some type of tests, especially stress tests and func-
tional tests, require a large amount of realistic test data. In this
paper, we propose a tool JOP (Java Object Populator) that uses
a pseudorandom number generator in order to create test sets of
complex Java objects, that can be automatically generated and
directly used. Along with that, we also show usage of this tool in
case study focused on performance evaluation of a real cashier
system.

The tool is designed to be able to set simple attributes of
any Java object and in many cases also to create complex
structures when objects are connected via references. Random
values are created using the rules that are added to the class
definition in form of annotation to each attribute. Using this tool
simplifies creating of tests, as the tester does not need a detailed
knowledge of data structures. The specification of expected values
is delegated to the designer of the data model and becomes the
part of the model. Furthermore, as the data objects are created
at runtime, using reflection, the tests do not have to be changed
when data carrying objects are modified.

I. INTRODUCTION

I
N ORDER to ensure the reliability of each application,

testing is a vital part of the software development process.

As applications are becoming more complex — especially

in terms of using many different existing libraries — and

there is a pressure for fast development, one of the most

important issues is fast automation of each part of software

development process. Many kinds of testing, such as unit tests,

are performed automatically, without the need for a human

tester. However, the creation of the tests is still mostly a

manual process, where a lot of code has to be created.

One of the issues of the testing is obtaining the test data.

In some types of tests, for example, when the user interface is

being tested, only simple values like numbers, dates, or strings

are used. However, when unit tests are focused on the core of

the application, it is often necessary to work with the creation

of non-trivial testing objects, that are composed not only of

simple attributes mentioned before but also contains references

to other objects and creates arbitrary complex structures. This

is even more significant in stress testing and benchmarking,

when a large number of the test objects is required, to avoid

biases caused by caching of too similar data. In such cases,

testers have to manually prepare all instances, before the tests

can be performed.

Furthermore, creating a large set of data is a tiring and

repetitive task, so testers help themselves by using random

generators that are provided by most programming languages.

These generators can be easily used for creating test data,

but usually, are designed only to generate numbers. In order

to use them, test programmers are bound to have a detailed

knowledge of data structure to choose appropriate parameters

of the generators. Some attributes can be dependent on the

others (for example weight and size of the object). Con-

sequently, the tester has to understand these dependencies.

Furthermore, the test created this way contains a lot of code

strongly dependent on the structure of data carrying objects.

When the implementation of these objects is changed, parts

of the tests that set up data have to be revised and changed

accordingly. This is reducing benefits of automated testing and

forces the testers to return to the tests with each new version.

Another problem is that the characteristics of the data for

the test are usually not written anywhere in an explicit form,

only as the parameters of the random number generators. This

makes updates of the tests more dificult, as the tester has all

the time understand both strucutre of the domain objects and

character of the test data.

In order to address described issues, in this paper, we

propose a tool that enables to generate test sets of complex

Java objects using pseudorandom numbers generators and

annotations in source code of the applications under tests

describing the possible values of the attributes.

II. ISSUES OF TEST DATA GENERATING

A. Simple motivational example

Consider an application dealing with receipts. Each receipt

is represented by an instance of class Receipt, with several

attributes, such as date, total price, salesman and

also a list of items that are on a receipt — each represented

again by an instance of class (in this case the item). When we

want to perform a stress test that adds, removes, or look up for

receipts in the database, we need to generate several hundreds

or thousands instances of these classes. In the same time,

the application might perform other tasks, such as sending

data over the network or calculating aggregated values from

the receipts. In order to investigate whether the application

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 233–240

DOI: 10.15439/2018F214

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 233



behaves correctly, the provided instances should be as realistic

as possible.

The classical approach would be to create a generator of

receipts and items that will ensure that all attributes of each

receipt are set up properly. In order to do so, the creator of the

test has to know all attributes that should be set, and also to

have a knowledge of their characteristics. Often, the attributes

are not a primitive data types but references on other objects,

and if the generator should serve its purpose, it should handle

this as well. Such generator can be used as long as the class

Receipt is not changed. In the typical application, there can

be dozens of domain classes like the Receipt, that serves

mainly to carry data and that need to be generated during

testing. Thus creating a generator to all of them usually is a

time-consuming work.

We would like to have a tool that will be able to create

instances of the Receipt class in one invocation, according

to the characteristics provided in a human readable and under-

standable form. When random number generators are used in

the code of the test, it is not obvious what the meaning of their

parameters is without analysing the methods of the generator.

It would be useful to have a declarative way of specifying

these parameters in one place.

B. Test Data Sources

Data used for testing can be obtained from several sources,

and their selection depends strongly on the purpose of testing.

For example in unit tests, the most common way is to choose

data in the way that the extreme values or decision points of

the methods under testing are explored. On the other hand, for

the purpose of integration tests or stress tests, it is important

to use as realistic data as possible, in order to mimic the real

usage of the tested software. We would like to have a tool that

will allow generating a large number of instances of domain

objects, with as little work of the tester as possible.

The realistic testing data can be obtained in three basic

ways. They can be prepared in advance manually, they can

be obtained from the production application, or they can be

randomly generated.

Manual preparation of the test data is often necessary, but

it is a tedious and error-prone work, so testers are usually

looking for some way of automation. One option is to auto-

matically capture the data from existing application and reuse

them during the testing. This is relatively simple when the

application under test and the application used for obtaining

the data are the same, otherwise, a conversion is necessary.

But either way, if the data are prepared manually or captured

from the application, they are a static set that cannot be easily

adapted to the changes in the application under test and that

cannot be scaled according to the need of testers.

The randomly generated data have a great advantage in

scaling, as when the generators are ready, it is easy to create an

arbitrary amount of data. They can be also easily parametrized.

Furthermore, they might be configured to create different data

sets in each run or can create exactly the same sequence of

data without the need to store a lot of testing objects.

III. TOOL DESIGN

Our main goal is to create a tool that will allow generating

testing data from the definition of classes, enriched by the

specific annotations. This way, the structure of data is easily

visible from the application source text and is not hidden in the

separate source code of tests. The same definitions are used in

all tests in order to help the tester to avoid errors caused by

code repetition and corrections only in some copies. It can also

help to avoid the need to rewrite tests when domain classes are

changed. As long as test requires valid instances of domain

classes, the tool can provide them.

From the testing point of view, the new annotations serve

as a detailed specification of the data type of each generated

attribute. For example, instead of working only with informa-

tion that an attribute is a double number, the annotations

can specify that the value has for example a normal distri-

bution with specified mean and standard deviation, and when

necessary also with a minimal and maximal value that crops

the highest and lowest values (in cases like human height).

Furthermore, it might be specified that the value is a function

of another attribute. The annotations can determine the desired

structure of strings or, in more general cases, the characteristics

of string language. In case that the attribute is a reference to

another object, it is possible to specify the instance or the

class that should be used to generate an instance that should

be used in the reference, instead of filling the reference with

null value as is common in contemporary mocking tools.

A. Structure of the Tool

The tool is composed of three main parts — the class

analyser, the testing API and the random generators.

The class analyser is responsible for loading the classes that

should be instantiated for the testing and searching for their

published attributes (the attributes that have corresponding

public getters and setters) and the annotations connected to

them. The analyser also processes the dependencies between

the classes, in order to be able to generate references to other

objects. As the annotations are compiled into the bytecode,

they can be directly accessed by reflection mechanism and

there is no need for direct analysis of the source code of the

classes.

The testing API allows testers to easily generate large

collections of random data and access the annotations that

specify the behaviour of the generators. This is achieved

through objects populator. The populator provides a method

populate() that takes a descriptor of a required class as

a parameter and returns the desired number of automatically

generated instances in a collection.

The last part, the random generators is responsible for gen-

erating primitive datatypes and instances of referred classes.

Primitive data are created according to the rules given in

annotations and instances of referred classes are created ac-

cording to selected strategies. It is possible to generate new

instances, search among already generated instances or just fill

the reference with null value.

234 COMMUNICATION PAPERS. POZNAŃ, 2018



Fig. 1. Basic usage of the JOP.

B. Using the JOP Tool

Our tool is intended to be used as a tool that simplifies

writing of stress tests, benchmarks, and unit tests. So far it is

designed to work with JavaBeans, i.e. classes that have setters

and getters for each attribute and are intended for carrying

data within the application. In order to work, the tool also

requires an existence of public constructor without parameters.

Because the generating of the instances is automated and

depends on the reflection, it is necessary to set up attributes

of each instance using the setters, as each setter deals only

with one attribute. In multiple parameter constructors, it is not

possible to find pairing between parameters and attributes and

thus to choose the order of generated values that would be

used in the constructor.

The process of JOP usage is shown in Fig 1. The tool can

work with general JavaBeans, but without adding additional

annotations (described in further sections), it cannot create

data that will resemble the real ones – only to generate

data from the whole space of each attribute type. The first

thing the testers or the programmers have to do is to create

appropriate annotation (see Section IV) of each attribute they

want to randomly generate. Then, when the tests are created,

testers can use generating methods and obtain the list of the

instances that can be used for further testing. If no annotation

is provided, the tool will behave differently for references and

for primitive datatypes. References are by default set on null,

primitive datatypes are generated with uniform distribution on

the whole interval of the type.

IV. CLASS ANALYZER

The class analyser is responsible for two main tasks —-

reading annotations in order to set up the generators for the

primitive attributes and analysing the structure of the generated

classes in order to determine the instances generating order,

setting up references, and generate dependent attributes. While

parsing annotations is a simple task, working with dependen-

cies brings several problems.

A. Types of Dependencies

There are two types of dependencies that may influence

the process of generating data. The most straightforward is a

dependency of one attribute on one or more other attributes

from the same class. This can happen even when generating

Fig. 2. Visibility of the attributes.

is not recursive and all references are only set to null. The

more complicated situation is in the case of dependency on

another class or on an attribute from another class. This can

happen only when the generating of the data is recursive and

the referenced classes are generated as well.

In our current implementation, the attribute can be depen-

dent only on the attributes of directly referred classes, not

on arbitrary method calls from the referred classes. We have

decided to use this limitation in order to be able to create the

order of generating only from the attribute definitions, without

the need for analysis of the source text of all methods. An

example is on the Fig. 2. In annotations within Class 1 it

is possible to use attr1 and attr2 from Class 1 and

attr1 from Class 2. Attributes from classes 3 and 4 are

not accessible.

B. Dependencies Within One Class

In the case of dependency within one class, the ordering

of generating operations is straightforward. The analyser is

generating values in the following order:

1) Create a set of all attributes A and an empty set N .

2) Find all primitive attributes without any dependencies

and generate their value. Remove all such attributes from

the set A and add them to the set N .

3) Search the set A for attributes dependent only on the

elements from the set N . Move each such attribute from

the set A to the set N and in the same time, generate

its value (because it depends only on attributes from the

set N , all required values have to already exist).

4) Repeat step 3 as long as the attributes from the set A

are being moved.

If no attribute was moved and the set A is not empty, the

remaining attributes contain circular dependency and cannot

be resolved. In this case, the generating process throws an

exception with the message which attributes and annotations

caused the problem. It is important to note here that the

mentioned dependency is caused by a tester, when setting

up annotations — by claiming that attribute X should be

generated as a function of attribute Y and, in the same time,

that attribute Y should be generated as a function of attribute

X . Removing this dependency does not require changes in

domain classes, only in test data definition.

C. Annotations for the Class Dependency

It is possible to use the annotations in order to control

generating of the whole graph of dependent objects. We are

RICHARD LIPKA, TOMAS POTUZAK: AUTOMATED GENERATOR FOR COMPLEX AND REALISTIC TEST DATA 235



using three strategies to do so.

At first, it is possible to forbid the generating of value for

selected attribute, using @Ignore annotation. In such case,

attribute will be skipped and no value will be assigned to it

(if it contains a default value, it will not be changed).

It is also possible to set the value of the attribute to null,

which is a common strategy of many data generating tools.

If attribute contains different reference, it will be replaced by

null reference. If this annotation is used for numerical type,

value 0 will be used instead of null.

When the reference on new instance of the class

should be created and assigned to the reference, annotation

@NewInstance can be used. When the class contains a

default constructor, it can be used directly. When the class

contains multiple constructors or a factory method, it can be

marked with @Constructor annotation, specifying which

constructor will be used for instance generating. Parameters

of such constructor or factory method can be annotated in the

same way as attributes of the class, so the tool can generate

their values. If no annotation is specified, the default values

for each type will be used.

This annotation has to be paired with another one, that

specifies the class provider. The provider is responsible for

creating or obtaining desired object. There are several types

of providers:

• @TargetClass specifies the name of the class which

will be used to create new instance.

• @RandomClass specifies the list of classes and the

probability of each one. This allows to select randomly

one of several implementations.

• @CustomClassProvider specifies the class that is

implementation of @ClassProvider interface and

serves as a factory for creating of the instances. This

annotation serves for using manually created data gener-

ators and adding them to the data generating process. The

tester can create his own implementation of the generator

in case that no approach provided by our tool is suitable

for his or her needs.

@NewInstance

public Student student; // new instance of

Student class using default constructor

@NewInstance

@RandomClass(value={Student.class,

Teacher.class}, probabilities={0.75,

0.25})

public Person person; // new instance of

Student or Teacher class

@NewInstance

@CustomClassProvider(RandomStudnetProvider.class)

public Student student; // new instance using

RandomStudentProvider factory

Instead of creating always new instances, it is also possible

to assign one of the created instances. In such case, annotation

@SearchInstance can be used.

During the data generating, all created objects (when an-

notation @NewInstance was used) are stored, so it is

possible to search among them and use them repeatedly.

@SearchInstance allows to specify criteria for searching

among the existing objects and assign the reference to the

annotated attribute. When this annotation is used alone, it will

search first suitable instance (the instance of the appropriate

class) and assign the reference to it. It can be also combined

with tester specified annotation that will specify the rules for

selecting required instance.

As there is no simple and general way how to create an

annotation for instance search, we have decided to delegate

this work to the matcher class that the tester will have to im-

plement. In the tool, simple InstanceMatcher is prepared

and the tester can use it to implement his own class that is

able to decide, which searched instance is suitable. For each

implementation, the corresponding annotation is automatically

created and can be used immediately.

@SearchInstance

public Student student; // first existing

instance of Student class will be used

@SearchInstance

@RandomStudentClass(age = 26)

public Student student; // user annotation,

first instance of Student class with

appropriate age will be used

In this example, tester implemented

RandomStudentClass matcher that can compare the age

attribute of provided Student instance and determine if the

instance fulfills the criterion.

D. Generating the Dependent Instances

When the recursive generation is used, the whole process

is divided into two steps. In the first step, all instances are

generated and connected via references. In the second step, the

dependencies between their primitive attributes are resolved

and their values are generated. It is possible that the data

objects contain a circular dependency, but, unlike the circular

dependency between attributes, this can be solved by using

strategy for searching instances.

The algorithm for generating instances works as follows:

1) Start from the generated class (the class that was re-

quired for the test).

2) Load the class annotation.

3) Check if the class is already in the dependency graph.

If it is so, mark this dependency as null. If not so,

add class as a node in the dependency graph. Store all

annotations in the node.

4) Search for all attributes with the @NewInstance strat-

egy. Process each such class recursively from the point

2.

This creates a tree of dependencies, with all classes that

should be newly generated. Note, that the @NewInstance

annotation means, that the new classes are always created.

236 COMMUNICATION PAPERS. POZNAŃ, 2018



Because of that, circular dependency is not allowed with this

annotation, since it would lead to an infinite recursion. Instead,

such references should be set to null or filled with instances

that already exist.

When the dependency graph is finished, the creation of

instances of all classes starts. The analyser keeps collections

of references for each generated class that will be used for the

SearchInstance annotation. The generating is performed

using the dependency graph in following way:

1) Create an empty set A for generated attributes and

empty set S for attributes with @SearchInstance

annotation for each analyzed class, the queue of already

created instances Q, set of created instances I and

dependency graph G.

2) A shared copy of the collection of existing instances IG
is created.

3) Start from the class that should be generated, the in-

stance of this class is added to the set I and to the

queue Q.

4) First instance from Q is taken.

5) All attributes which should be generated are stored in

the set A.

6) All attributes which should be searched

(@SearchInstance) are stored in set S.

7) All attributes with @NewInstance annotation are

checked if they are not causing circular dependency in

graph G. If they cause circular dependency, their value

is set to null. In the opposite case, the new instance

is created and inserted into the queue Q and set I . The

class is also added as a new node to the dependency

graph G.

8) When the queue Q is empty, the algorithm ends. Other-

wise it continues from step 4.

Because the searching of instances can be performed ac-

cording to specified criteria, it is necessary to generate the

values of the attributes, which are not dependent on the others.

In order to find them, an empty set N is created. Then, all

attributes from each version of A set for each class in I are

analyzed. When the attribute has no dependency, the values

are generated. These attributes are then moved from the set A

to the set N .

Now it is possible to search instances in the sets I and

IG for each attribute from the set S. If no suitable instance

for some of the attributes is found, its value is set to null.

Otherwise, the reference on the instance is set to the attribute.

Finally, it is possible to generate the values for remaining

attributes from the set A. To do so, it is necessary to go

through the attributes in Ai sets for each instance in the I set

and generate the value of the attributes using the algorithm

described in section IV.B.

V. PRIMITIVE VALUE GENERATORS AND ANNOTATIONS

We can divide generators into three main groups:

1) Number generators are responsible for generating any

numeric value, integer or real.

2) Text generators are used for creating strings, according

to the rules based on the length, language or structure

of the string.

3) Object generators are responsible for generating of Java

objects with the specific structure, such as Color,

enumerate types or logic values.

Each attribute can be annotated with one specification of its

values. When no annotation is used, the attribute is ignored (as

if @Ignore annotation is used). The annotations for attribute

generation can be combined with annotation of populators,

which can be used to specify how the generated value will

be used in the attribute. The populator annotations are used

mainly for populating arrays and collections with primitive

type values.

A. Number Generators

Java has a capability for generating random numbers, how-

ever it contains only a limited number of generators for

different probabilistic distributions. We are using Uncommons

Maths [1] library that is available under Apache Software

Licence v. 2.0 and that provides among others a set of random

number generators. As each distribution requires different

parameters, special annotation (and corresponding generator)

is created. Currently, the tool supports 8 different parametrized

distributions.

For assigning a number generator to an attribute, appropriate

generator annotation is used. Both continuous and discrete

generators can be used for each data type.

As was mentioned before, the numerical attributes can

be dependent on each other. In such case, annotation

@Expression is used, in combination with other annotations

for value generating. Annotation contains an expression that

is evaluated when other attributes are generated.

@Expression (" rnd1 * atr1 + ref1.atr2 ")

protected int rnd1 ;

When evaluated, the value of rnd1 and atr1 will be

searched in the instance where this expression is evaluated

and the value of the atr2 will be searched in the instance

referred in the ref1 attribute. The value of the attribute will

be then determined as result of the provided expression. The

expression can process basic arithmetic, as well as invocation

of functions from Math library.

B. Text Generators

Generating realistic strings is a common problem, solved

for example by RandomStringUtils class from Apache

Commons project [2]. However, this class can only generate

a random string of given length, with the discrete uniform

distribution of probability of each character occurrence. It is

possible to choose which characters will be used and which

omitted, but there are no other setting possibilities. Such

strings are not very realistic representation of words in any

language and it is difficult to use them as a representation of

other string entities (such as colour codes) as well. We are

using two types of Markov chain generators:

RICHARD LIPKA, TOMAS POTUZAK: AUTOMATED GENERATOR FOR COMPLEX AND REALISTIC TEST DATA 237



1) Language based: Language based string generators use

Markov chains with given corpus. The corpus serves to de-

termine the probability of one letter following another letter

or sequence of letters [3]. We have corpuses for English and

Czech languages, but it is possible to use other corpuses

provided as files.

2) Pattern based: Using arbitrary table itself allows to

create Markov generators based on patterns, but it is not

the most convenient way of doing so. Thus we have created

a generator based on regular expressions. This generator is

working in the similar way as Markov based, but instead of

using probability table, it transforms the regular expression to

Finite State Machine. The transitions of FSM represent the

generating of next character to the string, but in this time, the

probability of all characters in each state is equal.

C. Populators

Populators serves to simplify the generator logic and to

allow to use each generator for any data type or data collection.

Due to this, generator does not need to know anything about

the type of attribute they are generating for and delegates this

work on populator, which has the full knowledge of attribute

declaration and can set data to the attribute. Each attribute can

have one or multiple populators. When several populators are

used, they are chained. There are four types of populator:

1) Numeric values populator: This populator,

@NumberValue, serves to assign a numerical value to

its attribute. Each generator is using the most generic data

type it can (double for continuous distributions and long

for discrete distributions) and the populator is responsible for

transforming the value to the attribute data type.

2) Text value populator: This populator serves to change

the provided value to String. It can be used on numeric val-

ues or on objects, when apppropriate toString() method

is invoked. When optional parameter length is set, the string

will be trimmed to the required length.

3) Array populator and collection populator: This popula-

tor serves to populate the provided array with values generated

by a primitive value generator. Its parameters allows to specify

the minimal and maximal size of the array (array of random

length will be created) or exact length of the array. It is also

possible to specify target type, to which the generated value

will be casted, which is usefull when array is declared for an

interface or an abstract class.

D. Populator chaining

Multiple populators can be specified for each attribute.

This can be usefull for example when the value has to be

transformed from number to string and then used to populate

an array. Unfortunately, Java does not guarantee the order

in which annotations will be processed, so we had to add

@PropertyPopulatorOrder annotation, that will define

an explicit order in which populators are used.

VI. CASE STUDY

The tool was tested in a real stress testing and benchmarking

of the system for receipt processing. The system is composed

of central server collecting and distributing data for a large

number of cash registers. It is used for distributing information

about product price and also for mandatory electronic record

of sales and receipt confirmation.

A. System Setup

The system consists of the central server, divided to appli-

cation and database part that should serve multiple different

companies, with a separate database for each company.

The goal of the measurement was to investigate how high

load the server can handle, how fast it will be able to

respond and also how it will behave under high load. The

testing was performed on the production server and, with

multiple instances of clients, modified to use automatically

generated data instead of working with user input. The servers

were running on Dell PowerEdge R820 cluster in a virtual

environment, each server with 4 cores and 4 GB RAM, the

database servers were equipped with Postgres database 9.5,

each had 2 cores and 16 GB RAM. The clients were launched

in bulks of 100 clients on one computer with Intel Xeon E3-

1246, with 4 cores and 16 GB RAM. Clients were randomly

divided into groups of 1 to 10 clients to simulate different size

of companies with more cash registers — each group of clients

shares one database. The environment of clients was observed

during the whole duration of test to ensure that the clients will

not become the bottleneck of the test. Eight instances of the

test was run, with increasing number of clients.

B. Measured results

The experiments were running 24 hours, with a constant set-

ting simulating high business load. The results are summarized

in the table I. The table shows average and median times both

for the processing of receipt and for processing of update, each

time is measured from the start of the operation till its final

confirmation. The measurement excluded the time required

for data generating. The distribution of response times for

updates and receipts was close to the exponential distribution,

as can be demonstrated on histograms created for fourth

experiment (other experiments showed similar behaviour).

Stress tests helped to find several problems in server and

client implementation, most notably with server side memory

management and with reaction of clients to failed updates.

C. Experience with generator tool

The testing was performed on the application in several

stages of the development. As the developers relied on agile

methodology, source texts of the application went through

several changes, not only regarding the added features, but

also in a structure of the domain modal. Most notably, the

Receipt class changed several times, from simple class with

several attributes and two arrays with names and prices of

items to an aggregated class containing collections of Item

instances, customer and seller identification and other complex

attributes. As the test data were generated automatically,

these changes required only to add further annotations to the

238 COMMUNICATION PAPERS. POZNAŃ, 2018



TABLE I
EXPERIMENT SETUP AND MEASURED RESULTS

Setup Updates Receipts

experiment clients avg. time
[ms]

med. time
[ms]

SD avg. size
[B]

avg. time
[ms]

med. time
[ms]

SD avg. size
[B]

1 200 12.0 5.7 22.0 178300 5.1 3.8 4.3 35833

2 400 11.3 5.9 19.9 177200 6.7 4.2 9.0 36920

3 600 57.2 12.5 74.4 171700 6.5 4.9 4.3 35750

4 800 77.7 30.6 82.4 166800 8.9 6.3 6.9 36160

5 1000 146.5 159.6 116.8 174600 10.2 6.8 8.8 37210

6 1200 98.9 70.6 91.3 172900 17.2 11.4 16.4 36330

7 1500 147.1 183.7 116.2 180250 33.6 23.7 30.6 36140

8 2000 140.2 140.9 84.3 184650 101.8 92.9 79.3 36780

Fig. 3. Histogram of time (in miliseconds) required to performed update,
normalized according to size.

Fig. 4. Histogram of time (in miliseconds) required to accept receipt,
normalized according to size.

domain objects, without need to make any changes in the tests

themselves.

In order to see how demanding the running of the data

generators during testing is, we measured times required to

generate instances of data classes. In Table II you can see

the times required for generating one instance of Item and

Receipt classes. In last row the time required to generated

one instance of the Receipt class with 10 Items is shown.

The first column shows average duration of the first run of the

generator, the second columns shows average time required

when all JVM optimization took effect, after generating 100

of instances.

TABLE II
TIMES REQUIRED FOR DATA GENERATING

Class first generating [ms] after optimization [ms]

Item 9.25 1.12

Receipt 12.37 1.82

full Receipt 123.15 10.51

VII. RELATED WORK AND COMPARISON TO OTHER

TOOLS

Testing based on random data is well established both in

literature and practice. In some cases, the generators are very

complex. For example in [4] a random generator is used to

test the compiler by randomly generating Pascal programs

fulfilling provided grammar and testing many possible paths of

compilation. Several other examples of using random gener-

ators are summarized in [5]. The random generators are also

used to achieve better code coverage in testing in different

setups for a long time - [6], [7], [8], often in combination

with some technique to limit the number of generated test

data. In [6], genetic algorithms are used to searh for test data

that provides the best code coverage and such approaches are

still investigated [9], [?]. In [8], random test data are used

in combination with guidance obtained from runtime analysis

of the program under test. Similar approaches used not only

for unit tests or load tests, but also for the tests of the user

interfaces [10]. However, most literature focused on testing

deals with methods for creating data in a deterministic way,

in order to maximize code coverage of unit tests.

Several tools that allow generating of complex test data

exists, but they are mostly intended for use in web applications

or to test web services [11], [12], [13]. Typically, they allow

to generate datasets in formats like JSON or XML, and use

them as a result of web service or input for further processing.

The definition of data structure is then separated from the rest

of the program and tests, so it cannot dynamically react to

changes in definition of data carrying objects. The main dif-

ference is in the ability to work with complex structures. The

mentioned generators are able to generate test data according

to the defined data structures, but cannot analyze the domain

RICHARD LIPKA, TOMAS POTUZAK: AUTOMATED GENERATOR FOR COMPLEX AND REALISTIC TEST DATA 239



objects that are connected with the transfered data and cannot

accommodate to its changes.

The closest tool similar to JOP is PODAM [14], POjo

DAta Mocker. This tool allows analysis of POJO objects

and filleng their attributes with random data. It also supports

both primitive data types and work with Java collections,

user factories for supplying data that cannot be generated

directly and additional exection of objects methods when data

generation is finished. The mocker is designed to work in

Spring framework environment, so when the application under

test should use the PODAM generator, it becomes dependent

on large part of the Spring framework. The main difference

between PODAM and JOP is limited support of PODAM of

working with references between objects - PODAM basically

support only generation of additional objects in the object tree

and no searching between already generated objects.

VIII. CONCLUSION AND FUTURE WORK

We have presented a tool that should simplify testing, when

a large amount of testing data object is required. Although

such tools already exist, we believe that our approach helps

to make tests simpler, by moving the definition of the data

structure from the tests to the classes. This way, source texts

of the tests are more independent on the implementation of

data carrying classes. The data structure is kept on one clearly

defined place. The tool is intended mainly for stress tests,

measuring of quality of services and integration tests than for

unit tests, as the generators are focused on creating of realistic

looking data and not to achieve maximal code coverage. The

generating is fully automated and does not require any effort

from the tester, however, it requires the creator of data carrying

classes to create specifications of the data structure.

Currently, we have the prototype implementation of the

described tool, we are now working on creating a distributable

version. The implementation is available publicly on GitHub,

along with set of basic examples 1. We have several issues

that need to be addressed to make the tool more useful.

Our main focus is now to modify the JOP to allow the

generating unit test data that would ensure the code coverage

of the application under test. The current implementation is

focused mainly on the stress testing and thus creating large

number of data, but it seems useful to be able to direct the

generating algorithm to the critical points of the application.

As the code coverage achieved through the different data

sets can lead to an enormous number of test cases, we also

experiment with approaches to minimize the size of the test

set using methods of combinatorial testing [15] and particle

swarm optimization [16].

The other thing we would like to focus on is to adapt the

description of the data generators to the form of the constraint

of each attribute. Such constraints can then have a wider use,

for example for validation of user input.

1https://github.com/mrfranta/jop/

ACKNOWLEDGMENT

The authors would like to thank Michal Dekany, who did a

great job implementing the ideas from the paper to the working

tool.

This work was supported by Ministry of Education, Youth

and Sports of the Czech Republic, Institutional support for

long-term strategic development of research organizations.

REFERENCES

[1] D. W. Dyer. Uncommon math. Accessed: 2018-05-05. [Online].
Available: http://maths.uncommons.org/

[2] Random string utils. Accessed: 2018-05-05. [Online]. Avail-
able: https://commons.apache.org/proper/commons-lang/javadocs/api-2.
6/org/apache/commons/lang/RandomStringUtils.html

[3] P. Brémaud, Markov chains : Gibbs fields, Monte Carlo simulation

and queues, ser. Texts in applied mathematics. New York, Berlin,
Heidelberg: Springer, 1999. ISBN 0-387-98509-3. [Online]. Available:
http://opac.inria.fr/record=b1094914

[4] F. Bazzichi and I. Spadafora, “An automatic generator for compiler
testing,” IEEE Trans. Softw. Eng., vol. 8, no. 4, pp. 343–
353, Jul. 1982. doi: 10.1109/TSE.1982.235428. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1982.235428

[5] B. Wichmann. Some Remarks About Random Testing. Accessed: 2018-
05-05. [Online]. Available: http://www.npl.co.uk/upload/pdf/random\
_testing.pdf

[6] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Walton, “Genetic
algorithms for dynamic test data generation,” in Automated Software

Engineering, 1997. Proceedings., 12th IEEE International Conference,
Nov 1997. doi: 10.1109/ASE.1997.632858 pp. 307–308.

[7] S. Poulding and J. A. Clark, “Efficient software verification: Sta-
tistical testing using automated search,” IEEE Transactions on Soft-

ware Engineering, vol. 36, no. 6, pp. 763–777, Nov 2010. doi:
10.1109/TSE.2010.24

[8] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler, “Grt:
An automated test generator using orchestrated program analysis,” in
2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Nov 2015. doi: 10.1109/ASE.2015.102 pp. 842–847.
[9] C. Koleejan, B. Xue, and M. Zhang, “Code coverage optimisation

in genetic algorithms and particle swarm optimisation for automatic
software test data generation,” in 2015 IEEE Congress on Evolutionary

Computation (CEC), May 2015. doi: 10.1109/CEC.2015.7257026. ISSN
1089-778X pp. 1204–1211.

[10] K. Salvesen, J. P. Galeotti, F. Gross, G. Fraser, and A. Zeller, “Using
dynamic symbolic execution to generate inputs in search-based gui
testing,” in 2015 IEEE/ACM 8th International Workshop on Search-

Based Software Testing, May 2015. doi: 10.1109/SBST.2015.15 pp. 32–
35.

[11] Mockaroo. Accessed: 2018-05-05. [Online]. Available: https://www.
mockaroo.com/

[12] Dtm test xml generator. Accessed: 2018-05-05. [Online]. Available:
http://www.sqledit.com/xmlgenerator/

[13] Redgate. Accessed: 2018-05-05. [Online]. Available: http://www.
red-gate.com/products/sql-development/sql-data-generator/

[14] Podam - pojo data mocker. Accessed: 2018-05-05. [Online]. Available:
https://github.com/mtedone/podam

[15] M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial in-
teraction testing: A case study,” in 2017 IEEE International Conference

on Software Quality, Reliability and Security Companion (QRS-C), July
2017. doi: 10.1109/QRS-C.2017.20 pp. 69–76.

[16] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,
“Handling constraints in combinatorial interaction testing in the
presence of multi objective particle swarm and multithreading,”
Information and Software Technology, vol. 86, pp. 20 – 36, 2017.
doi: https://doi.org/10.1016/j.infsof.2017.02.004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584917301349

240 COMMUNICATION PAPERS. POZNAŃ, 2018


